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ABSTRACT 

Microgrids (MGs) offer new technologies for semiautonomous grouping of alternative energy loads fed 

into a power grid in a coordinated manner. Simulations of these microgrids are time critical yet 

computationally demanding, inherently complex, and dynamic, especially when they are constructed for 

control purposes.  In this paper, we address the design ranking and selection problem in MG simulations 

from a set of finite alternatives in the presence of stochastic constraints. Each design encapsulates a different 

level of control of the segregation mechanism within the system, and a performance function measured as 

a combination of the incurred cost and energy surety. Building on this performance function, optimal 

computing budget allocation (OCBA) method is used to efficiently allocate simulation replications for 

selecting the best design with significant accuracy and reasonable computational burden. Computational 

results on a multi-scale MG testbed have shown that OCBA algorithm outperforms equal and proportional 

to variance allocation of replications. 

1 INTRODUCTION 

Microgrids (MGs) are self-balancing networks that have the ability to integrate a diversity of generation 

assets and fuel sources (i.e., internal combustion engines, gas turbines, microturbines, photovoltaic arrays, 

fuel cells, and wind turbines) to the distributed power grid and its operations. Being smaller counterparts 

of the main electricity grid, MGs offer a prodigious potential for enhanced economic load dispatch. The 

control for MGs meanwhile can be sustained or revised based on varying rate structures and generation 

costs. In addition, MGs have the capability to isolate from the main network and operate independently in 

case of a detected network abnormality or even emergency. Because of these advantages, MGs present a 

great potential to maintain a network’s energy surety even in crisis situations within operation-safe 

boundaries by relying only on its own resources (NREL 2012, Pogaku et al. 2007).  Microgrid systems may 

further control their demand by isolating areas and satisfying only some specific portions of the total 

demand based on their energy surety priorities (i.e., critical demand) (Thanos et al. 2013). 

 On the other hand, control in an MG entails several unique challenges. Unlike conventional power 

grids, an MG may host a mix of both traditional and new generation sources (Sáenz et al. 2012).  Hence, 

advanced control mechanisms are needed to ensure an MG’s self-regulation of voltage and frequency in a 

robust manner (Celik et al. 2013). Detailed response characteristics of engines and regulators should also 

be studied, as the traditional power-flow assessment is inadequate and commonly exclude renewable 

technologies (Sáenz et al. 2013). In order to facilitate stability and power quality in MG operations, 

particularly during network disturbances, sophisticated optimization methods are also required. 

 To this end, optimization techniques, which are embedded into simulation practice, may present a 

solution mechanism for the considered multi-objective problem of control in MGs. Through simulation 
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based optimization, the entirety of these complex systems can be realistically modeled to provide useful 

operational and managerial decision supports (Fu 2002). Simulation optimization modeling can be applied 

to many complicated MG-related real-world systems including automated response systems, electrical 

systems with multiple loads and distributed energy resources, and electricity reliability systems. The 

performance, however, of these models come at the expense of substantial computational power. This is 

especially true when dealing with large number of alternative designs, making simulation efficiency a 

significant issue to handle. 

 Several different approaches have been investigated in the literature to rank and select alternative 

designs in simulation. Goldsman and Nelson (1994) first argued that the statistical methods of ranking, and 

selection, and multiple comparisons are applicable to cases where there exist comparisons among a finite 

number of systems. In the same study, Goldman and Nelson (1994) proposed ranking methods for four 

classes of problems namely, screening a large number of system designs, selecting the best system, 

comparing all systems to standard, and comparing alternatives to a default; all of these are majorly related 

to statistical multiple-comparison procedures. Even so, Goldsman and Nelson (1994)’s approach was not 

applicable to intricate problems such as circuit-based elements, discrete electrical resources with multiple 

loads, or smart grids with large number of designs. Later, Chen et al. (1997) introduced the Optimal 

Computing Budget Allocation (OCBA) technique to efficiently select the best designs over 𝑘 alternatives. 

The comparison of results of traditional two-stage procedures with their proposed method revealed that 

