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ABSTRACT 

The high variety of and intermittent demand for semiconductor memory products frequently limits the use 
of forecast error normalization in estimating inventory. Inventory turnover is a practical performance 
indicator that is used to calculate the number of days for which a company retains inventory before selling 
a product. Although previous studies on inventory level settings have primarily applied information 
regarding demand variability and forecast error, few studies have investigated the inventory turnover for 
inventory decisions. Inventory turnover data are time scaled, suited for a small sample, and right censored 
to fit the input of survival analysis. In this study, a model in which inventory turnover and survival 
analysis were integrated was developed to estimate the production inventory survival function used to 
determine inventory level. Data analysis results based on real settings indicated the viability of using 
inventory survival analysis to determine semiconductor memory inventory level settings. 

1 INTRODUCTION 

Rapid technological development and shortened product life cycles have created the risk of excess 
inventory and extensive inventory obsolescence in semiconductor memory manufacturing (Wu 2013). 
Semiconductor manufacturing is capital intensive, and manufacturers strive to increase productivity and 
enhance capacity utilization to retain capital effectiveness and competitive advantages (Chien et al. 2007). 
Practical supply chain models have indicated that allocating inventory to satisfy customers and improving 
capital utilization are crucial (Wieland et al. 2012, Degbotse et al. 2012) to maintaining reasonable 
inventory levels.  

Demand uncertainty is vital to determining the inventory level. Numerous studies have focused on the 
accuracy of demand forecasting and setting the safety stock level under a rolling schedule. Applying lead 
time and order quantity as decision variables, Ben-Daya and Raouf (1994) proposed a model that uses 
various representations of the relationship between lead time crashing cost and lead time. Boulaksil et al. 
(2009) considered the problem of determining safety stocks for multiitem multistage inventory systems in 
which demand uncertainty was encountered and recommended applying the mean absolute deviation to 
compute forecast errors. 
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However, during practical work division, the sales unit typically forecasts demand, and the 
production unit mainly plans production and manages inventory. In this environment, inventory planners 
must address two challenges when maintaining safety stock level according to demand variation. First, the 
inventory planners rather than the sales unit must determine the demand distribution. Second, when the 
inventory planners calculate the demand, other units experience difficulty in accepting inventory level 
settings for going beyond a production unit’s duties. 

Most previous researchers have used the variation of demand or forecast error as parameters with 
which to construct safety stock levels (Graves et al. 1993). Because declining product demand leads to a 
loss of orders and high stock levels, examining the product life cycle of electronic components and 
adjusting stock levels accordingly to reduce overdue inventory costs is necessary (Solomon et al. 2000). 
Enns (2002) considered the effect forecast bias and demand uncertainty exert to adjust demand 
forecasting. However, in the high-tech industry, defining a standard forecast error when contending with 
hundreds or thousands of product types is difficult. Generally, the forecast error is defined as the 
difference between forecasting demand and actual demand, and is frequently used to determine a suitable 
safety inventory. However, the forecast error is not unit invariant and, therefore, cannot be used to 
compare products that have large and varying baseline demands. 

In most demand-dependent production environments in which demand and procurement and 
manufacturing lead times vary, safety stocks are required to achieve reasonable service levels (Ruiz-
Torres and Mahmoodi 2010). Two methods are used to set safety stocks: a quality-based method, which 
is used, for example, to adjust the forecasting demand according to the variation in historical demand data 
(most researchers employ this method), and a time-based method, which is applied to consider the 
demand and inventory information from planning periods and determine how current inventory levels can 
satisfy the future demand over the following days or months.  

The inventory turnover, which is defined as the degree to which the current inventory level can satisfy 
the future demand in terms of days or months, is commonly used by semiconductor memory 
manufacturers to manage hundreds or thousands of product types. The inventory turnover provides a 
more intuitive viewpoint and an easier means for communicating. For example, an inventory turnover 
longer than 12 months indicates excessive inventory, whereas an inventory turnover shorter than one 
month typically suggests that the shortage risk necessitates an approximate 3-month average lead time of 
flash memory. The inventory turnover data on semiconductor memory products are time scaled, suitable 
for a small sample, and right censored to fit the survival analysis input. In this study, a model in which 
inventory turnovers are integrated with survival analysis was developed to estimate the production 
inventory survival function used to set the inventory level. An empirical study conducted using real 
settings collected from a semiconductor memory integrated device manufacturer (IDM) located in the 
Hsinchu Science Park in Taiwan investigated the viability of the proposed model. 

