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ABSTRACT

When estimating a performance measure f∗ of a complex system from noisy data, the underlying function
f∗ is often known to be convex. In this case, one often uses convexity to better estimate f∗ by fitting a convex
function to data. The traditional way of fitting a convex function to data, which is done by computing a
convex function minimizing the sum of squares, takes too long to compute. It also runs into an “out of
memory” issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting
a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least
absolute deviations estimator can be computed more efficiently via a linear program than the traditional
least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.

1 INTRODUCTION

Various performance measures that arise in inventory systems, queueing networks, or integrated circuits
have a certain shape characteristic such as convexity in the control parameters (Shanthikumar and Yao 1991,
Meester and Shanthikumar 1990, Wolff and Wang 2002, del Mar Hershenson, Boyd, and Lee 2001). When
estimating such performance measures from noisy data, one often uses the shape characteristic by fitting a
convex function to the observed data. This paper is concerned with providing a numerically efficient way
of computing the best fit of a convex function and proving the consistency of the proposed method.

Our goal is to estimate the unknown function f∗ : [0,1]d→R from the observed data (X1,Y1), . . . ,(Xn,Yn),
where

Yi = f∗(Xi)+ εi

for i≥ 1, the Xis are continuous [0,1]d–valued independent and identically distributed (iid) random vectors,
and the εis are iid random variables with zero median and E(|ε1|) < ∞.

When f∗ is known to be convex, a natural way to estimate f∗ is to minimize the sum of squares

ψn(g) ,
1
n

n

∑
i=1

(Yi−g(Xi))
2

or the sum of absolute deviations

ϕn(g) ,
1
n

n

∑
i=1
|Yi−g(Xi)|

over the set of convex functions

C =
{

g : [0,1]d → R such that g is convex
}

.
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When ψn is used as a goodness–of–fit criterion, the fitted function is referred to as “the convex regression
estimator”. While statistical properties of the convex regression estimator are well–established (Hildreth
1954, Hanson and Pledger 1976, Wu 1982, Fraser and Massam 1989, Mammen 1991, Groeneboom,
Jongbloed, and Wellner 2001, Turlach 2005, Birke and Dette 2007, Chang, Chien, Hsiung, C.-C.Wen,
and Wu 2007, Meyer 2008, Kuosmanen 2008, Shively, Walker, and Damien 2011, Seijo and Sen 2011,
Lim and Glynn 2012, Lim 2014), the convex regression estimator suffers from computational inefficiency.
Minimization of ψn over C can be formulated as a quadratic program (QP) with (d +1)n decision variables
and n2 constraints (Kuosmanen 2008). The computational burden of solving this QP becomes heavy
especially when dn exceeds a few hundred. However, recent studies show that the idea of fitting a convex
function can be applied to large–scale data. For example, the power, gain, or bandwidth of integrated
circuits is often approximated as a convex or concave function in the sizes of the transistors contained in
integrated circuits (del Mar Hershenson, Boyd, and Lee 2001). In this context, more than a few thousand
data points can be used to estimate the performance measure of the integrated circuits as a convex function.
Thus, there is a growing need of fitting a convex function to large–scale data. Recently, there has been
an effort to develop computationally efficient methods to estimate convex functions. Magnani and Boyd
(2009) and Hannah and Dunson (2013) use approximate piecewise linear approaches that can scale to large
data sets. Aguilera, Forzani, and Morin (2011) uses a two-stage approach that consists of kernel smoothing
and then finding the convex hull of the smoothed estimate. But this method requires specification of the
smoothing parameter.

To overcome the computational inefficiency of the convex regression estimator, we propose to use ϕn
instead of ψn as a goodness–of–fit criterion. Using ϕn may be beneficial from a computational point of
view because minimization of ϕn over C can be formulated as an linear program (LP) rather than a QP.
Another advantage of using ϕn is that the least absolute deviations estimators can provide more robust
results because they are not sensitive to outliers in the dataset (Bassett and Koenker 1978, Wagner 1959).