OCBA proved to be more than ten times faster (Chen et al. 1997). In order to further improve the OCBA 

method, Chen et al. (2000) proposed a new and improved way to allocate simulation designs, which helps 

minimize the simulation time. Their approach was essentially developed to select the best design among a 

finite number of designs by maximizing the probability of correct selection (p{CS}) of different design 

replications. Experiments were conducted by selecting the design with the smallest (or largest) expected 

value of simulation output for the minimization (or maximization) problem among 𝑘 alternative designs 

with unequal or even unknown variances. Results showed that the improved OCBA was able to reach a 

desirable confidence level faster than theoretically optimal allocation (TOA) (Chen et al. 2006), equal 

allocation, and proportional to variance (PTV) allocation. OCBA was later applied to semiconductor 

scheduling problems (Hsieh et al. 2007) and extended to more general problems (Yan et al. 2012, Chen et 

al. 2013). Meanwhile, inspired by the fact that most real-life problems are multi-objective, Lee et al. (2004) 

provided a selection method for the multi-objective ranking and selection problem (MOCBA). Due to the 

nature of their multi-objective problem, the results were shown as a Pareto optimality set rather than a single 

datapoint (i.e., the best one). When using this improved method, MOCBA reached the desirable confidence 

level 50-100% faster than theoretical optimal allocation (TOA) and uniform allocation (UCBA). On the 

other hand, the application of MOCBA to the complex and dynamic simulations of MGs that are especially 

constructed for multi-objective control purposes would not be as promising as what has been shown in the 

synthetic experiments of Lee et al. (2004). It has been concluded that this discrepancy is caused by the fact 

that the results for the considered MG are possibly having an area of undesirable non-dominated solutions. 

Here, MOCBA would allocate some additional replications (out of the scarce and much needed ones) to 

simulation designs whose non-dominated solutions enclose very low cost and energy surety simultaneously. 

Such solutions, which result in low operational costs associated with low energy sureties, are unacceptable 

for most microgrid operations.   

 In this paper, being motivated to take on this experiment by the growing urgency in the advancement 

of MG modeling and control as well as by the unique challenges MGs provide, we study the design ranking 

and selection problem in MG simulations from a finite set of alternatives of their control mechanism in the 

presence of stochastic constraints for the allocation of simulation replications. To this end, we formulate 

the simulation performance as a single objective function that combines both cost and energy surety 

(demand satisfaction percentages). Utilizing this performance function, we then assign simulation 

replications to design alternatives in an effective manner using OCBA. 
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 The rest of the paper is organized as follows: In Section 2, we provide the details of the proposed design 

selection approach in microgrid simulations along with a brief background of the studied OCBA algorithm. 

In Section 3, we provide the topological details of the considered microgrid system.  We then discuss the 

modeling details our multi-scale migrogrid testbed in the same section. In Section 4, we present the results 

obtained from experiments that were conducted in our multi-scale microgrid testbed with different numbers 

of alternative scenarios and compare the performance of OCBA to that of equal replication allocation and 

proportional to variance (PTV) allocation of replications. Finally, in Section 5, we summarize the 

conclusions of findings and discuss the future venues of this work.  

2 PROPOSED DESIGN SELECTION IN MICROGRID SIMULATIONS 

Microgrids, by their networking structure, may include various distributed energy demands and resources 

which collectively make their simulation computationally demanding. This is especially true when these 

simulations are designed for operational and control purposes.  Furthermore, when these simulations are 

built and run in higher fidelities (or in greater details), data injections, dispatch updates, and crisis-related 

system responses occur in higher frequencies. This makes it even more complex and, therefore, difficult to 

obtain the best decisions under uncertain circumstances. However, simulating a microgrid system with a 

high fidelity model (hence using up significant computational resources) may not necessarily lead to a better 

allocation of energy distribution to its customers; this fact is unacceptable in situations where the response 

time is critical.  Hence, the goal in simulating those systems is to run those simulations in the highest fidelity 

(or design) only when it is needed.   

In this work, the diversity of demands in microgrid networks is elucidated via three categories of 

electrical loads, namely: critical, priority, and non-critical.  The nodes with critical demand (i.e., demand 

for healthcare and military facilities) have the highest priority amongst all, as any instance in its supply may 

have a direct impact on national security. The nodes with priority demand have a lower level of urgency 

than those of critical nodes and mostly correspond with industrial loads. Finally, the nodes with non-critical 

demands include housing and shopping facilities. Based on the defined categories of electrical loads, five 

unique fidelities of simulations (i.e., designs) are investigated in this study. These fidelities represent the 

various levels of control of the microgrid over the demand (i.e., the number of isolation points strategically 

placed within the microgrid). For instance, in a Fidelity 5 design, the model has the highest degree of detail 

and control over the considered system in terms of isolation points as each building may be disconnected 

from the networked grid singlehandedly if a particular abnormality occurs in its nearby environment. 

Conversely, in a Fidelity 1 design, the model has the lowest degree of detail and control over the considered 

system with only one main isolation point.  In this fidelity, the model may decide to connect and disconnect 

the entire microgrid from the main network, yet does not have the capability to single out the demand of 

each building or feeder. Overall, as the fidelity heightens, so does the expected computational intensity and 

accuracy of the model. Hence, the decision of selecting the right fidelity is a critical one due to the scale, 

complexity, and significance of the considered models. In this work, we address the fidelity (or design) 

ranking and selection problem in MG simulation models from a finite set of alternatives in the presence of 

multiple objectives for the allocation of simulation replications.   