The remainder of this paper is organized as follows: Section 2 reviews the fundamentals of inventory 
setting applied when demand uncertainties and forecast accuracy exist and describes the inventory 
survival analysis (ISA). Section 3 details the empirical study conducted using real data collected from a 
semiconductor manufacturing company in Taiwan. Lastly, Section 4 summarizes the results and 
contributions of this study and describes future research directions. 
 

2 FUNDAMENTALS 

2.1 Inventory Turnover 

The parameters Jε(t) and D(t) are the inventory level and actual demand at time t, respectively. Given a 
confidence level α−1  and the Gaussian quantile Zα, the safety stock is determined using (1) and 
according to the normality assumption. For products with longer life-time cycles, the unknown mean 
function D(t) and uncertainty ε  can be precisely estimated based on a large number of historical data. 
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( ) ( ) εαε ZtDtJ +=       (1) 
 

However, for products with shorter life-time cycles, the small sample size results in a large standard 
error when estimating ( )tD  and ε . Two approaches can be employed to estimate ( )tD . The 
professional experience of the salesperson can be used, or ( )tD  can be assumed to be a constant and 
estimated according to the sample mean based on the previous observation at t. 
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Table 1: Conventional criteria to evaluate forecast error. 
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After ( )tD  is estimated, ε  can be estimated using the following equation: 
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Table 1 lists various conventional measurements used to evaluate the forecast error. Using absolute 

errors is inappropriate when comparing products that have large, varying baseline demands. For example, 
consider a salesperson who predicts the demand for the following 4 months at the beginning of the first 
month (Table 2, third row); however, by the end of the first month, he or she knows that the prediction 
was underestimated by 20 products and, therefore, updates the following 4-month predictions (Table 2, 
sixth row). At the end of the second month, the salesperson realizes that the prediction was again 
underestimated by 20 products. Although the two forecasts resulted in the same bias, the error rate of the 
first was 20% and that of the second was near 0.2%. The relative error generally is more appropriate for 
evaluating the forecast error. However, the relative error may vary when the denominator is zero; this 
variation occurs when estimating the inventory of products that are subject to a seasonal effect. To 
objectively measure the forecast error, the inventory turnover was applied in this study. 

Inventory turnover represents the actual demand that must be fulfilled after a number of forecast 
periods. Let ( )tD̂  denote the salesperson’s forecast demand, T1 denote the maximal time before ( )tD̂  
fulfills ( )tD , and T2 denote the proportion of the remaining demand to the T1+1 forecast at time t; T1 and 
T2 can be formulated as (4) and (5), respectively.  
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Table 2: Comparison between inventory quantity and inventory turnovers. 

Month 1 2 3 4 5 
Actual demand 100 10000 100 70 130 
Forecast at month 1 80 10100 70 20  
Inventory quantity -20 100 -30 -50  
Inventory turnovers 1 + 20/10100 0+10000/10100 2+ +0 1+  + 0  
Forecast at month 2  9980 200 40 80 
Inventory quantity  -20 100 -30 -50 
Inventory turnovers  1 + 20/200 0 + 100/200 1 + 30/80 1+  + 0 

 
The inventory turnover is expressed as 
 

( ) 1 2J t T Tτ = +       (6) 

 
Unlike the relative error listed in Table 1, inventory turnover equals 1 when the forecast is accurate. 

Overestimation and underestimation cause inventory turnover to be lower than and greater than 1, 
respectively. 

In the aforementioned example, the salesperson underestimates the first demand; thus, T1 = 1 in both 
cases. The remaining demands require 20/10100 and 20/200 of the subsequent forecasts to be fulfilled. 
Therefore, the inventory turnover is 1.002 and 1.010 for the first and the second forecasts, respectively. 
Thus, using the inventory turnover as an error criterion is appropriate because it does not fluctuate with 
the baseline demand. 

