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ABSTRACT

In semiconductor manufacturing, optimization of the sampling measurement plan through production steps
is key to maximize productive performances. The measurement plan must guarantee high quality and
compliance to wafer specifications limits. In this article, the relationships between virtual metrology (VM)
and actual measurements are investigated with respect to a sampling decision system (SDS); specifically,
a multilevel VM strategy is relied on to provide predictive information. Such virtual measurements serve
as input for the sampling decision system, which in turn suggests the optimal measurement strategy. Two
approaches relying on decision-theoretical concepts are discussed: the expected value of measurement
information (EVofMI) and a two stage sampling decision model. The basic assumption of the SDS-
VM system is that it is not necessary to perform a real measurement until it is strictly needed. The
two methodologies are then validated relying on simulation studies and actual chemical vapor deposition
(CVD) process and measurement data. The ability of the proposed system to sample dynamically the wafer
measurements in dependence of the calculated risk is then evaluated and discussed.

1 INTRODUCTION

During the last 20 years, semiconductor manufacturers have focused on advanced process control topics,
including fault detection and classification (FDC) and Run-to-Run controllers. After early deployments on
specific processes such as chemical vapor deposition (CVD) (Campbell 1999), (Campbell, Firth, Toprac,
and Edgar 2002), lithography, diffusion and etching, the efforts were concentrated in the realization of
a fab-wide solution (Moyne 2004). The driving factor, especially in the last ten years, has been the
need to improve yield (Tobin and Neiberg 2001) and quality without impacting productive throughput;
such topics are even more important for the industries facing high product mix and very rapid product
development phases. Some researches focused on sampling techniques: while on one side this would
allow to reduce costs by avoiding unnecessary measurement operations, this posed sensitive problems to
Run-to-Run controllers who need a constant flow of real measurements to work. Constant challenges
include the costs and reliability of equipment integration for data collection, and interaction dynamics with
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existing software (such as Run-to-Run controllers, FDC, in-situ-sensors, yield management systems). The
theory of a fab-wide solution that goes from APC to yield and integrates components such as scheduling
and dispatching represents the next step in the semiconductor industrial roadmaps. In this article, the
interactions between virtual metrology (Weber 2007) and sampling decision systems are explored. Virtual
(or soft) sensors can be used to calculate a virtual measurement with the goal of reducing measurement costs
and the number of time-consuming measurement steps. In the design of virtual sensors, the main goal is to
find and exploit the complex, possibly non linear relations between collectible data and real measurements,
and assess prediction uncertainty in a meaningful way. In this article, the multilevel virtual metrology
approach first described in (Schirru, Pampuri, DeLuca, and Nicolao 2011) is used as information provider.
In order to exploit such information to provide optimal sampling and measurement plans, statistical decision
theory is jointly employed with multi-stage finite decisions problems that are solved by means of dynamic
programming. The proposed approach is validated on chemical vapor deposition (CVD) data.

2 PROCESS FLOW AND VIRTUAL METROLOGY

Virtual metrology methodologies aim to link statistically significant process equipment parameters to
measurement results. A VM prediction model should be learned using training data sets

y:{xiE%,inQ,i:L...,N}, (1)

where 2" and ¢ are referred to as the input and output space. To be more concrete, the goal is to find
amap f: 2 — % that is then extended to new input data x,., € Z in order to predict the unknown
measurement result y,,,, € %. The obtained prediction f(x,,) is referred to as the virtual measurement.

2.1 CVD Process Flow

The analysis of the VM-SDS system considers the chemical vapor deposition (CVD) process aiming to
form a thin film on the wafer’s surface with appropriate purity and uniformity. In other words, CVD refers
to the formation of a non-volatile solid film on a substrate from the reaction of vapor phase chemical
reactants containing the right constituents. Within the reaction chamber employed in this process, the
reactant gases are introduced to mix and react with the substrate with the goal of forming the required
film. Depending on the needed material, many types of different CVD processes are used in semiconductor
industry (low pressure - LPCVD, plasma enhanced -PECVD, high density plasma - HDCVD). A BPSG
process (running on a LPCVD equipment) exploits silicate glasses with different additives to improve
output reaction and quality; boron and phosphorus are added to the silicate glass. Figure 1 shows the
material flow in connection with the VM-SDS system. Lots consisting of 25 wafers are processed. With
the end of processing a specific wafer, equipment parameters are collected and sent to the VM-SDS system.
After testing data quality, the VM system provides the SDS with a virtual measurement for wafer sampling
evaluation. The SDS system takes a decision if a real metrology operation is required or the entire lot is
allowed to be skipped and moved to the next production step.

