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ABSTRACT 

We propose a data structure that stores previously observed vehicle paths in a given area in order to 

predict the forward trajectory of an observed vehicle at any stage. Incomplete vehicle trajectories are 

conditioned against in a Past Tree, to predict future trajectories in another tree structure - a Future Tree. 

Many use cases in transportation simulation benefit from higher validity by considering historical paths in 

determining how to route vehicle entities. Instead of assigning static and independent turn probabilities at 

intersections, the storage and retrieval of historical path information can give a more accurate picture of 

future traffic trends and enhance the capabilities of real-time simulations to, say, inform mobile phone 

users of expected traffic jams along certain segments, direct the search efforts of law enforcement 

personnel, or allow more effective synchronization of traffic signals.  

1 INTRODUCTION 

Computer simulation of road networks and transportation entities is a valuable tool for managing traffic 

and designing new construction projects. Some transportation models are small in scale and make many 

simplifying assumptions; others can be very sophisticated and computationally demanding. Many 

dynamic factors are present in the real world that are difficult to model and predict. For example, say, a 

particular event takes place that attracts one specific demographic; a simulation model can be made more 

accurate if it takes into account recently observed trajectories, rather than static turn frequencies at 

decision nodes. One way to view this information is via decision trees holding relative frequencies at each 

branching point. Observed trajectories can be stored in a tree data structure (Past Tree) where nodes 

represent past trajectories up to the given decision point and hold references to other trees (Future Trees) 

that store observed frequencies of the remaining trajectory. If the target entity is currently in an area 

where trajectories have been observed in the past, population path similarity can be used to predict where 

a vehicle will turn or to generate realistic trajectories. For reasons that will become obvious in Section 

2.1, we will subsequently refer to Past and Future Trees as simply Past Trees. We will also sometimes
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use the expression Method of Past Trees (or simply, Past Trees in the charts of Section 3) to specifically 

refer to the querying operation on Past Trees that outputs location estimates (see Section 2.2).  

Perhaps the most interesting use of Past Trees is found in the arena of dynamic data-driven 

application systems - DDDAS (see Voronkov and Darema 2004). Modeling individual vehicles 

accurately creates a variety of applications. The analysis of emergent, macro-scale phenomena in real-

time data-driven types of simulations can be of great interest to various stakeholders. To optimize systems 

for efficiency, for example, it is possible to model traffic congestion (Fujimoto et al. 2007) and 

evacuation models (Chaturvedi et al. 2006) with a high degree of validity. The data centers of web search 

providers have clustered equipment based on the expected workload in different domains (Marin et al. 

2013). Past Trees can model consumer preferences and assist in parameter tuning (Ye et al. 2008) and 

bottleneck analysis of computer networks. Past Trees may also be used in online simulations to determine 

an accident from cell phone data (Madey, Szabo, and Barabási 2006; Madey et al. 2007) or in law 

enforcement applications (Fujimoto et al. 2014). 

1.1 Problem Description 

Consider a directed road network G(V, E) where vertices represent intersections and arcs represent road 

segments. Suppose a transportation entity, such as an automobile, ET, has been observed at position s0 on 

arc e0 at time t0 (s0 is a real scalar in [0, 1] to represent the position within the directed arc e0). Our 

objective is to estimate the location of ET at time t0 + Δt.  

It is helpful, but not necessary, to assume that before t0, we have observed some partial trajectory of 

ET. As an application within the context of dynamic data-driven simulations, we discuss in Fujimoto et al. 

(2014) an on-line framework for vehicle tracking that may use the Past Trees to iteratively simulate future 

locations of ET. The estimated locations are then published to mobile sensors (or a crowd-sourced 

participant set) which can, in turn, respond with the realized location.  