 In order to achieve a desirable accuracy level in our results, while effectively assigning the scarce 

resources for simulation replications, we exploit the OCBA algorithm that captures the randomness and 

physical state of the system while also optimizing the computing budget allocation. In the next subsections, 

we present the mathematical formulation of our problem followed by the details of the solution approach 

provided by OCBA. 

 

2.1 Formulation of Ranking and Selection Problem in MG Simulations 

In this section, we present the formulation of ranking and selection problem in MG simulation models along 

with the model fidelities and their components that are considered in this work. In our MG simulation 
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models, there are 𝑘 alternative designs consisting of the combinations of fidelity control levels assigned for 

each different microgrid. In our considered case study, the number of different fidelities for each MG is 

limited to 5. Our case study also investigates three networking structures containing one (1-MG), two (2-

MG), and three (3-MG) independent microgrids respectively, each with five different levels of fidelities. 

Thus, we have 5, 25, and 125 different combinations of model fidelities for these 1-MG, 2-MG, and 3-MG 

structures, respectively. These different combinations are illustrated as a set of two different paths in Figure 

1. For example, in the testbed containing 3-MGs, the red lines represent the design when fidelities are set 

to level 2 for the first microgrid, to level 3 for the second one, and to level 5 for the third one. The set of 

alternative designs that we use in this work contains all combinations shown in Figure 1 and is envisioned 

to shed light on the performance of the studied model when applied to problems at varying selection 

complexities. 
 

 

Figure 1: Considered control designs for various networking structures. 

 

 In terms of the notation in formulating the problem of finding the best simulation design among k 

designs (𝑘 =5, 25,125 for 1-MG, 2-MG, and 3-MG, respectively) that maximizes the MG’s performance, 

ni is the number of simulation replication for design 𝑖, 𝑁 is the total number of available simulation 

replications (i.e., budget), 𝑓𝑖𝑗 is the MG performance of the 𝑗th replication of design 𝑖, 𝑓�̅� is the expected 

performance of design 𝑖 where 𝑓�̅� = ∑ 𝑓𝑖𝑗
𝑛𝑖
𝑗=1 𝑛𝑖⁄ , 𝑆𝑓𝑖

2
 is the sample variance of the MG performance for design 

𝑖 where 𝑆𝑓𝑖

2 = ∑ (𝑓𝑖𝑗 −  𝑓�̅�)
2𝑛𝑖

𝑗=1 (𝑛𝑖 − 1)⁄ , 𝑏 is the design with the largest sample MG mean performance, and 

 𝜇𝑓𝑖
 is the mean of MG performance for design 𝑖 (unknown). 

 After performing 𝑛𝑖 initial simulation replications for each design 𝑖, we search for the highest expected 

MG performance among 𝑘 designs, which is denoted as 𝑏. However, the expected performance of design 𝑖 
(𝑓�̅�) has variability indicating that 𝑏 does not necessarily lead to the largest unknown MG mean performance 

for design 𝑖 (𝜇𝑓𝑖
). To this end, Chen and Lee (2010) define the probability of correct selection 𝑃{𝐶𝑆} which 

represents the probability of 𝑖𝑏𝑒𝑠𝑡 to be the best selection. This probability of correct selection is formulated 

in Equation (1). 

 

𝑃{𝐶𝑆} = 𝑃{𝑑𝑒𝑠𝑖𝑔𝑛 𝑏 𝑖𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑑𝑒𝑠𝑖𝑔𝑛} = 𝑃{𝜇𝑓𝑏
> 𝜇𝑓𝑖

, 𝑖 ≠ 𝑖𝑏𝑒𝑠𝑡|𝑖 = 1,2, … , 𝑘}   (1) 
    
 Since the goal in the OCBA method is to maximize the probability of correct selection while the total 

computational budget is fixed to 𝑁 replications, the model can be written as follows (Chen et al. 1998):  
 

𝑚𝑎𝑥𝑛1,…,𝑛𝑘
 𝑃{𝐶𝑆}    (2) 

              𝑠. 𝑡.         𝑛1 + 𝑛2+. . . +𝑛𝑘  ≤ 𝑁 
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Acquiring the solution for Equation (2) is not a trivial task since, there is no closed-form expression for the 

confidence level of 𝑃{𝐶𝑆}. Furthermore, since the mean and variance of the MG performance are both 

unknown, there is a need to simulate all the different alternative designs to compute 𝑃{𝐶𝑆} for the MG 

performance function. Consequently, the total number of replications for 𝑛1, 𝑛2, … , 𝑛𝑘 is large for even 

moderate 𝑘. Addressing these challenges, Chen et al. (2009) develops an effective approach adopting a 

Bayesian model to solve the budget allocation problem, where the outcomes are shown to outperform the 

classical models of 𝑃{𝐶𝑆} estimation such as equal allocation and theoretically optimal allocation (TOA). 