2.2 VM with Multi Kernel Ridge Regression

In this article, a regularized machine learning setting is employed to introduce and test the proposed
methodology: the estimator f is found by minimizing some loss function # (6) with respect to some
unknown parameter 6. Such loss function is usually the sum of a loss term £ and a regularization term %,

S (0)=2(6)+1%(6). @)

In this framework, given a model specified by 6, . measures the quality of approximation on the training
set . and Z is a measure of the complexity of the model. Intuitively, the coexistence of .Z and % relates
to a trade-off between model regularity and performances on .. The regularization parameter A € R™
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Figure 1: Graphical representation of the material flow and VM-SDS system.

acts as a tuning knob for such trade-off: as A grows, the order of the selected model gets lower and lower.
In this paradigm, a learning algorithm is entirely specified by (i) the loss term .Z(0), (ii) the regularization
term % (0) and (iii) the structure of the estimator f(x;6). Remarkably, this structure assumes that the
prediction of a generic y; can be obtained, at best, up to a random uncertainty (depending on .%’). In other
words, adopting an additive error paradigm, it is implied that

yi = f(x)+ &, 3)

where g is a random variable whose distribution depends on 8. We here assume that 2" =R” and # = R.
The goal is to build a map f: R” — R of the relationship between an input dataset X € R¥*? and an array
of target observations Y € R". Furthermore, let x; be the i-th row of X, and y; be the i-th entry of Y.

The basic machine learning technique, Ordinary Least Squares (OLS), looks for a linear relationship
f(x) =x’w by minimizing the following sum of squared residuals with respect to w € R”:

n

Jors(w) :=[|Y = Xw[|> =} (yi — xjw)*. “4)
i=1

Under a statistical framework, this amounts to maximizing the conditional probability p(Y |X) when assuming
Y|X ~ N(Xw,02I) or, equivalently, Y = Xw+ €& with € ~ N(0,0%]) (that is, i.i.d. Gaussian noise). The
optimal coefficient vector w5 is just

and does not depend on o2. This scheme suffers from two main drawbacks: (i) for small datasets (n ~ D)
the estimated f(x) may overfit the noisy data or even interpolate the training examples, and (ii) the matrix
X'X may be ill-conditioned or even singular. To overcome these drawbacks, Ridge Regression (RR), was
proposed in the early seventies of the last century. RR is obtained by minimizing the loss function

Jrr(W) = ||Y — Xw|[> + Aw'w = Jors(w) + Aw'w, (6)

where A € R™ is the regularization (hyper)parameter. Under a Bayesian framework, Jgg is a logposterior

distribution, and the term Aw'w in (6) is related to the prior distribution p(w) of w, assuming w ~ N(0,A7'7).

The larger A, the smaller the variance of the estimator, at the cost of introducing some bias; in practical

applications, A is often used as a “’tuning knob” controlling the bias/variance tradeoff, which is typically
tuned either via cross validation. The optimal coefficient vector wRR and the estimator fzg(x) are

Wi = (X'X +A1)7'X'Y, 7

frr(x) =X (X'’X +A1)"'X'Y. (8)

The numerical stability problems in (5) are now avoided, because (X'X + AI) has full rank for any A > 0.
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It is obviously desirable to extend the possible estimators f(x) to include also non-linear relationships:
instead of considering y = x'w as model, we consider y = ¢ (x)'w, where ¢ : R” — R” is amapping function and
w € RP isanew coefficient vector. Forexample, let p =2and ¢ (x(1), x?)) = [x(V x) x(x?2) (x(1D)2 (x(2))2]:
then, the new estimator includes all possible polynomials up to second degree. Unfortunately, the number
D of coefficients of a basis expanded to the d-th polynomial order would be

p=<d—1>p+i_il(fj>. ©)

