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ABSTRACT

This paper introduces a probabilistic algorithm for solving the well-known Facility Location Problem
(FLP), an optimization problem frequently encountered in practical applications in fields such as Logistics
or Telecommunications. Our algorithm is based on the combination of biased random sampling —using
a skewed probability distribution— with a metaheuristic framework. The use of random variates from a
skewed distribution allows to guide the local search process inside the metaheuristic framework which,
being a stochastic procedure, is likely to produce slightly different results each time it is run. Our approach
is validated against some classical benchmarks from the FLP literature and it is also used to analyze the
deployment of service replicas in a realistic Internet-distributed system.

1 INTRODUCTION

The Telecommunication and Computing sectors are one of the key role players in current economy. The
evolution experienced, with considerable improvements in network infrastructures and capabilities, made
both sectors to grow very fast in the last two decades. This growth can be explained both by the advances
in telecommunication technologies, the market privatization (Lam and Shiu 2010) and the expansion of
the computational infrastructures and applications. All this has brought with it new optimization problems
in several related fields.

The Facility Location Problem (FLP) involves locating an undetermined number of facilities to minimize
the sum of the setup costs and the costs of serving customers from these facilities. The problem assumes
that the alternative sites where the facilities can be located are predetermined and the demand required
by each customer is known beforehand. Facility location decisions are costly and difficult to reverse
as, once the facility has been installed, the associated opening cost is actually incurred. This problem
is useful to model problems in very disparate areas like transportation and logistics, inventory planning,
telecommunication network or computational infrastructures planning. Clear examples of its application on
Information technologies are the placement of web-servers in a distributed network which have to provide
some service to a given set of customers; or the placement of cabinets in optical fiber networks to server
all the customer with a minimal network deployment cost.

There is a research trend that promotes the aggregation of non-dedicated computing resources to form
multi-purpose computing platforms similar to clouds, known as volunteer computing (Anderson 2004),
community clouds (Marinos and Briscoe 2009) or contributory communities (Lazaro 2011). In such
environments, users freely donate their computing resources to host collective services or store data. The
allocation process in the platform has a critical impact on overall system performance and resource usage.
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We present in this article a probabilistic algorithm that combines biased randomization —random
sampling from skewed probability distributions— with a metaheuristic in order to obtain good-quality
solutions for the FLP. We prove the goodness of our methodology in one of the well-established benchmarks
of this problem. Once the approach has been validated, we use it to solve a realistic Internet computing
scenario. In this scenario, we model the data or application allocation in a community cloud as a FLP on
which we are interested on minimizing the network hops from any client to one of the deployed replicas. Our
methodology is applied to this scenario to determine where in a network to place services or applications.

The rest of this paper is structured as follows: we briefly present the Facility Location Problem and
its related literature in Section 2. The basics of our proposed methodology are introduced in Section 3.
Benchmark-based evaluation of our algorithm is provided in Section 4. In Section 5 we apply our
methodology to a network use case on which we simulate different service allocation strategies. Finally,
Section 6 highlights the main contributions of this work.

2 THE FACILITY LOCATION PROBLEM

The (uncapacitated) FLP involves locating an undetermined number of facilities to minimize the sum of
setup and serving costs. It was first described in Balinski (1964) and Stollsteimer (1961), and is considered
as the simple facility location problem (Verter 2011), where both the alternative facility locations and the
customer positions are considered to be discrete points. The problem is defined over an undirected strongly
connected graph G = (V,E) where V is composed of a subset of customers C C V and a subset of facilities
F CV,and E is a set of edges connecting the nodes in V. Each edge e C E has an associated cost of using
it ¢;; > 0, and for all i € F we are given a facility opening cost f; > 0. Furthermore, for every facility i
and customer j we have an associated cost of connecting the customer to the facility ¢;; > 0,Vi€ F, j € C.
Under these circumstances, the objective of the problem is to open a subset of the facilities in ' and connect
each customer with an open facility, so that the total cost is minimized:

Minimize Y cij+ Y fi ey
jec i€F
Next, we review some solutions proposed to the problem and its applications to the computing field.
For a more extensive literature review on this topic, we refer the reader to (Drezner 1995), (Snyder 2006)
and (Fotakis 2011).

2.1 Solutions to the FLP

The FLP has been studied from the perspectives of worst case analysis, probabilistic analysis, polyhedral
combinatorial and empirical heuristics (Cornuejols et al. 1990). Despite its NP-hard nature, exact algorithms
were also considered on its study.