Because when simulating our MG system both mean (𝜇𝑓𝑖
) and variance (𝜎𝑓𝑖

2 ) are unknown, the prior 

distribution for the output (𝑓𝑖𝑗) is assumed to have a gamma-normal distribution in the Bayesian model. 

Assuming that the MG performance is unknown prior to running experiments, the posterior distribution of 

𝜇𝑓𝑖
 can be assumed to follow a 𝑡-distribution with mean 𝑓�̅�, precision 𝑛𝑖 𝑆𝑓𝑖

2⁄  and 𝑛𝑖 − 1 degrees of freedom. 

As an alternative to the traditional yet time-consuming method of estimating 𝑝{𝐶𝑆} via Monte Carlo 

simulations, Chen (1996) proposes a fast and inexpensive method, namely Approximate Probability of 

Correct Selection (APCS), to estimate the lower bound of 𝑝{𝐶𝑆} within the budget allocation procedure. 

The advantage of APCS methods is the simplicity of computation where the computational burden is 

lightened with the calculations of a product of pairwise comparison probabilities (i.e., P(𝜇𝑓𝑏
 >

 𝜇𝑓𝑖
|𝑓𝑜𝑟 𝑓𝑖 ≠  𝑓𝑏)). Similarly, we can calculate the approximate probability of correct selection (𝑃{𝐶𝑆}) 

with Bonferroni inequality as shown in Equation (3) (Chen and Lee 2010): 

 

𝐴𝑃𝐶𝑆 − 𝐵 ≡ 1 −  ∑ 𝑃{ 𝜇𝑓𝑏
<  𝜇𝑓𝑖

}𝑘
𝑖=1,𝑖≠𝑏      (3) 

 

The approximate 𝑃{𝐶𝑆} can be calculated using product form or the Bonferroni inequality (Equation (3)), 

both of which converge at 𝑃{𝐶𝑆}.  

 In this paper, in order to speed up the proposed OCBA algorithm in MGs, the maximum of both (i.e., 

max(𝐴𝑃𝐶𝑆 − 𝑃 , 𝐴𝑃𝐶𝑆 − 𝐵) is exploited for the confidence level. Using the procedure for maximizing 

P{CS} by Chen and Lee (2010), we have applied the OCBA algorithm to our problem of effectively 

selecting the best MG simulation design from a set of alternatives. Details of our modified OCBA algorithm 

are presented in the following subsection. 

 

2.2  Ranking and Selection in MG Simulations using OCBA 

Considering the aforementioned design ranking method in Section 2.1, a sequential approach based on the 

OCBA algorithm for selecting the best MG control designs is presented in this section.  As the simulation 

proceeds through our algorithm, we compute the mean and variance of MG’s performance from the data 

which is collected up to that stage. The algorithm is presented as follows:    
 

Step 1. Parameters 𝑘 (number of alternative designs), 𝑁 (total simulation budget), ∆ (available budget for 

one iteration of the algorithm), and 𝑛0 (initial replications for each design) must be entered as inputs. In 

this algorithm, 𝑙 depicts the current iteration in OCBA. Depending on the input parameters, 𝑛0 replications 

have to be performed for each design during initialization. 

𝑙 ← 0; 
𝑛1

𝑙 =  𝑛2
𝑙 = ⋯ =  𝑛𝑘

𝑙 =  𝑛0 

While (∑ 𝒏𝒊
𝒍 <  𝑵𝒌

𝒊=𝟏 ) repeat steps 2-4: 

Step 2. Calculate the expected value of MG performance for each design 𝑓�̅� =  
1

𝑛𝑖
𝑙  ∑ 𝑓𝑖𝑗

𝑛𝑖
𝑙

𝑗=1  and the 

corresponding standard deviations 𝑠𝑓𝑖
=  √∑ (𝑓𝑖𝑗 −  𝑓�̅�)

2𝑛𝑖
𝑙

𝑗=1
𝑛𝑖

𝑙 − 1⁄  , 𝑖 = 1,2, … , 𝑘 .  
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Step 3.  Calculate the new replications for MG designs (𝑛1
𝑙+1, 𝑛2

𝑙+1, … , 𝑛𝑘
𝑙+1) using the following 

equations where 𝑏 is the design with the best performance: 