In this paper, we use ϕn instead of ψn as a goodness–of–fit criterion and investigate the least absolute
deviations estimator ĝn, which is the minimizer of ϕn over C . We observe that ĝn can be computed by
solving an LP and the LP has a dual problem that can be solved more efficiently. We further discover that the
dual problem has a block–angular form in its constraints, and hence, allows application of decomposition
techniques such as Dantzig–Wolfe decomposition. Dantzig–Wolfe decomposition then enables one to
compute ĝn for large–scale data. Our numerical reaults in Section 4 show that ĝn can be computed for a
dataset that contains more than 10,000 datapoints when d = 1 while the least squares estimator can only
be computed for a dataset containing a few hundred data points. In most of our numerical examples, ĝn
was computed much faster than the least squares estimators.

This paper is organized as follows. Section 2 introduces the mathematical framework for our analysis.
In Section 3, we provide a numerically efficient LP formulation for computing ĝn while Section 4 discusses
the numerical behavior of the least absolute deviations estimator compared to that of the least squares
estimator.

2 MATHEMATICAL FRAMEWORK

When f∗ is known to be convex, a natural way of estimating it from data is to minimize the sum of absolute
deviations

ϕn(g) =
1
n

n

∑
i=1
|Yi−g(Xi)|

over the set of convex functions C =
{

g : [0,1]d → R such that g is convex
}

. Since there are infinitely
many convex functions, this minimization may appear to be computationally intractable. However, the
following proposition reveals that this minimization can be formulated as an LP with (d + 3)n decision
variables and n2 +3n constraints.

2683



Lim and Luo

Proposition 1 Consider the minimization problem in the decision variables (g1,ξ1), . . . ,(gn,ξn)

min
1
n

n

∑
i=1
|Yi−gi|

s/t g j ≥ gi +ξ T
i (Xj−Xi), 1≤ i, j ≤ n,

(1)

where gi ∈ R and ξi ∈ Rd for 1≤ i≤ n. Then, the problem (1) has a minimizer (ĝ1, ξ̂1), . . . ,(ĝn, ξ̂n) and
ĝn : [0,1]d → R, defined by

ĝn(x) = max
1≤i≤n

(ĝi + ξ̂
T
i (x−Xi)) (2)

for x ∈ [0,1]d , minimizes ϕn over C .
Furthermore, problem (1) has a minimizer (ĝ1, ξ̂1), . . . ,(ĝn, ξ̂n) if and only if (ĝ1,(Y1− ĝ1)+, (−Y1 +

ĝ1)+, ξ̂1), . . . ,(ĝn,(Yn− ĝn)+,(−Yn + ĝn)+, ξ̂n) is a solution to the following LP in the decision variables
(g1, p1,m1,ξ1), . . . ,(gn, pn,mn,ξn):

min
1
n

n

∑
i=1

(pi +mi)

s/t g j ≥ gi +ξ T
i (Xj−Xi), 1≤ i, j ≤ n

Yi−gi = pi−mi, 1≤ i≤ n
pi,mi ≥ 0, 1≤ i≤ n,

where gi ∈ R, pi ∈ R,mi ∈ R, and ξi ∈ Rd for 1≤ i≤ n.

Proof. Let Gn = {(g1, . . . ,gn) ∈ Rn such that there exists a convex function g : [0,1]d → R satisfying
g(Xi) = gi for 1≤ i≤ n}. Then, Gn is nonempty ((0, . . . ,0)∈ Gn), closed and convex by Lemma 2.3 of Seijo
and Sen (2011). Note that ϕn is continuous and coercive (i.e., |ϕn(g1, . . . ,gn)| →∞ as ‖(g1, . . . ,gn)‖→∞).
Thus, ϕn has a minimizer (ĝ1, . . . , ĝn) over Gn; see Proposition 7.3.1 and Theorem 7.3.7 in pp. 216
and 217 of Kurdila and Zabarankin (2005). Since (ĝ1, . . . , ĝn) ∈ Gn, there exist vectors ξ̂1, . . . , ξ̂n in Rd

satisfying ĝ j ≥ ĝi + ξ̂ T
i (Xj−Xi) for 1 ≤ i, j ≤ n, and hence, (ĝ1, ξ̂1), . . . ,(ĝn, ξ̂n) is a feasible solution of

(1). Furthermore, (ĝ1, ξ̂1), . . . ,(ĝn, ξ̂n) becomes a minimizer of (1) by p. 337 of Boyd and Vandenberghe
(2004). The rest of the proposition follows trivially.