To give some numerical example, for p =100 and d =2, p = 5150; for d =3, p = 166950. It is apparent
that (7) would be computationally intractable even for relatively low degree polynomials (p-th order matrix
inversion is required). To overcome this, we employ the so-called kernel trick: by using the matrix identity

X'X+AD)7'X =X (XX + A1), (10)
the optimal RR estimator (8) can be rewritten in dual form
frr(x) =x'X'(XX'+A0)7Y = (x,X') (X", X") + A1) Y, (11)

where (u,v) = u'v for column vectors u and v of equal size denotes the inner product between u and v.
Essentially, equation (11) depends only on inner products, and the Gram matrix K = (X,X) is usually
referred to as the kernel. This result allows to solve a non-linear learning problem by embedding it in a
linear framework. Notably, if there exists a kernel function K such that

K(u,v) := (¢ (u),0(v)), (12)

it is possible to compute fgg(x) without explicitly evaluating ¢ (X). Indeed, it is sufficient to compute the
Gram matrix K € R"*" such that the element (i, j) is K[i, j] = K (x;,x;) and the vector function k(x) € R!*"
such that k(x) = (K(x,x1),...,K(x,x,))". Then, (11) is rewritten as

frr(x) =k(x) (K+AI)~'Y =k(x)'c, (13)
where ¢* is the solution of the following Kernel Ridge Regression Problem:
¢" = argmin |Y —Kc||* + Ac'Ke. (14)
This is an unconstrained quadratic optimization problem with respect to ¢, the minimizer is
¢t =(K+AN"'Y. (15)

Notable examples of kernel functions are the polynomial (homogeneous and inhomogeneous) kernels of
degree d, i.e. K(u,v) = ((u,v))? and K(u,v) = (1+ (u,v))9, and and the radial basis kernel represented by
the kernel function K (u,v) = exp(—||lu—v||*/2062).

For an extension to multi-level virtual metrology, see (Schirru, Pampuri, DeLuca, and Nicolao 2011).

3 SAMPLING DECISION SYSTEM USING VM

Sampling plans for metrology operations are key in semiconductor manufacturing. For reasons of destructive
tests, intractably high costs, technologically unfeasible inspections and excellent process quality history, there
is no need of inspecting the whole production. Concepts of statistical process control (SPC) provide methods
for acceptance sampling that have been followed by semiconductor companies for years (Montgomery
2001). Real metrology information is obtained with certain time delay after wafer processing which often
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leads to a delayed recognition of process abnormalities. By means of the VM-SDS system, we are able to
overcome these deficiencies. Whenever it is possible, the virtual measurement should be used instead of
the real one in order to decide on the status of some wafer or process. Reliability of virtual measurements is
assessed by means of the equipment health factor (EHF). The VM trust factor adjusts virtual measurements
uncertainty comparing real measurement outcomes with corresponding virtual ones. Based on the evaluation
of in control (IC) and out of control (OOC) wafer risks, the VM-SDS system results in a dynamic sampling
plan fixing wafer fine metrology operations.

3.1 Equipment Health Factor

Virtual measurements are computed with respect to a certain selection of significant equipment parameters.
However, process outputs depend on several equipment variables. Thus, the reliability of obtained equipment
data has to be assessed. This can be reached by means of the equipment health factor (EHF), which is the
first important input of the VM-SDS system. Within the ENIAC IMPROVE (Implementing Manufacturing
science solutions to increase equiPment pROductiVity and fab pErformance) project, the semiconductor
community defines it as the result of a probability calculation used to forecast equipment behaviour and
optimize control plan, based on the analysis of equipment parameters, maintenance and product historical
data. In this article, it is a quantitative equipment status index. A principal component analysis (PCA) of all
equipment parameter streams filters the insignificant information. Feature space dimension is reduced so
that 95% of total variability is retained. Based on the PCA filtered data streams, the status of the equipment
is assessed by means of Hotelling’s 72. An EHF alarm signal should be an indicator of unreliable predictions
and should therefore lead to real measurements. Since the EHF will not always prevent the VM-SDS
system from using unreliable predictions, the VM trust factor ty; should be considered in addition.