1.2 Related Work 

Destination estimation is an active field of research. The constraint on the models selected here, however, 

is that they must be at a conceptual scope that can be mapped directly to a general transportation 

simulation model. Prediction models for a highly domain-specific area - like handoffs of a mobile phone 

from antenna-to-antenna (Cheng, Jain, and Van Den Berg 2003), or where the target is at an unknown 

position, but stationary (Sinclair, Prazenica, and Jeffcoat 2008), for example - are inappropriate within 

general simulation frameworks. Those that extrapolate from direct vehicular motions (e.g., dead 

reckoning models; see Cai, Lee, and Chen 1999) are too granular and impose an unrealistic behavior on a 

given vehicle entity. We also ignore models that depend on the identification of a particular vehicle and 

its historical data (Laasonen 2005). 

In Section 1.3, we summarize a prediction model based on efficient routes (Krumm 2006). The model 

predicts based on the idea that drivers tend to make choices that are fairly efficient when attempting to 

reach their destination. Unlike Past Trees, Krumm's prediction model does not use any historical 

trajectory data. Nevertheless, we will use it as a benchmark in Section 3. 

1.3 Krumm's Prediction Model 

John Krumm developed a static prediction model that assigns higher likelihoods to areas that are 

consistent with the path taken thus far. Thus, inefficient potential forward trajectories are given less 

weight than those that are consistent with efficient behavior. It is important to note that this model does 

not utilize previously recorded trajectories, outside the partial trajectory of the vehicle currently being 

observed. Krumm assigns each cell, ci, in a region an estimated probability, based on the observed path, S, 

taken thus far, using Bayes' Law: 
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p(ci|S) =  
p(S|ci) × p(ci)

∑ p(S|ci) × p(ci)
Nc
j=1

 . 

 

Krumm has empirically determined that the probability of an efficient cell transition is 0.625 in a 

particular experiment in Seattle, WA. For a particular cell ci in the grid, each cell of the observed 

trajectory is multiplied by 0.625 if it brings the target closer to ci, and by 1-0.625 if not. This is then 

multiplied by an overall cell bias term p(ci) and normalized. 

2 PAST AND FUTURE TREES  

2.1 Conceptual Structure and Trajectory Insertions 

In order to make proper use of Past and Future Trees, a number of population trajectories must be 

sampled first. In the following conceptual description of the structures, we assume that this data has been 

collected already and has been inserted into the structures. A discussion on trajectory insertion (see Figure 

1) follows this description. Querying Past Trees to make predictions (i.e., the Method of Past Trees) is 

discussed in the next section.  

Every decision point in a region (e.g., the road on the western side on a particular intersection) is 

associated with an instance of a Past Tree and each node in a Past Tree links to an instance of a Future 

Tree (see Figure 1). The vertices of a Future Tree contain traversal counts as well as destination counts. If 

a partial trajectory, Tp=(e0, e1,...,ef), of a vehicle up to a decision point has been observed, the 

corresponding Past Tree is traversed in the reverse order of Tp (the root corresponds to ef). Traversing the 

Past Tree in this fashion is equivalent to conditioning against the observed trajectory. This means that if 

no partial trajectory up to ef, had been observed, we would simply access the Future Tree associated with 

the Past Tree's root node. If the currently observed partial trajectory does not exist in the tree, the traversal 

only goes down to the node that does not have the requested child. Once the corresponding Future Tree is 

discovered, it is traversed to yield the measure of interest. Some of these metrics are discussed in the next 

two subsections (2.2 and 2.3). For example, if one wishes to construct an estimated destination probability 

map, a breadth-first search for positive destination counts can construct a frequency distribution, leading 

to the desired map. 

In Figure 1 below, we assume no previous trajectories have been observed (i.e., this is the first 

trajectory being observed). Further, this trajectory will cause updates on every Past Tree adjacent to the 

realized path. However, for illustrative purposes, we will only focus on the updates to the Past Tree 

corresponding to the western side of Intersection 3, PastTree3, W. A vehicle has approached Intersection 3 

by first traversing Intersection 1 and then Intersection 2. This partial trajectory is inserted into PastTree3, W 