One of the first works on the FLP was a branch-and-bound algorithm developed by Efroymson and Ray
(1966). They used a compact formulation and its linear programming relaxation to solve it by inspection.
However, this relaxation does not provide tight lower bounds and is known as a weak formulation. Another
of the earliest approaches is the direct search or implicit enumeration method proposed by Spielberg (1969).
Schrage (1975) presented a tight linear programming formulation for the location problem different from
the one defined by Efroymson and Ray (1966). He applied a specialized linear programming algorithm for
variable upper bound constraints. Erlenkotter (1978) presented a dual-based procedure which begins with
this tight linear programming formulation but differed from previous approaches by considering a dual
objective function. Korkel (1989) presented an improved version of the original Erlenkotter algorithm.

Approximation algorithms are very valuable for a theoretical analysis of the problem, but they are
outperformed in practice by more straightforward heuristic. Constructive algorithms and local search
methods for this problem have been used for decades, although more sophisticated metaheuristics have
been applied. Kuehn and Hamburger (1963) presented a heuristic procedure with a constructive phase
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followed by an improvement phase. Alves and Almeida (1992) proposed a Simulated Annealing algorithm;
Kratica et al. (2001) presented a Genetic Algorithm outperforming previous works; Ghosh (2003) discussed
a Neighborhood Search heuristic for the problem; and Michel and Van Hentenryck (2004) defined a simple
but robust, efficient and competitive Tabu Search algorithm that used a linear neighborhood and flipped a
single facility at each iteration. Resende and Werneck (2006) proposed an algorithm based on the Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic that combined a greedy construction phase
with a local search procedure. It obtained results very close to the best known solution for a wide range
of different instance sets.

2.2 FLP applications to telecommunication networks

Recently, the FLP problem found several new applications in digital network design problems. One
example is the equipment allocation in Video on Demand (VoD) network deployments (Thouin and Coates
2008). VoD services are complex and resource demanding, so deployments involve careful design of
many mechanisms where content attributes and usage should be taken into account. The high bandwidth
requirements motivate distributed architectures with replication of content. An important and complicated
task part of the network planning phase of these distributed architectures is resource allocation. The growth
of peer-to-peer networks and the use of mobile devices for accessing the contents have made the problem
even more complex.

Another example of application can be found in (Lee and Murray 2010), where the authors introduce
an approach for survivable network design of citywide wireless broadband based on the FLP model. They
address how to locate the Wi-Fi equipment to maximally cover the given demand and how to connect Wi-Fi
equipment to ensure survivable networking. The Online Facility Location Problem (OFLP) (Meyerson
2001) can model a network design problem in which several servers need to be purchased and each client
has to be connected to one of the servers. Once the network has been constructed, additional clients may
need to be added to the network. In this case, additional costs will appear into the problem such as the
connection cost of connecting a new customer to the cluster and, if additional capacity is required to
accommodate the increase of demand, an additional server should be purchased (which means opening an
additional facility).

3 METHODOLOGY OVERVIEW

Our probabilistic algorithm combines an Iterated Local Search (ILS) framework (Lourengo et al. 2010) with
biased randomization. Random variates generated from skewed probability distributions are used here to
introduce a certain degree of randomness inside the local search process. In this hybrid approach, we define
a metaheuristic that obtains results not far from optima by itself and then introduce a biased-randomization
process to refine the final result of our methodology as explained in Section 3.2. With this randomized
process, alternative feasible solutions of a similar quality are quickly generated at each iteration of the
algorithm (which can be seen as a simulation process) and, at the end, the best generated outcome is saved
—mnotice, however, that other statistics, such as the sample mean, sample variance or confidence intervals
could also be obtained in a similar way as in any other simulation process.

Our approach offers some advantages over other state-of-the-art algorithms, which usually require more
cumbersome and time-costly parameter set up. In practice, these approaches are usually harder to implement
and often neither reproducible nor applicable to real-life problems. In order to avoid any fine-tuning process
and allow our methodology to be used in very different scenarios, we designed a probabilistic algorithm
with a single parameter, the one of the Geometric distribution used to introduce biased randomness into
the metaheuristic.

3.1 Our randomized algorithm

The main operation of the proposed heuristic method is detailed in Algorithm 1 and works as follows:
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Generate an initial random solution.
Perform an overcoming local-search on the solution and compute the solution total cost.
3. Start an iterative improvement process until the stopping criteria is reached.
(a) Perturbate the best-known solution by randomly replacing several open facilities by closed
ones.
(b) Apply the local-search procedure and compute the total cost.
(c) If the new solution improves the best known solution, keep it as best solution.
4. Return the best solution found so far.