3.2 Trust factors for virtual measurements

A virtual measurement provides a predictive probability distribution indicating the more probable measure-
ment outcomes of some wafer k. In the univariate case, the virtual measurement defines a normal prior for
the unknown mean value of p =9 wafer sites

tx ~ N (Lya,, Ovy,) - (16)

Multivariate virtual measurements provide expected values of all the p = 9 points on the wafer, summarized
by means of a VM mean vector iy, € RP and a corresponding covariance matrix Xy, € RP*P. It can
be seen as p-variate normal distribution covering the more probable measurement vectors X, € R”.

In order to guarantee reliability of virtual measurements, prediction precision should be updated
whenever real measurements become available. By means of a VM trust factor ty,,, uncertainty of virtual
measurements is adjusted without changing covariance structure. Initially, we have tyy; = 1. On the one
hand, an update of the VM trust factor is performed whenever a real measurement xx has a significant
squared Mahalanobis distance with respect to the the virtual one; that is if

A0 de> 2o (17)

where dj := Xg — Uyp,. The idea is then to minimally enlarge the determinant of VM covariance matrix
Yy by means of ty, such that the real measurement is again contained in the VM confidence region. So,

fyat = min{argrr;i]n{d,{ (tZva) " di < 12 l,a} ,z;M}. (18)
> )

A consideration of ty;,, should avoid implausible covariance matrices. In case of p-values (based on the
distribution of the squared Mahalanobis distance) within [¢t,1 — @], VM predictions are then weighted
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using the current value of #yy,. A p-value greater than 1 — ¢ indicates tyy, to be too large. In this case the
VM trust factor should be decreased according to

t‘(/l;/;l) = max { 1, arg max {d,{ (IZVMZ)*l d; > Xﬁ,a}} . (19)

I<tyy

If there is a significant increase of the VM trust factor, the virtual measurement seems to be not reliable
any more and real measurements are required. In this way, also mismeasurements might be detected. An
example is given in Figure 2, where wafer #17 shows a bad virtual measurements. Figure 3 indicates that the
trust factor reacts properly jumping to a higher value. We are more uncertain about virtual measurements
as long as the trust factor returns to a normal stage. For more details, see (Kurz, DeLuca, and Pilz 2013).

4 TWO APPROACHES FOR SDS

The proposed sampling decision system is based on the assumption that it is not necessary to perform a real
measurement until it is strictly needed. The real measurement leads to an additional quality information
about the lot/wafer/process equipment. In order to reduce uncertainty and risk of faults, sometimes real
measurements are required. Two similar decision methodologies have been introduced in (Kurz, DeLuca,
and Pilz 2012): the first is based on the expected value of measurement information (EVofMI) and the
second one concerns running a two-stage sampling decision model. Both decision approaches, are discussed
for the mean value of the p =9 wafer points.

4.1 The expected value of measurement information (EVofMI)

In semiconductor manufacturing, it is a standard practice to control process outputs by means of (univariate)
control charts (Montgomery 2001). These charts are most often based on the assumption of normally
distributed process observations. Since we focus on X-charts, we assume

Xii| e ~ N (g, 62), (20)

where 62 provides information on process variation. It might be either estimated from data or derived by
means of process capability indices C;, or Cp. Assumption (20) is exchangeable. The sample average

1 P
Xe=—) Xip (1)
P iz

is considered in control (IC) if X € [LCL,UCL] or out of control (OOC) if X ¢ [LCL,UCL]. Then the sampling
decision system, requires to consider IC-OOC-decision making in a decision-theoretical framework.
First of all, we specify actions a; € &7, i € {0,1}, where

ap = "accept IC”, a; = "accept OOC” (22)
and states of nature 6; € ©, j € {0,1}, using
60 = IC < i € [LCL,UCL], 6, = 00C <> i & [LCL,UCL). (23)

Consequences of wrongly classifying a wafer to be IC and OOC, respectively, are quantified by means of
a loss function L : ® x &7 — R defined as

L(e’“‘)):{ loy 9:9(1) ’ L(e’“l):{ 0 9:9(1) @9
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Figure 2: Real and virtual thickness measurements - normalized mean values from CVD process.
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Figure 3: Computed trust factors for CVD thickness measurements.

and o1, /10 > 0. The optimal prior decision is then found by means of prior expected loss. Therefore, we
first compute prior probabilities for the k-th wafer of being IC and OOC using the trust factor weighted
virtual measurement, see Section 3.2. Thus,

P(6 =IC) = P( € [LCL,UCL]), ~ P(6 =00C)=1-P(6 =IC). (25)

Afterwards, we determine the optimal prior action d by calculating prior expected losses (prior risks) of
actions ag and aj, i.e.