(the solid black arcs). After that point, the remaining path is inserted in the Future Trees of all vertices in 

the path up to Intersection 3 (the lightly dotted arcs), so that any future read request on the Past Tree may 

access this particular observation for any partial trajectory that follows the same pattern up to the current 

decision point (irrespective of the length). The Future Tree's traversal counts are incremented if the 

vehicle traverses the given intersection and the destination counts are incremented if the vehicle stops in 

the given intersection's proximity (i.e., terminal point along the trajectory). As mentioned before, we 

assume this is the first trajectory being observed. Had the Past Tree already been partially populated, it 

could have been the case that no additional arcs would have had to be inserted. However, the counts 

would still need to be incremented.  
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Figure 1: Past & Future Tree visualization. 
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2.2 The Method of Past Trees: Predicting Trajectories and Destinations 

Once a Past Tree for a given decision point is populated, it can be used to make predictions for a vehicle 

approaching the given decision point. If the vehicle's trajectory up to the point has been observed, the 

given Past Tree can be queried to retrieve the corresponding Future Tree. Predictions regarding any future 

decision point can be made by considering the corresponding nodes at that depth of the Future Tree. It 

should be noted that this yields the nth decision into the future and, therefore, has limited use: These points 

could be asynchronous in the expected arrival time (e.g., the example travel times to the Future Tree 

nodes in Figure 2). A prediction for Δt time units into the future requires locations to be tagged with point 

estimates of the travel time it takes to reach the respective points. A general search algorithm can then 

return the set of feasibly reachable locations (the intersection of the Future Tree and the shaded line cut in 

Figure 2). The frequency distribution of the traversal counts in this set can then be used to build an 

estimated probability mass on the map. The following pseudocode (for a parallel shared-memory 

machine), applied on the Future Tree of an observed vehicle, yields this prediction (a probability map):  

 
Input: Future Tree (this instance), Δt 

1 i:=0 

2 root.travelTime := 0 

3 while (there is at least one non-leaf vertex of travelTime < Δt at depth Di) { 

4  Par for all ( non-leaf vertices u ∈ Di with u.travelTime < Δt ) { 
5  Par for all w that are adjacent to u { 

6   <edgeTravelTime, positionAtΔt> := simulateTravel((u,w,Δt)) 

7   w.travelTime := u.travelTime +edgeTravelTime 

8   if (w.travelTime > Δt) { 

9    w.late := true 

10    frequencyMap.populateCountAtPosition(positionAtΔt, u, w) 

11   } 

12  } 

13 } 

14 sync() 

15 i := i+1 //master process only 

16 } 

17 probabilityMap := frequencyMap.transformToProbabilities() 

18 return probabilityMap 

 

In general, this depth-synchronous implementation is not efficient, even if the underlying work-

scheduler balances optimally: A time-parallel simulation (Kiesling and Luthi 2005) may simultaneously 

evaluate delays across road segments on differing depths and, therefore, offers the flexibility to saturate 

all the available processors with work. Nevertheless, we focus on this implementation for ease of 

exposition. The procedure expands all simple paths from the root node (Lines 3-4) until all the terminal 

vertices are tagged with a travel time greater than Δt; at this point, the potential locations of the vehicle 

are found. Pursuant to this goal, vertices are tagged with a point estimate of the travel time to reach the 

respective intersections by invoking the transportation simulation, simulateTravel, on Line 6; this 

subroutine returns the travel time on the road segment from vertex u to vertex w. Unless this subroutine is 

implemented in a trivial fashion (for example, by simply retrieving a point estimate from historical data 

and not considering live data), the execution time of this call will dominate the total runtime of the 

program. (The time used by this bottleneck primarily depends on the granularity of the simulation model; 

a computationally efficient microscopic traffic simulation model can be found in Nagel and 

Schreckenberg 1992.) If the cumulative travel time up to w is greater than Δt, simulateTravel will also 

return the predicted position of the vehicle at Δt (positionAtΔt). At this point, the observed traversal count 

is queried from the corresponding Future Tree (from vertex w is the vehicle is closer to w than to u; 

otherwise the traversal count from u is used). This count is inserted into a map representing the frequency 

distribution at Δt (Line 10). After this map is populated, it is converted to a probability mass on the map 

and returned (Lines 17-18).  
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Figure 2: The Future Tree is used to retrieve the potential locations of the vehicle Δt into the future. In 

this case, we identify all vertices that are reached from the current location within a time span of 23 

seconds. The shaded line illustrates the possible locations at that time. 