   (1)   
𝑛𝑖

𝑙+1

𝑛𝑗
𝑙+1 = (𝑠𝑓𝑖

 (𝑓�̅� − 𝑓�̅�) 𝑠𝑓𝑗
 (𝑓�̅� −  𝑓�̅�)⁄ )

2
 , 𝑓𝑜𝑟 𝑖 > 𝑗, 𝑖, 𝑗 ≠ 𝑏 

             (2)    𝑛𝑏
𝑙+1 =  𝑠𝑓𝑏

 √∑ (𝑛𝑖
𝑙+1 𝑠𝑓𝑖

⁄ )
2𝑘

𝑖=1 ,𝑖≠𝑏  

Step 4.  Perform additional [max(𝑛𝑖
𝑙+1 −  𝑛𝑖

𝑙 , 0)] replications (for design 𝑖); 𝑙 ← 𝑙 + 1. 

 In the proposed algorithm, the best design 𝑏 may change in each iteration 𝑙. However, by increasing 

the number of iterations, in most cases the best design converges to the optimal design as 𝑙 goes to infinity 

(the probability of correct selection approaches very close to 1). It should be noted here that the initial 

number of simulation (𝑛0), and one-time increment (∆) should not be selected to be too small in order to 

avoid a poor estimation of the mean and variance. Moreover, the more expensive the simulation is, the 

smaller ∆ should be selected to achieve better accuracy.     

2.3 Definition of the proposed MG Performance Function  

In order to utilize the OCBA method, the performance of the simulation for each alternative design has to 

be evaluated. In our case, to simulate a microgrid system under different control designs, we consider two 

objectives, namely: 1) minimizing the total cost of operations and 2) maximizing the percentage of the 

energy surety. However, within the considered system simulation, satisfying the highest amount of critical 

demands, is more crucial than minimizing the total cost. Hence, obtaining a Pareto frontier for the 

considered multi-objective problem becomes a focal issue.  Figure 2 indicates a sample solution set for the 

aforementioned two-objective optimization problem. The red and blue points represent the non-dominated 

and dominated solutions, respectively.  It can be noticed that all the solutions in the lower part of the Pareto 

frontier (lighter red points) appear to have a very low cost but, at the same time, very low energy surety. 

Hence, plenty of the non-dominated solutions in the Pareto frontier would be unrealistic for the considered 

MG system. For instance, a zero cost can be achieved at all times by disconnecting all of the buildings from 

the grid. This is, of course, unacceptable since the demand would never be satisfied.   

 

 

Figure 2: Solution set for multi-objective optimization problem. 

 

 As the simulations developed in this study, in order to address the multi-objective control problem 

within MGs, face a significant restriction in terms of their replication length as well as times, any 

unnecessary replications of unviable designs should be eliminated. As the MOCBA method discussed in 

Section 1 would run a number of simulations for designs in the Pareto frontier that could be easily 

disregarded in our application, it is not adopted in this work.  Alternatively, a MG performance function 

that combines the total operational cost of the MG and average percentage of satisfaction for different load 

types during the simulation time is proposed as shown in Equation (4). 
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𝑓(𝑋) = 𝑎 ⋅ 𝑃𝑐𝑟𝑖𝑡 + 𝑏 ⋅ 𝑃𝑝𝑟 + 𝑐 ⋅ 𝑃𝑛𝑐𝑟𝑖𝑡 + 𝑑 ⋅
𝐶𝑚𝑎𝑥−𝐶

𝐶𝑚𝑎𝑥
                                        (4)    

                            

where 𝑋 is the design for which the performance is evaluated, 𝑃𝑐𝑟𝑖𝑡, 𝑃𝑝𝑟, and 𝑃𝑛𝑐𝑟𝑖𝑡 are the percentages of 

energy surety of the critical, priority and non-critical loads respectively, 𝐶𝑚𝑎𝑥 is the maximum cost 

calculated so far between all replications and designs, 𝐶 is the cost of the current replication for design 𝑋 

and 𝑎, 𝑏, 𝑐, and 𝑑 are the coefficients of the percentages of energy surety and cost and correspond with the 

priority that is given to the different objectives. 