EoL(6,a0) = IpyP(0 = 00C),  EoL(0,a) = 10P(6 = IC). (26)

The action with the smaller prior risk is chosen as the optimal prior one. The risk taken from this decision
(prior decision value) is (Parmigiani and Inoue 2009)

Vg :min(EgL(O,ao),EgL(O,al)). (27)

In case of a precise virtual measurement predicting a mean near the target, we obtain a high probability
for the wafer of being IC. This results in a prior decision in favor of ay with decision risk Vg ~ 0.

If a sample mean X; of p measured wafer sites becomes available, the posterior distribution of |k
can be assessed applying

J (i) = f el w) f (i) / f (X)) (28)
In our case, the posterior distribution is given as u|xx ~ N(u;, sz*) with (Bernardo and Smith 2000)
1 1 1 1
* 2%
W, =o X+ ——Hvmy | —; = (29)
e < */p Oy, k) o p GVMk

The optimal action after observing X, is then derived by means of minimum posterior expected loss (DeGroot
1970). Therefore, we compute posterior probabilities for the wafer of being IC and OOC according to

P(0 = IC|%) = P(|xx € [LCL,UCL]), ~ P(6 = 0O0C[%) =1—P(6 = IC|%) (30)
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and assess posterior expected losses of actions ag and a
EemL(B,ao) = 101P(9 = 00C|xy), EQWL(G,CZ]) =110P(6 = IC‘X/J. 3D

The Bayes action a* has minimum posterior expected loss and minimum Bayes risk, respectively. The risk
that is taken with respect to a* (posterior decision value) is

Vem :min(EemL(G,ao),EemL(G,a])). (32)

The information gained from observing X; is assessed by means of the value of measurement information
Vx, (Parmigiani and Inoue 2009). It is defined as the difference between the posterior decision value Vyiy,
and the posterior expected loss of the optimal prior action d. Hence,

Vj — Velxk —EQWL(Q,CI) 2 O (33)

The value of measurement information is 0 in case of an equal prior and posterior decision. In this case, the
measurement information would actually not have been needed. However, we receive a high informational
gain from the measurement if X; revises our decision with respect to the virtual measurement and results
in a small posterior decision risk.

The marginal distribution of X; (prior predictive distribution) (Bernardo and Smith 2000),

X~ N (Uym,, o /p+ G\%Mk) (34)

allows to compute the expected value of measurement information (EVofMI) of real measurement M;
(Parmigiani and Inoue 2009):

Vi, = Ex, Vs, = Ex Voz, — Vo > 0. (35)

It is the difference between preposterior decision value Ey Vyy, and prior decision value Vg. Setting a
constant measurement loss factor /3y > 0 in relation to /o and /9, we receive the following sampling rule:

“measure” < Vi, > ly. 36)

4.2 The two-stage sampling decision model

The second approach in order to obtain optimal sampling strategies is based on a two-stage sampling
decision model. It can be viewed as a generalization of the EVofMI-approach. Within the first stage sg, a
sampling decision agp has to be made. Therefore, we specify first stage actions

agp = “measurement”’, ap; = ’no measurement”. 37

In the second stage s, a decision a; with regard to the status of some wafer k in the control chart after
processing has to be taken. Possible second stage actions are ajg and a;; as stated in (22). Wafer status
is again treated as discrete random variable with states from (23). If ap = agp, a sample mean x; € R is
collected. Since the outcome of the measurement might influence our belief in the state of the wafer, the
second stage decision problem depends on the action taken at stage sg. Since we are not just focused on
making a single decision, we now have to evaluate several possible decision policies p;; = (aop;,a1;) € &
with i, j € {0,1} using a loss function L: ® x & — R. Losses l;j x = L(6, pij), i,j € {0,1}, k € {0,1} are
summarized by means of a loss matrix L = (li j,k) € R**2 which looks as follows:

Im lo1 +1Iu
| hotim In
L= 0 lo; (38)
Lo 0

The sampling decision problem is visualized using a two-stage decision tree, see Figure 4.
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Figure 4: Decision tree of sampling decision model.