N —

Algorithm 1 Pseudocode of the ILS proposal

Require: facilities,customers,beta,maxlter
1: baseSol < genInitRandSol( facilities,customers,beta)

2: baseSol < localSearch(baseSol)
3: bestSol < baseSol
4: nlter <0
5: credit <0
6: while nlter < maxlter do
7. newSol < perturbate(baseSol,beta) {destruction-construction }
8:  newSol < localSearch(baseSol)
9:  delta < cost(newSol) — cost(baseSol)
10:  if delta < 0O then
11: credit < —delta
12: baseSol < newSol
13: if cost(newSol) < cost(bestSol) then
14: bestSol < newSol
15: end if
16:  else if delta > 0 and credit > delta then
17: {acceptation criterion}
18: credit + 0
19: baseSol < newSol
20:  end if

21:  nlter < nlter+1
22: end while
23: return bestSol

The initial solution generator chooses a random number p; between @ and |F| and picks randomly p;

facilities to open. Closing a facility on the solution is computationally cheaper than opening a new facility
due to the way FLP costs are calculated. Therefore, starting with a solution with a higher number of open
facilities should lead to a less computationally expensive process.

The local search procedure is based only in closing movements. It starts from the current solution and
closes one by one each of the open facilities. The facilities to close are selected in a random order among
all the open ones. If the new obtained solution has a lower total cost by closing the selected facility, it is
actually removed from the solution; otherwise the facility is kept in.

The perturbation operator destructs some part of the solution by removing open facilities and then
reconstructs it by opening others. The actual facilities to be closed and to be opened are selected randomly
as well. This operator always opens more facilities than the amount of closed ones, so its outputs could be
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refined by the same local search procedure used on the initial solution, which benefits from the fact that
the closing movement is less computationally expensive.

In our case, the stopping criteria for the ILS procedure is a time limit, so we can control the computing
time for the algorithm.

3.2 Use of skewed probability distributions to induce biased randomization

Randomization on the selection of facilities in different stages of the procedure allows the algorithm to
widely explore the solution space (Juan et al. 2014). We already stated our method uses randomization in
the initial solution construction, in the local-search stage and in the perturbation operator. As discussed in
Juan et al. (2009), Juan et al. (2011) and Gonzdlez et al. (2012), biased-random sampling has proven to be
extremely useful for solving similar problems. While the uniform randomization used in GRASP limits the
search space and performs a blind search, biased randomization drives more effciently our ILS metaheuristic
to better solutions by exploring widely the solution space. Furthermore, these latter techniques fostered
the apperance of new state of the art metaheuristics for several optimization problems (Juan et al. 2011,
Juan et al. 2014). To the best of our knowledge, this is the first proposal that uses biased-randomization
techniques to efficiently solve the FLP.

As explained above, randomization on the facility selection has to be done without introducing too
many parameters in the algorithm in such a way we avoid non-trivial, time-consuming and often instance-
dependent fine-tuning processes for input parameters. When compared to GRASP, our approach is not
restricting the list of candidates to be evaluated, so we are leaving out one parameter. Furthermore, the
randomization is biased, since all the candidate facilities are not considered with the same probability
(Figure 1). One of the probability distribution functions which have demonstrated to obtain competitive
results when combined with metaheuristics is the single-parameter geometric distribution.

Uniform Biased-rand.
rand. selection selection

Most promising

Restricted candidate list

il

Priority list of
movements

Less promising

Probability of being selected

Figure 1: Uniform randomization and biased randomization.

Our algorithm would then obtain new solutions to the FLP problem by introducing changes in the list
of open facilities. These changes will be determined by the result of sampling random variates from a
geometric distribution, which will add a single input parameter for the algorithm: the beta parameter for
the probability distribution. This process is therefore run using oriented random sampling.
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4 EVALUATION

To evaluate and assess the performance of the proposed algorithm, several computational experiments were
performed. The proposed algorithm was implemented as a Java 7SE application. We carried out all the
tests on a commodity desktop computer with an Intel Core i5-2400 processor and 4 GBytes of RAM
memory running Ubuntu GNU/Linux 13.04 and the Oracle Java Virtual Machine 7-64bits. Even though
Java is a programming language executed in a virtual machine (JVM) and we are aware it may show poorer
performance than compiled lanuages, the execution on the JVM offers better replicability and repeatability
than other languages (Luke 2009).