If the question is what destination the vehicle is likely to approach, the destination counts described in 

Section 2.1 are fetched with the help of any tree search procedure (e.g., breadth-first search). The non-

zero destination count of every node in the future tree is inserted into the appropriate location in the 

frequency map, which is subsequently transformed into a probability map and returned. 

2.3 Generating Simulation Trajectories 

Suppose we have constructed a subgraph that represents some road-connected intersections and now we 

wish to generate and route vehicle entities within. The following pseudocode illustrates these steps at a 

high level:   

 
Input: Future Tree (assume code is applied to this instance), vehicle entity e 

1 totalCount := 0 

2 for all ( vertices u ∈ D1 ) { 
3 totalCount := totalCount + u.traversalCount 

4 traversalCountBoundaryList.add(totalCount) 

5 } 

6 U0 := realization from a discrete uniform between 0 and totalCount 

7 toNode := computeToNode( traversalCountBoundaryList, U0 )  

8 e.setNextNode( toNode ) 

9 sampleSpaceCardinality := toNode.destinationCount + toNode.traversalCount 

10 e.stopAtNextNode := Bernoulli(toNode.destinationCount / sampleSpaceCardinality) 

11 return e 

 

Vehicle instances will still be created as usual (e.g., from a non-homogeneous Poisson process). Once 

the entity is in the model and reaches a decision point, the simulation engine will query the Past Tree 

corresponding to a decision point for the trajectory taken up to that point. This, then yields a reference to 

the corresponding Future Tree. At Depth 1 of the tree, the observed frequency counts of all sibling nodes 

are read and inserted into a list, traversalCountBoundaryList (Lines 2-5). A random number (Line 6) is 

then transformed to a decision from this empirical frequency distribution via its c.d.f. (Line 7) and assigns 

it as the next location of the vehicle entity (Line 8). However, the vehicle entity may stop at that point. To 

account for this, we first realize the next intersection (Lines 1-8) and then condition against it (Lines 9-

10). Both the destination and the traversal counts are known, so whether the vehicle stops can be inferred 

from a Bernoulli realization with success probability equal to the destination count divided by the sum of 

the destination count and the traversal count of the realized vertex (Line 10).  
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2.4 Space-Efficient Storage 

The naive storage mechanism (i.e., a tree for each decision point) has much redundancy, but offers fast 

access to the future likelihoods (in fact, linear time in the trajectory length taken thus far). One observed 

trajectory will cause insertions into every tree along its path.  This redundancy causes much wastage of 

storage. More precisely, suppose the length of the typical trajectory is n and the total number of observed 

trajectories is T. This vector of size O(n) is pushed into n Past Trees, but in each Past Tree it is replicated 

n times because it is recorded for each partial trajectory up to the point represented by the tree. The total 

storage requirement in this representation is thus O(T × n3).  

A sensible approach would be to cut off the tree at a certain depth - one should expect diminishing 

gains in accuracy when going down the Past Tree at significant depths (this is obviously not true in all 

practical situations). The results in Section 3 truncate the Past Trees at Depth 3. 

A better approach, reducing the storage requirement from O(T × n3) to O(T × n), is to use an array 

indexed by directed intersection identifiers (this is with almost no loss of generality as a different 

identification scheme can be coupled with a hashing rule with no performance loss in the average case). 