2.2 Product Limit Estimator 

In a make-to-stock industry, salespeople must predict a fixed number, n, of future demands. Therefore, 
the value of t in T1 and ( )tJT  may not be close n. In the aforementioned example, because the salesperson 
provides 4-month predictions, 41 ≤T . For the final prediction at the first month, T1 and ( )tJT  are both 
greater than 1 and are not explicit numbers. Unlike data that provide complete information, these data 
provide partial information and are therefore incomplete data or, more precisely, right-censored data. In 
Table 2, +N  denotes the censored observation, indicating that T1 is greater than N. In these observations, 
T2 = 0. 

Right-censored data are frequently applied in biological and reliability research. For example, to 
determine the survival time of a patient with cancer, the survival function can be expressed as 

 
( ) ( )tTtS >= Pr       (7) 

 
where T is the patient survival time. In other words, the probability that the patient will survive after time 
t is estimated. Equation (7) can be estimated by using the empirical distribution function ( )tF̂ : 
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Asymptotic properties of (8) are discussed by van der Vaart (1998). However, contact may be lost with 
various patients during the experiment. The visit records indicated that the survival time is longer than a 
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period and right-censored data are obtained. Right-censored data are typically recorded as ( )iiT δ, , where 

iT  is the time when patient i leaves the experiment and iδ  = 1 if iT  is complete; otherwise, iδ  = 0. 

( ) ( )( )iiT δ,  denotes the ordered iT  with the corresponding iδ . Kaplan and Meier (1958) suggested 
estimating (7) by using a product-limit estimator:  
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Because (9) is a step function, it may not achieve the exact confidence level. 

2.3 Inventory Survival Analysis  

In this study, ISA was used to ascertain the inventory level according to a user-specified confidence level. 
The procedure is described as follows: 

 
Step 1: The lead time k was determined according to the manufacturing cycle time. Although using a 

lower k typically results in a more accurate estimate of ( )tD , the manufacturer may not achieve 
the inventory level on time. Because using a greater k increases the difficulty of estimating ( )tD , 
a higher inventory level is often obtained.  

Step 2: The confidence level α is set. The confidence level represents the probability that the inventory 
level will fulfill the actual demand after time k. Hence, using a greater α results in a higher 
inventory level, and vice versa. 

Step 3: The inventory turnover is computed. According to Section 2.1, historical data is expressed as 
( )iiT δ, .  

Step 4: The product-limit estimate is computed. Fig. 1 depicts the estimated distribution function, which 
equals 1- ( )tS . When the inventory level is one month, the probability that the actual demand will 
be fulfilled is 60.53%. If the confidence level is set between 90% to 90.13%, then the inventory 
level should be set to 5.43 months. 

 

 
Figure 1: Product-limits estimate. 
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3 EMPIRICAL STUDY 

An empirical study was conducted using real settings obtained from a semiconductor memory IDM 
located in the Hsinchu Science Park, Taiwan, to demonstrate the viability of the proposed model. The 
product dataset contained action demand data from January 2011 to December 2011 and four 12-month 
action demand rolling forecasts (Table 3) predicted by the salesperson. More complete approaches that 
incorporate with seasonal factors, market growth rates, prices, repeat purchases, technology substitution, 
and technology diffusion can be found in Chien et al. (2010). Because of limited space, only five products 
are described as examples in this paper. Incomplete product data entries were completed with zeros. For 
example, Product P had no actual demand data (i.e., an empty entry) in January and June 2011 when no 
shipments occurred (no actual demand recorded) within the period; thus, zero values were inserted to 
complete the demand data. 

The input data were then transformed into inventory turnovers and possible censored records. 
According to one product, for each one-month actual demand, the inventory turnover was calculated 
using the value obtained in (6) as the number of accumulated forward-looking months of forecast demand 
that could satisfy the actual demand. When the actual demand was zero, the inventory turnover was set to 
zero, indicating that zero months of accumulated forward-looking forecast demand could satisfy the 
actual demand. For example, the inventory turnover in January was zero (Table 3), and the inventory 
turnover in February was 2.2, considering one full month for the first-month forecast (zero), another full 
month for the second-month forecast (5,000), and 0.2 month for the third-month forecast (1,000 out of 
5,000). The inventory turnover in March was 5. The inventory turnover data from the first 3 months were 
complete. However, the inventory turnover in April was 12 and right-censored ( 0iδ = ) because the 
actual demand (8,000) could not be satisfied by the forward-looking 12-month forecast demand. The ISA 
was effective for situations in which the actual demand was zero or both the actual and forecast demand 
were zero, and the mean absolute percentage error and the symmetric mean absolute percentage error 
were not clearly defined. 