 The numeric outputs obtained for the operational cost of MGs and percentages of the energy surety are 

in different scales (i.e., energy surety percentage ranges from 0 to 1 while the operational cost of MG can 

be any positive number from zero to millions of dollars, depending on the considered system). Because of 

this, the solution space of the proposed performance function needs to be well-adjusted. Furthermore, the 

proposed performance evaluation function is expected to return higher values as the cost decreases with a 

fixed energy surety percentage. In order to address these challenges, the percentage of the marginal decrease 

of the cost of the current design is compared to that of the worst possible cost realized so far in the 

simulation. As the considered economic load dispatch (ELD) problem is solved in our microgrid simulation, 

the maximum cost is not expected to be highly unmanageable, since the solution set is restricted into a 

feasible region. The coefficients for the considered multiple objectives correspond to their priority 

determined by subject matter experts. In our experiments, 𝑎, 𝑏, 𝑐, and 𝑑, are set to 20, 8, 2, and 1, 

respectively making the total energy surety percentage 30 times more important than cost reduction 

percentage, and the critical energy surety  2.5 times more important than priority energy surety as well as 

10 times more important than the non-critical energy surety. 

3 MULTI-SCALE MICROGRID TESTBED  

In this work, in order to validate our proposed algorithm for selecting the control design that leads to the 

best performance in terms of cost and energy surety, we designed a simulation model in which, given the 

specific control scheme for the MGs, the Economic Load Dispatch (ELD) problem must be solved. ELD 

problem searches for the best possible power resource management so that the total operational cost of a 

power network is minimized, while ensuring that the total demand is satisfied, and the generators’ capacities 

are not exceeded. The ELD problem is formulated below in Equations (5), (6) and (7). The last two 

equations represent the constraints for the power balance and the generators’ capacities, respectively. 

 

𝑚𝑖𝑛       𝑧 = ∑ (𝑎𝑖 + 𝑏𝑖𝐺𝑖 + 𝑐𝑖𝐺𝑖
2)𝑁

𝑖=1                                                      (5) 

𝑠. 𝑡.        ∑ 𝐺𝑖
𝑁
𝑖=1 + ∑ 𝑅𝑗

𝑀
𝑗=1 = 𝐷𝑡𝑜𝑡 + 𝑃𝑙𝑜𝑠𝑠                                             (6) 

𝐺𝑖
𝑚𝑖𝑛 ≤ 𝐺𝑖 ≤ 𝐺𝑖

𝑚𝑎𝑥       ∀𝑖                                                         (7) 

 

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are the cost coefficients for the 𝑖-th diesel generator, 𝐺𝑖 is the generation of the 𝑖-th 

diesel generator, 𝑅𝑗 is the generation of the 𝑖-th renewable source, 𝑁 is the total number of diesel generators, 

M is the total number of renewable sources, 𝐷𝑡𝑜𝑡 is the total demand in the network, 𝑃𝑙𝑜𝑠𝑠 is the power loss, 

and finally 𝐺𝑖
𝑚𝑖𝑛 and 𝐺𝑖

𝑚𝑎𝑥 are respectively the minimum and maximum power generation of the 𝑖-th 

generator. 

In case of a microgrid with a capability to connect, disconnect, and reconnect to the main power grid 

via multiple nodes, the aforementioned ELD optimization problem has to be solved in a nested form, so 

that when the microgrid is in islanding mode and there is not sufficient energy for satisfying the total 

demand, the optimization problem incorporates a second objective to maximize the energy surety, while 

the cost is minimized. By solving the ELD problem within each simulation replication, our simulation 

model ensures that the performance of the MG system is optimized under the specified predetermined 
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control design. In this way, the OCBA algorithm uses as a performance measure for each simulation design 

the optimal cost and optimal demand satisfaction under the current control scheme. 

 

 

Figure 3: Overview of the MG simulation. 

 

In our simulation model, operations and interactions among the different autonomous systems of the 

same electrical environment of MGs are captured via agent-based modeling in a multi-scale testbed. Our 

agent-based simulation model of MGs include 7 separate classes of agents representing the demand, solar 

energy, wind energy, wave energy, batteries, diesel generators, and feeders. In our multi-scale testbed, the 

total number of agents ranges from 200 to 334. Each agent, meanwhile, contains several variables and 

functions for the simulation of its operation. Additionally, the agents for the renewable energy generation 

are fed with data from weather databases in an effort to create more accurate and realistic computation of 

the energy generated, according to their capabilities. All of the agents are connected to each other and 

communicate in an environment that coordinates their control by optimizing their operations. This 

environment is also responsible for generating some of the uncertainties of the system, such as the creation 

of random blackouts and faults. In Figure 3, a partial screenshot of the simulation model is shown. On the 

left, some of the system variables and functions are listed, while on the right, the topology of an active MG 

with 3 feeders in a specific moment is depicted. Here, the green nodes represent the buildings in the MG 

for which the demand is satisfied, while the red nodes represent the buildings that are disconnected from 

the grid. The aforementioned brief description of the simulation model reveals that the problem of 

simulating an MG may be highly complicated and computationally intractable. Therefore, optimizing the 

number of simulation replications is extremely crucial for achieving the selection of a near optimal design 

with high probability within an acceptable time frame. 