Remark 1 While Proposition 1 asserts that (ĝ1, . . . , ĝn) exists, it should be noted that (ĝ1, . . . , ĝn) may not
be unique. A simple example that illustrates the non-uniqueness of (ĝ1, . . . , ĝn) is the following: When
d = 1,n = 4,(X1,Y1) = (0.2,0),(X2, Y2) = (0.4,1),(X3,Y3) = (0.6,1), and (X4,Y4) = (0.8,0), any point
from the set

T =
{
(ĝ1, ξ̂1) = (a,b),(ĝ2, ξ̂2) = (a,0),(ĝ3, ξ̂3) = (a,0),(ĝ4, ξ̂4) = (a,c) :

a ∈ [0,1],b ∈ (−∞,0],c ∈ [0,∞)
}

is a minimizer of (1). So, (ĝ1, ĝ2, ĝ3, ĝ4) is not unique.
Throughout this paper, we will work with the set of minimizers of ϕn over C :

Sn = {gn ∈ C : ϕn(gn)≤ ϕn(g) for all g ∈ C }

for n ≥ 1. By Proposition 1, Sn is nonempty for all n ≥ 1 a.s. and Proposition 1 suggests a way of
computing an element ĝn in Sn by using (1) and (2). The convex function ĝn is our estimator for f∗(·).

The next section provides an efficient way of computing ĝn.
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3 A MORE EFFICIENT LP FORMULATION

In this section, we present an efficient LP formulation for computing ĝn. By Proposition 1, ĝn can be
computed by solving the following LP in the decision variables (g1, p1,m1,ξ1), . . . ,(gn, pn, mn,ξn)

min
1
n

n

∑
i=1

(pi +mi) (3)

s/t g j ≥ gi +ξ
T
i (Xj−Xi), 1≤ i, j ≤ n

Yi−gi = pi−mi, 1≤ i≤ n
pi,mi ≥ 0, 1≤ i≤ n.

We notice that the dual problem of (3) is the following LP:

max Y T t
s/t A1s1+ A2s2+ · · ·+ Ansn+ Int = 0n

bT
1 s1 = 0

bT
2 s2 = 0

. . .
...

bT
n sn = 0

Int ≤ 1n

Int ≥ −1n

si ≥ 0n, 1≤ i≤ n

(4)

with the decision variables (si j : 1≤ i, j ≤ n) and (ti : 1≤ i≤ n), where Y = (Y1, . . . ,Yn), t = (t1, . . . , tn)T ∈
Rn,si = (si1, . . . ,sin)T ∈ Rn for 1≤ i≤ n, Ai = (a jk : 1≤ j,k ≤ n) with

a jk =


1, j = k, j 6= i
−1, j = i,k 6= i

0, otherwise,

bi = (Xi−X1, . . . ,Xi−Xn)T for 1≤ i≤ n, In is an n by n identity matrix, 1n is an n by 1 vector of all ones,
and 0n is an n by 1 vector of all zeros. The si js and tis are dual variables corresponding to the first and
second sets of constraints of (3), respectively.

The dual problem (4) has two sets of decision variables (si j : 1≤ i, j ≤ n) and (ti : 1≤ i≤ n). The two
sets of variables are related only through the first constraint in (4). Thus, (4) has a block structure in its
constraints and hence allows application of decomposition techniques such as Dantzig–Wolfe decomposition.