Each cell in the array will hold a reference to the head of a linked list. Such a linked list will simply 

contain pointers to trajectories containing the corresponding directed intersection identifiers (see Figure 

3). Every time a trajectory is observed, all linked lists that contain a directed intersection of that trajectory 

will be augmented by one more reference. Thus, the storage requirement and the total insertion costs are 

limited to O(T × n). The potential for a highly skewed length distribution (on the collection of trajectories 

on directed intersection identifiers) motivates the use of lists, rather than arrays. Once a prediction is 

requested (when a vehicle has entered a particular directed intersection), a significant number, k, of 

previously observed trajectories are queried: The corresponding header can be accessed in constant time 

(random access with a specific directed intersection id) which allows for the extraction of the k 

trajectories of interest. Building a corresponding tree (by parsing and inserting the k trajectories) takes 

linear time in the size of the trajectories if partial trajectories outside of the currently observed one are 

omitted, leading to a total cost of O(k × n). 

 

 

Figure 3: Illustration of the space-efficient storage scheme. Trajectory 292 is stored (only once) at 

location 0x46b3. Since it contains Intersection 4 and 5, the lists of these two intersections contain pointers 

to the trajectory's memory location. 

3 EXPERIMENTAL EVALUATION 

To evaluate the accuracy of Past Trees, separate experiments were performed on randomly generated 

input as well as real-world data. Both experiments are run on cellular automata (CA) and generate two 
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different error plots each (lower quantities are more desirable). In both cases, the directed graph 

representation introduced in Section 1.1 can be mapped in one-to-one correspondence with the CA if the  

appropriate cell transition rules are added. 

The Method of Past Trees is compared to the method described in Section 1.3 (Krumm 2006), which 

does not require previously collected trajectories. Whether the data acquisition and storage costs for Past 

Trees are acceptable depends on the added value from the increased accuracy for a given  application. 

These costs scale with the desired sample size and the size of the target area. 

3.1 Synthetic Experiment: Setup 

A computational experiment was performed to sample the degree of accuracy provided by Past Trees. 

Here, the input (i.e., the trajectories of the drivers) is generated synthetically. 

The model is based on a 20-cell-by-20-cell cellular automaton; this discretized plane serves as a 

conceptual model of a real-world region with pervasive road network coverage. 200 trajectories are 

sampled as follows: The origin and destination are first sampled by the pseudo-random selection of two 

cells. In this selection, some cells are more likely to be realized than others because cell popularity is 

assigned - at the beginning of the simulation - from a probability distribution that mimics the population 

distribution of US cities. Each cell is assigned a probability by first sampling the lognormal distribution 

with µ=7.28 and σ=1.75 (which is a good fit for the population distribution of the United States - see 

Eeckhout 2004), evaluating the density at those realizations, and then normalizing these values into a 

probability mass. Further, positive correlation is forced upon the popularities of neighboring cells (ρ=0.3): 

Less (more) popular cells are more likely to be near less (more) popular cells.  

After the origin and destination are determined, the cells in between them are generated. At each 

intermediate cell, the vehicle will transition to a cell that is in accordance with the most efficient route 

with probability 0.625, and to one that is not with probability 1-0.625; we call this behavior the desire for 

efficiency. Each cell also has a statically assigned 10% chance of being an entry point that leads into a 

predetermined tunnel of neighboring cells, a preferred path. The length of a preferred path is 

geometrically distributed with a mean of five cells. A cell that leads into a preferred path is privileged to 

temporarily override the desire for efficiency until the vehicle exits the preferred path. Preferred paths 

(and their entry points) are randomly generated at the beginning of the simulation experiment and don't 

change during the execution. In this scenario, preferred paths have a mean length of five cells. The 

rationale of including preferred paths is to model unexplained trends within the population. Of the 200 

simulated trajectories, 80% are first used to populate the trees; the remaining 20% are used to predict 

destinations and compute errors. The depth of Past Trees is limited to three cells. 

3.1.1 Synthetic Experiment: Results 

Figure 4 shows the mean accuracy as a function of the fraction of the trip completed (ensemble averages 

across the 0.2*200=40 trajectories). At each transition of any trajectory in the test set, the error model 

queries the Past and Future Trees of the current cell for all potential destinations of the vehicle. It then 

computes the rectilinear distance from the vehicle's current position to the center of the estimated 

probability mass (the predicted destination) as well as the rectilinear distance from the vehicle's current 

position to the actual destination. The error in Figure 4 is the absolute value of the difference of these two 

values.  