4 RESULTS 

In this section, we provide the details of our experiments in MG selection and present the results obtained 

from our proposed design selection approach in comparison with the results obtained from Equal Allocation 
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(EA) and Proportional to Variance (PTV) algorithms that exist in the literature. For consistency purposes, 

the very same settings of sequential sampling that is used for the OCBA algorithm is also used for EA and 

PTV algorithms. In our experiments, the coefficients of the objective function 𝑎, 𝑏, 𝑐, and 𝑑, are set to 20, 

8, 2, and 1 respectively, as mentioned in section 2.3. For the comparison of the three algorithms, we use the 

total number of replications needed to reach the desired probability of correct selection instead of measuring 

the total computational time. This is because the magnitude of the computational time needed to run the 

algorithms is insignificant when compared to the computational time needed to run the simulation 

replications. It is noted here that speeding up the simulation-optimization procedure is only desirable when 

the simulated system is complex and time consuming, as in our case. 

 In our experiment scenarios, we initially ran 𝑛0 simulation replications for each design, and as the 

procedure advanced, the computed probability of correct selection (P{CS}) was updated at each step. This 

procedure repeats itself until a desirable P{CS} is met. In the following, we briefly explain the EA and PTV 

algorithms that are used for benchmarking in this work.  

4.1 Overview of Equal Allocation and Proportional to Variance Algorithms  

Equal allocation is the simplest and most common method for simulation allocation, in which the simulation 

budget (i.e., replications) is equally allocated among all possible designs (i.e., fidelities). Accordingly,  𝑛𝑖 =
 𝑁/𝐾 is the simulation budget allocated for each MG simulation design or fidelity considered in this 

research.  One-time computing budget allocation (∆) and initial number of simulation (𝑛0) are kept the 

same during the experiments for both the EA and OCBA algorithms.  

 A modified version of the PTV algorithm is exploited in this study as an additional source for 

comparison purposes. This method is mainly dependent on estimated variance of initial replications for 

each design (𝑛0). Initially, all 𝑘 designs are simulated for 𝑛0 replication where 𝑛0 is pre-determined. Then, 

the number of additional simulations required in the second stage is determined by using the sample 

variance (𝑠𝑓𝑖

2 ) estimated from first stage as in (8). 

𝑁𝑖 = max(0, ⌈𝑠𝑓𝑖

2 ℎ2 𝑑2⁄ ⌉ − 𝑛0)  ,     𝑖 = 1,2, … , 𝑘,                                           (8) 

where 𝑑 is the indifference zone (significant magnitude of the variance) and ℎ is a constant that solves 

Rinott’s integral. For the setting of this work we use a sequential modified version of the PTV algorithm 

that excludes the indifference-zone parameter. Hence, the following equation is utilized to compute the new 

budget allocation: 

𝑛1
𝑙+1 𝑠𝑓11

2⁄ =  𝑛2
𝑙+1 𝑠𝑓2

2⁄ = ⋯ =  𝑛𝐾
𝑙+1 𝑠𝑓𝑘

2⁄                                                  (9) 

4.2 Ranking and Selection of MG Simulations  

In this paper, we consider three different networking structures involving one, two, and three independent 

microgrids, respectively (i.e., 1-MG, 2-MG and 3-MG), where our goal is to find the best design with 

appropriate confidence level (P{CS}) to maximize the overall MG performance function. To this end, 

OCBA, PTV and EA algorithms are applied to find the best design with minimum computational time. 

During the implementation of the OCBA algorithm, the initial number of replications (𝑛0) and one-time 

computing budget increment (∆) should be selected with care. Because the selection of a very small 𝑛0 will 

result in poor estimation of mean and variance, in our experiments 𝑛0  is chosen to be 5, 10, and 20 

(replications) for 1-MG, 2-MG, and 3-MG, respectively. Similarly, the tradeoff between the magnitude of 

∆ and accuracy of estimation in 𝑃{𝐶𝑆} should be considered as large ∆ values may result in poor estimation 

of 𝑃{𝐶𝑆} while small ∆ values may result in frequent budget allocation problems, such as large number of 

iterations and slow growth in P{CS}. To this end, based on the number of fidelities, ∆ is decided upon as 
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10, 25, and 500 for 5, 25, and 125 fidelities. Based on the aforementioned initial settings, the results for the 

different networking structures are presented below.   

 

 

Figure 4:  𝑃{𝐶𝑆} comparison of OCBA, PTV and EA for 1-MG (a), 2-MG (b), and 3-MG (c). 