The reason that formulation (4) can be solved more efficiently than formulation (3) is two–fold. When
solving an LP problem using the simplex method, it is more efficient to solve the dual problem than the
primal problem if the primal problem has much more constraints than the decision variables; see p. 147 of
Bradley, Hax, and Magnanti (1977) and p. 234 of Grover (2004) for details. It is the case with the primal
problem (3) and the dual problem (4) because (3) has O(n) decision variables and O(n2) constraints while
(4) has O(n2) decision variables and O(n) constraints. Second, one can apply Dantzig–Wolfe decomposition
to solve (4) and thus can compute ĝn for larger datasets than (3) can handle.

In the next section, we compare formulations (3) and (4) through numerical examples.

4 NUMERICAL RESULTS

In this section, we investigate how fast ĝn can be computed by solving (4) through common LP solving
techniques such as the simplex method and the interior point method. We further illustrate how ĝn can be
computed for large datasets by solving (4) with Dantzig–Wolfe decomposition.
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We are particularly interested in the relative performance of ĝn compared to that of the least squares
estimator. The least squares estimator is defined as the minimizing values g̃n(X1), . . . , g̃n(Xn) of the following
QP in the decision variables (g1,ξ1), . . . ,(gn, ξn)

min
1
n

n

∑
i=1

(Yi−gi)
2 (5)

s/t g j ≥ gi +ξ
T
i (Xj−Xi), 1≤ i, j ≤ n;

see Kuosmanen (2008) for details.
In the next three subsections, we compare formulations (4) and (5) in three numerical examples: 1)

a stylized model, 2) an inventory control system, and 3) a tandem queueing network. In each of these
examples, we consider four different computational strategies. Estimator 1 is the least squares estimator and
Estimators 2, 3, and 4 are our proposed estimator that are computed using different algorithms. Estimator
1, g̃n(X1), . . . , g̃n(Xn), is computed by solving (5) through the interior point method in CPLEX. Estimator
2 is our proposed estimator ĝn and it is computed by solving (4) through the simplex method in CPLEX.
Estimator 3 is also our proposed estimator ĝn and it is computed by solving (4) through the interior point
method in CPLEX. Estimator 4 is our proposed estimator ĝn. To compute estimator 4, we implement the
Dantzig–Wolfe decomposition algorithm presented in p. 243 of Bertsimas and Tsitsiklis (1997). We also
implemented a stabilization technique introduced in du Merle, Villeneuve, Desrosiers, and Hansen (1999)
while implementing the Dantzig–Wolfe decomposition algorithm.

In each of the three examples, the proposed estimator is computed faster and for larger datasets than
the least squares estimator. All the numerical experiments are conducted on a computer with a processor
of 2.33 GHz and a RAM of 12 GB.

4.1 One–Dimensional Case: A Stylized Model

We consider the case where f∗ : [0,1]→ R is defined by f∗(x) = (x− 0.5)2 for x ∈ [0,1],Xi = i/n for
1≤ i≤ n. Using (Xi,Yi) for 1≤ i≤ n, we compute estimators 1, 2, 3, and 4.

Table 1 reports the averages (Mean) and the standard deviation (Std), based on 30 independent copies,
of the CPU time required to compute estimators 1, 2, 3, and 4. The symbol - means that the computer ran
out of memory and could not execute the procedure.

Table 2 reports the averages of the the empirical integrated mean squared error (EIMSE) based on 30
independent copies for each of the estimators 1, 2, 3, and 4 and for each n. The EIMSE is computed as
follows:

1
n

n

∑
i=1

( f∗(Xi)−Estimator evaluated at Xi)
2 .

Tables 1 and 2 show that our proposed estimator, estimator 4, is computed faster and more accurately.
For example, it takes estimator 1 (the least squares estimator) an average of 53.73 seconds to produce an
EIMSE of 0.0038 (n = 400) whereas it takes estimator 4 (our proposed estimator) an average of 32.21
seconds to produce an EIMSE of 0.0017 (n = 1400).