Across all the simulated trajectories, for each cell transition, an error is computed and inserted into 

the bin corresponding to the tenths precision bin of the trip completion fraction. Then, for every 

completed trip fraction bin, the average error is selected. 0.8*200 = 160 trajectories were used to populate 

the trees. 

As the vehicle entity approaches its destination, more data can be used because the partial trajectory 

up to the given cell is available: In the case of Krumm, it points towards efficient behavior, and in the 

case of Past Trees it points towards previously observed trajectories that are similar. This explains the 
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steady improvement to a trip completion of 0.7. The increase of the plot at the end of the trip is a result of 

the vehicle approaching its destination relatively quickly and thus decreasing the first term mentioned 

above (distance to actual destination), while the second term (distance to predicted destination) does not 

keep up. 

 

Figure 4: Error plots of the mean absolute difference between actual and predicted rectilinear distance to 

destination. 

Figure 5 simply shows the rectilinear distance between the predicted and actual destination. This 

quantity hovers around 10 cells for both prediction models (with a slight improvement towards the end of 

the trip). This is reasonably close in a 20-by-20 grid; no miracles are to be expected in a scenario where 

the trajectories of vehicles almost exhibit the patterns of 2D random walks with cell transitions that are 

independent of one another.  

 

Figure 5: Error plots of the mean rectilinear distance between actual and predicted destination. 

3.2 Real-World Traces: Setup and Results 

A deterministic simulation was performed using the detailed NGSIM Peachtree Street dataset, collected 

between 4p and 4:15p on November 8th, 2006 in Atlanta, GA (NGSIM Community Home 2014).  
The road segment was modeled as a 30-by-3 cellular automaton and the first 80% of the 461 observed 

trajectories were used to populate the trees (the remaining 20% were used to test the model). 
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The following plot illustrates the error computed in the same fashion as illustrated in Section 3.1.2 for 

Figure 4. It should be noted here that Krumm's model is not well-suited for an almost one-dimensional 

environment as the estimated destination probabilities will just be uniform across the entire road. Because 

the sample size is small, the first 80% of each trajectory use superimposed Past Trees for each cell. 

 

Figure 6: Error plots of the mean absolute difference between actual and predicted rectilinear distance to 

destination. 

Figure 7 presents errors in the same way as Figure 5. For the Past Tree errors, the increased values 

towards the end of a trip are the result of time not being considered in the models: As the vehicle entity is 

in one of the final cells, the model assumes that the partial trajectory up to the current point is indifferent 

from one that is near the center of the trajectory, which leads to an estimated cell much farther away. This 

may be avoided by not only incrementing destination counts, but also noting the progress along the 

trajectory during the data collection phase.  

 

Figure 7: Error plots of the mean rectilinear distance between actual and predicted destination. 

4 CONCLUSION AND FUTURE WORK 

A structure to store trajectories along road segments was introduced. Past Trees can be used to either 

generate trajectories for simulation entities or to predict likely destination of a vehicle whose path is being 

observed. The experimental results show that the structure gives a solid prediction framework. Modeling 
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vehicular movement is clearly of great economic value as driver behavior and traffic management can be 

made more efficient.  

In the future, we plan to investigate enhancements to Past Trees, such as conditioning against more 

factors as well as weighing more recently observed trajectories more heavily; applying statistical 

regression and exponential smoothing to the Method of Past Trees has the potential to improve accuracy. 

Although it was mentioned above that every decision point has one Past Tree associated with it, it can be 

very useful to have multiple trees to account for factors such as seasonality (the same tree can be used if it 

is 'colored') or other factors like congestion level.  Traffic exhibits seasonal characteristics; for example, 

drivers might opt for a particular pathway during rush hour in order to avoid congestion in other areas. 

It seems reasonable that more recent collections are most heavily correlated with present and near-

future trajectories. For example, a popular sports game may tilt historical behavior into a particular 

direction.  If paths are proactively collected in a particular area, exponential smoothing can adapt to recent 

trends. 
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