 Experiments with 1-MG network:  This scenario includes only one independent MG with 5 designs, 

where 𝑛0 = 5 and ∆ = 10. The results of this experiment show that the OCBA algorithm obtains a 

probability of correct selection of 98.5% after 35 replications (see blue line in Figure 4(a)). The same 

probability of correct selection is obtained in 55 and 65 replications when PTV and EA algorithms are 

applied, respectively (see green and red lines in Figure 4(a)).  Therefore, the OCBA algorithm applied to 

1-MG network reached the desirable correct selection probability (over 98%) approximately 60% and 85% 

faster than those of PTV and EA algorithms respectively. Here, the best design for the 1-MG network 

structure is selected as MG1 – F3 (fidelity 3), as it has the highest performance among its alternatives.  

 Experiments with 2-MG network:  This scenario is a larger scale version of 1-MG experiment which 

includes two independent MGs with five different levels of fidelity for each, where 𝑛0 = 10 and ∆ = 25. 

Due to the size of this problem (25 designs), the initial probability of correct selection (P{CS}) is smaller. 

The result obtained from the 2-MG network in Figure 4(b) reveals that the OCBA algorithm reaches the 

97.9% and 99.8% probability of correct selection after 500 and 750 replications, respectively, (see blue line 

in Figure 4(b)). On the other hand, using PTV and EA algorithms results in the same P{CS} after 2250 and 

2500 replications, (see red and green lines in Figure 4(b)). These results indicate that using OCBA for 

finding the best design with high probability of correct selection applied on our 2-MG structure is four 

times faster than PTV and EA. The results also reveal that the design having both microgrids in fidelity 3 

(MG1 – F3 , MG2 – F3) has the highest performance among the alternatives.   

 Experiments with 3-MG network: This scenario is the largest MG structure tested and includes 125 

alternative designs (5 designs for each MG) which make the problem more complex due to the severely 

high number of computations necessary. Comparing the OCBA algorithm in selecting the best design for 

the 3-MG experiment against PTV and EA will illustrate in the most robust way the dominance of OCBA 

over the other algorithms. Since there are 125 designs in this experiment, to avoid poor estimation for 

P{CS}, the initial parameters for this experiment are set to 𝑛0 = 20 and ∆ = 500. The results for the three 

different algorithms depict that the speed up factor of using OCBA in 3-MG structure with several 

alternative designs is increased more than the 1-MG and 2-MG problems. Figure 4(c) shows that OCBA 

meets the 94.5% and 98.45% probability of correct selection after 4500 and 6500 replications respectively. 

On the other hand, using EA and PTV algorithms, the 93% correct selection probability is reached after 

36500, and 40500 replications respectively. Consequently, the best design for 3-MG networking structure 

is selected with a high probability of correct selection 9 times faster using OCBA, which reveals that the 

OCBA algorithm is more efficient than EV and PTV in selecting the most appropriate level of control, in 

an MG environment.  The results also conclude that the design which has all MGs in fidelity 3 (MG1 – F3, 

MG2 – F3, MG3 – F3) has the highest performance among those tested. 
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 For sensitivity analysis purposes, we also compared the three algorithms using a different set of 

coefficients for the objective function. In all cases the OCBA dominates the other algorithms in terms of 

the number of replications. This is shown to be especially true when the number of alternative designs is 

high (3-MG network). The only difference in these cases is the outcome of the best selected design. When 

the cost is assigned a larger weight in the objective function, the best scenarios are the ones with lower 

fidelities in general (less control points in the network). 

5 CONCLUSION AND FUTURE WORK 

In this paper, a simulation based optimization method, namely optimal computing budget allocation 

method, is investigated and is found to facilitate and significantly speed up the selection of the best control 

design in MG simulations in terms of cost and demand surety. The multi-criteria nature of the considered 

problem is captured via a weighted single objective, namely MG performance function, reflecting a 

desirable part of Pareto frontier with predetermined priority of objectives. In order to discover the best 

simulation design in MG networks, different ranking and selection methods comprising OCBA, Equal 

Allocation (EA), and Proportional to Variance (PTV) have been applied and compared. The results for the 

design ranking and selection amongst the simulations have shown that the design selection using the OCBA 

algorithm can reduce the total simulation replication time up to 9 times  (with about 36000 fewer 

replications) when compared with the Equal Allocation (EA) and Proportional to Variance (PTV) methods. 

While the current work is focused on energy surety maximization and cost minimization objectives of this 

network, several additional objectives, such as minimization of emission and maximization of security and 

cyber-security, could be considered in the future. However, as the number of considered objectives 

increases, the accuracy of measured performance of the system through the developed evaluation function 

is expected to decrease due to the augmented degree of uncertainty. 
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