4.2 Two–Dimensional Case: (Q,r) Inventory System

We consider a single-item continuous-review (Q,r) inventory system, where we place an order with a
fixed quantity Q whenever the inventory position (= on hand stock minus backorders plus any outstanding
orders) drops below a prespecified quantity r. The replenishment lead time is assumed to be one unit of
time. When an order is placed, a fixed setup cost of $100 is incurred. A holding cost of $10 or a penalty
cost of $25 per unit per unit time is charged against any inventory or backorder. We further assume that
demand follows a Poisson process with a rate of 50 per unit time. Any unfilled demand is backordered.
Our goal is to estimate the steady–state mean total costs per unit time C(Q,r), which is proven to be
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Table 1: Time required to compute estimators 1, 2, 3, and 4 for a quadratic function

CPU Time (sec)
Estimator 1 Estimator 2 Estimator 3 Estimator 4

n Mean Std Mean Std Mean Std Mean Std
5 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01
50 2.00 0.09 0.05 0.01 0.09 0.03 0.07 0.01

400 53.73 5.47 5.85 0.16 15.16 0.96 2.27 0.24
600 - - 18.65 0.58 55.24 2.14 5.28 0.47
1000 - - 41.67 1.29 264.97 11.12 15.32 1.45
1400 - - 114.79 5.71 681.80 21.48 32.21 3.35
1600 - - - - - - 44.76 4.75
2000 - - - - - - 71.36 7.20
5000 - - - - - - 679.40 74.05

10000 - - - - - - 4177.68 532.36

Table 2: EIMSE of estimators 1, 2, 3, and 4 for a quadratic function

EIMSE
n Estimator 1 Estimator 2 Estimator 3 Estimator 4
5 0.1473 0.1980 0.1664 0.1908
50 0.0206 0.0245 0.0249 0.0240

400 0.0038 0.0049 0.0050 0.0050
600 - 0.0043 0.0043 0.0043

1000 - 0.0026 0.0028 0.0027
1400 - 0.0017 0.0017 0.0017
1600 - - - 0.0016
2000 - - - 0.0018
5000 - - - 0.0007
10000 - - - 0.0003
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Table 3: Time required to compute estimators 1, 2, 3, and 4 for a (Q,r) inventory system

CPU Time (sec)
Estimator 1 Estimator 2 Estimator 3 Estimator 4

n Mean Std Mean Std Mean Std Mean Std
64 1.98 0.15 0.19 0.02 0.10 0.02 0.48 0.08
100 3.29 0.19 0.32 0.02 0.25 0.03 1.80 0.31
625 - - 56.61 1.72 62.28 1.38 34.39 4.71
1600 - - - - - - 265.30 42.47
2500 - - - - - - 733.65 91.31
6400 - - - - - - 12244.76 1701.47

Table 4: EIMSE of estimators 1, 2, 3, and 4 for a (Q,r) inventory system

EIMSE
n Estimator 1 Estimator 2 Estimator 3 Estimator 4
64 0.3408 0.4201 0.4185 0.4106

100 0.2022 0.2715 0.2654 0.2633
625 - 0.2235 0.2241 0.2247

1600 - - - 0.1907
2500 - - - 0.1952
6400 - - - 0.1105

jointly convex in Q and r (p. 89 of (Zheng 1992)). To compute C(Q,r), we select the values for (Q,r) at
Xi j = (35+10i/(n1/2),35+10 j/(n1/2)) for 1≤ i, j ≤ n1/2, simulate the inventory system up to time 100
at each Xi j, compute the average Yi j of all the costs up to time 100 at each Xi j, and obtain the average of
20 independent copies of Yi j, say Y i j. Using (Xi j,Y i j) for 1≤ i, j ≤ n1/2, we compute estimators 1, 2, 3,
and 4.

Table 3 reports the averages (Mean) and the standard deviation (Std), based on 30 independent copies,
of the CPU time required to compute estimators 1, 2, 3, and 4. The symbol - means that the computer ran
out of memory could not execute the procedure.

Table 4 reports the averages of the the empirical integrated mean squared error (EIMSE) based on 30
independent copies for each of the estimators 1, 2, 3, and 4 and for each n. The EIMSE is computed as
follows:

1
n

n

∑
i=1

(C(Xi j)−Estimator evaluated at Xi j)
2 .