The generic multistage decision model is solved by means of backwards induction; it says that a
multistage decision model has to be solved from the future back into the past (Bellman 1957). In our
case, the backwards induction algorithm results in a comparison of prior decision value Vi and preposterior
decision value Ex Vorx, which is now computed with respect to the loss matrix in (38). Finally, we obtain
the following sampling rule:

“measure” < EYkVe\Yk < Vy. 39)

In case of Iy =0, the sampling rule based on the two-stage decision model is equivalent to the sampling
rule in (36). Otherwise /3 > 0 is directly taken into account when computing posterior decision values. In
case of a posterior risk that is expected to compensate /), in comparison to the prior risk, it is decided to
take a measurement. The stronger we penalize wrong decisions, the more often a real wafer measurement
is triggered.

5 EXPERIMENTAL RESULTS

Let us now test the two approaches for the SDS by extending them to really obtained and simulated
virtual measurements. The considered process currently shows standardized control limits UCL= 33.5,
LCL= —33.5 and C,; = 1.5. Figure 5 shows VM expected values and real metrology means. Current
VM prediction variance is 063,, = 119.52. Health factors do not indicate bad VM prediction quality. The
SDS performs optimally if it allows skipping a better number of wafer measurements within stable process
phases, and suggests a real measurement operation whenever a virtual measurement indicates an abnormal
process output.

By default, we use unit loss and measurement loss factor /y; = 0.05. Figure 6 shows results of computing
expected values of measurement information. Based on the virtual measurement of wafer #17, we are
not able to decide if the wafer is IC or OOC. Hence, a real measurement is required. Apart from that,
other wafer predictions indicate process stability; the EVofMI-approach suggests to skip corresponding
metrology operations.

A comparison of prior and preposterior decision values based on the two-stage sampling decision model
is done within Figure 7. Corresponding decision strategies are summarized in Table 1. Both approaches
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Figure 5: Virtual and real CVD thickness mean values.
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Figure 6: EVofMI for virtual measurements of Figure 5.
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Figure 7: Prior and preposterior decision risks for virtual measurements of Figure 5.

wafer | sampling decision | prior wafer status
1 no measurement accept IC

16 no measurement accept IC

17 measurement -

18 no measurement accept IC

38 no measurement accept IC

Table 1: Optimal decision strategies for virtual measurements of Figure 5.

provide equal results. However, the real measurement of wafer #17 (observed with some delay) shows a
bad VM prediction. The updated VM trust factor might affect future decisions.

Let us now test performance of the two SDS approaches with respect to a simulated process drift
as shown in Figure 8 that is captured within the virtual measurements. Expected values of measurement
information and decision values based on the two-stage decision model are plotted in Figures 9 and 10,
accordingly. Additionally, Table 2 provides optimal decision strategies. One can realize that both approaches
react with the simulated process drift and suggest real measurements of wafers #49 and #50. The process
might be OOC.

6 CONCLUSIONS

In this article, a first study of interaction between Virtual Metrology (VM) and sampling decision systems
(SDS) has been presented. Considering virtual measurements within a X-chart, the proposed SDS approaches
are able to provide an optimal sampling action in dependence of the information coming from the VM
system. In other words, depending on whether the virtual measurement makes it possible to decide on the
status of the wafer, a real measurement operation is suggested. If some process drifts are observable, the
sampling decision system will (with a time constant that depends on preset SDS parameters) request real
wafer measurements. A large number of real wafer measurements might be skipped in case of reliable virtual
measurements indicating good process performance. In conclusion, we show how a sampling decision
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Figure 8: Data with simulated process drift.
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Figure 9: EVofMI for virtual measurements of Figure 8.
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Figure 10: Prior and preposterior decision values for virtual measurements of Figure 8.

system using Virtual Metrology allows to improve performances based on usual statical sampling rules. Of
course, a small amount of real measurements will always have to be performed, in order to continuously
validate the suggestions of the proposed SDS system.
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