Regarding the paired inventory turnovers and censored data ( 0 or 1i iδ δ= = ), records were sorted in 
ascending order according to inventory turnover for each product (Table 4). Step 4 was then performed to 
compute the Kaplan-Meier product-limit estimate. Table 5 lists the obtained confidence levels with the 
corresponding inventory turnovers. The inventory planners can specify their own confidence levels to 
determine the amount of inventory turnover and, accordingly, prepare the inventory for future demand. 
For example, if the confidence level of Product X is set as 0.6, then 78% of the forecast demand should be 
prepared for inventory. In other words, when ISA is used, preparing sufficient or excessive inventory is 
unnecessary if the forecast is overestimated. If the confidence level of Product X is set to 0.7, then 102% 
(1.02) of the forecast demand should be prepared for inventory, implying that the extra 2% of the forecast 
is prepared as safety stock. In practice, the forecast accuracy may vary according to the product. The 
forecast of Product W was underestimated, yielding a low inventory turnover of 0.96, even though the 
confidence level was set to 0.8.  

The Kaplan-Meier product-limit estimate is convenient for use in inventory planning because it is a 
single variable that reflects the time dimension and forecast accuracy. If the turnover is 1.1, then the 
inventory planner prepares an extra 10% of inventory according to the forecast. Lead times can be 
considered by shifting inventory preparation along the time horizon in advance. 
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Table 3: Illustrative actual demand, rolling forecast by the salesman, and the inventory turnovers 
Product P Jan. Feb. March April May June July Aug. Sep. Oct. Nov. Dec. Jan. Feb. March 
Actual demand 0  6,000  6,000  8,000  2,000  0  1,700  1,000  6,000  1,200  0  0  - - - 
Forecast at month 1 1,760  0  5,000  5,000  1,056  1,056  1,060  1,060  1,060  1,560  1,060  1,056  - - - 
Forecast at month 2 - 0  5,000  6,000  1,156  1,150  1,750  7,560  1,560  1,760  1,750  1,750  1,560  - - 
Forecast at month 3 - - 1,200  1,200  1,200  1,200  1,200  1,040  8,000  1,200  1,000  6,000  5,000  9,600  - 
Forecast at month 4 - - - 0  0  200  500  2,000  0  0  200  700  200  0  0  
Inventory turnovers 0.0  2.2  5.0  12.0  … … … … … … … … … … … 

 

Table 4: Illustrative inventory turnovers and censored Data 

Product Sequence 
Inventory 
turnover iδ  

A 1 0.00  1 
 2 0.00  1 
 3 0.01  1 
 4 0.31  1 
 5 4.00  1 

B 1 0.78  1 
 2 0.98  1 
 3 1.02  1 
 4 2.60  1 
 5 3.15  1 
 6 4.67  1 
 7 12.00  0 
 8 12.00  0 

Table 5: Mapping inventory levels with confidence levels via the estimated distribution function 
 Confidence Level 

Product 0.6 0.7 0.8 0.9 
U 0.00  0.00  12.00  12.00  
W 0.00  0.50  0.96  2.60  
X 0.78  1.02  2.60  3.15  
Y 1.00  1.00  1.00  1.68  
Z 0.00  0.00  0.00  12.00  

 

4 CONCLUDING REMARKS 

In this study, novel applications of survival analysis were proposed to address uncertain inventory 
settings when forecasting is inaccurate. Inventory planners can specify their own confidence levels (or 
service levels) to determine corresponding inventory turnover and inventory levels by using Kaplan-
Meier product-limit estimation, which is simple and effective even when actual demand is zero or the 
demand level substantially differs among products. The proposed ISA can be applied to manage temporal 
data that are derived from small samples and are right censored. The results suggested that using ISA to 
facilitate inventory setting in the semiconductor manufacturing industry is feasible. 

Future research may consider additional external factors that might affect inventory settings, and 
multivariate analyses can be conducted to determine the inventory setting policy. In addition, hypotheses 
tests, such as the log-rank test, can be applied in conjunction with domain knowledge to facilitate product 
grouping and reduce the complexity of inventory item management, thereby enhancing the effectiveness 
of inventory planning. 
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