We estimated C(Xi j) by computing the average of 1,000 independent copies of Yi j.
Tables 3 and 4 show that our proposed estimator, estimator 4, is computed faster and more accurately.

For example, it takes estimator 1 (the least squares estimator) an average of 1.98 seconds to produce an
EIMSE of 0.3408 (n = 64) whereas it takes estimator 4 (our proposed estimator) an average of 1.80 seconds
to produce an EIMSE of 0.2633 (n = 100).

4.3 Three–Dimensional Case: Tandem Queue

We consider a queueing system of three single-server stations connected in tandem, where the interarrival
times follow a uniform distribution over [2.43,3.43] and the service times at server i follow a uniform
distribution over [xi−0.5,xi +0.5] for 1≤ i≤ 3. The interarrival times and service times are independent
of each other and the first in/first out queueing discipline is used at each server. Each server has unlimited
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Table 5: Time required to compute estimators 1, 2, 3, and 4 for a tandem queue

CPU Time (sec)
Estimator 1 Estimator 2 Estimator 3 Estimator 4

n Mean Std Mean Std Mean Std Mean Std
64 0.17 0.05 0.06 0.01 0.07 0.01 0.39 0.01
216 50.06 47.92 2.09 0.09 1.09 0.08 7.51 0.87
512 - - 51.22 2.43 15.81 1.51 27.51 4.50
1000 - - 340.89 19.86 187.18 16.33 121.81 24.29
1728 - - - - - - 862.55 127.83
4096 - - - - - - 11410.52 2895.74

Table 6: EIMSE of estimators 1, 2, 3, and 4 for a tandem queue

EIMSE
n Estimator 1 Estimator 2 Estimator 3 Estimator 4
64 0.1030 0.1340 0.1270 0.1296

216 0.0640 0.0815 0.0772 0.0782
512 - 0.0446 0.0448 0.0454

1000 - 0.0363 0.0366 0.0377
1728 - - - 0.0286
4096 - - - 0.0224

buffer space. We wish to compute the expected sojourn time s600(x1,x2,x3) of the 600th customer.
Even though there is no explicit formula for s600, the convexity of s600 has been proven; see p. 141
of (Shanthikumar and Yao 1991) for details. To compute s600, we simulate the tandem queue at Xi jk =
(2.85+0.06i/(n1/3),2.85+0.06 j/(n1/3),2.85+0.06k/(n1/3)) for 1≤ i, j,k≤ n1/3 and compute the sojourn
time Yi jk of the 600th customer. We then obtain the average of 30 independent copies of Yi jk, say Y i jk.
Using (Xi jk,Y i jk) for 1≤ i, j,k ≤ n1/3, we compute estimators 1, 2, 3, and 4.

Table 5 reports the averages (Mean) and the standard deviation (Std), based on 30 independent copies,
of the CPU time required to compute estimators 1, 2, 3, and 4. The symbol - means that the computer ran
out of memory could not execute the procedure.

Table 6 reports the averages of the the empirical integrated mean squared error (EIMSE) based on 30
independent copies for each of the estimators 1, 2, 3, and 4 and for each n. The EIMSE is computed as
follows:

1
n

n

∑
i=1

(
s600(Xi jk)−Estimator evaluated at Xi jk

)2
.

We estimated s(Xi jk) by computing the average of 1,000 independent copies of Yi jk.
Tables 5 and 6 show that our proposed estimator, estimator 4, is computed faster and more accurately.

For example, it takes estimator 1 (the least squares estimator) an average of 50.06 seconds to produce an
EIMSE of 0.0640 (n = 216) whereas it takes estimator 4 (our proposed estimator) an average of 27.51
seconds to produce an EIMSE of 0.0454 (n = 512).

In each of the three examples, the proposed estimator is computed faster and for larger datasets than
the least squares estimator.
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5 CONCLUSION

In this paper, we proposed a least absolute deviations estimator for fitting a convex function to a dataset.
Numerical examples illustrate the computational superiority of the proposed estimator over the traditional
least squares estimator. Statistical properties of the proposed estimator such as the consistency or the rate
of convergence are important research issues that deserve further study.
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