To test the efficiency of the proposed algorithm, we ran our algorithm with a well-known benchmark
set of the FLP proposed by Bilde and Krarup (1977). This benchmark includes 220 instances divided in 22
subsets. These instances were artificially generated by the authors, selecting the assignment costs randomly
on the range [0, 1000], and opening costs being always greater than 1000. Thanks to their reduced scale,
optimal solutions for each instance of the problem are provided, so any heuristic can be compared with
these optima. While the GRASP by Resende and Werneck (2006) obtained a mean error in the whole
set of 0.0015% compared against optimal values, our methodology found the optimal solution in all the
instances. We compare in Table 1 the running times for Resende’s and our proposals.

Table 1: Results on the Bilde and Krarup benchmark. The time is the spent to find the best solution for
that instance.

Resende and Werneck (2006) | Our methodology
Instance # facilities # clients time [ms] time [ms]

B 310 0.2036
C >0 100 450 0.0498
DOl 223 0.0179
D02 211 0.0432
D03 199 0.0627
D04 170 0.0804
D05 162 0.1025
D06 30 80 186 0.1236
D07 174 0.1519
D08 166 0.0747
D09 175 0.0736
D10 166 0.2100
EO1 476 0.0343
E02 588 0.0672
E03 512 0.1068
E04 464 0.1360
EO05 376 0.1815
E06 >0 100 408 0.2178
EO07 416 0.2520
E08 418 0.2840
E09 352 0.2862
E10 353 0.3180
Average 316 0.1399

As data in Table 1 states, our methodology outperforms the GRASP by Resende and Werneck (2006).
While our method finds the optimal result for all instances, the GRASP method was unable to get to the
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optima in some of the instances. The computing times were also much shorter (several orders of magnitude
shorter). Juan et al. (2014) and (Juan et al. 2011) already showed in metaheuristics for different problems
that the usage of skeded probability distributions in the randomization process within the heuristic provides
state-of-the-art results in terms of quality and execution times.

5 A REAL USE CASE: MINIMIZING NETWORK DISTANCE TO SERVICES

Network distance between servers and clients has a great impact on the quality perception for some Internet
applications and the overall bandwidth consumption. For example, video streaming services might be
affected if congestion is found in the path from the server to the final client. Distributing services across
the network is a good strategy to reduce these phenomena, but it comes at a high cost for operators.

Data-intensive applications can also suffer from degradation and can generate high bandwidth demands
if data is located far from the processing spot. In this field of study, Ryden et al. (2013) proposed
a scenario in which user-contributed resources could be gathered to support data-intensive applications.
Their proposal included a host selection strategy, based on bandwidth probes, in order to reduce overall
bandwidth usage. Also targeting systems composed by non-dedicated resources, Lazaro et al. (2012)
proposed an availability-aware host selection policy for service deployment in contributory communities.
In these systems, services are hosted by user-donated computers and consumed by others in the platform.
From the network perspective, their replica selection strategy would represent a random selection.

Studying which locations should be selected in a network to place a content or a service can be modeled
as a FLP or a p-median problem (Resende and Werneck 2004). While the p-median problem does not
consider any opening costs and restricts the number of facilities to open, the FLP considers the cost incurred
when opening a facility and relates the final number of open ones to the instance size and the opening cost
values. In this particular case, the number of replicas each service should deploy is not known in advance.
Regarding the network distances, the more service replicas in a network, the closer should be any client
to any of them. However, more resources would be utilized and therefore less services could be supported
in a platform of the same size.

In order to prove the value of our methodology in a real use case, we simulated a community cloud.
To do so, we selected a mesh network topology from a Wireless Community Network (Flickenger 2002).
This type of networks are constructed, operated, maintained and owned by the users themselves and pose
a great opportunity for community cloud success. We selected a network snapshot with 1,134 nodes and
1,161 links. Due to space limitation and the low visibility of such large graph, we cannot depict the actual
network topology in this article. Instead, we provide some basic graph statistics in Table 2 to help the
reader better understand the type of network we dealt with.

Table 2: Traits of the studied network graph.

avg. min. max.
Network diameter 11
Node degree | 2.0476 1 260

Node degree centrality | 0.0018 0.0009 0.2295

Node closeness centrality | 0.2442 0.1212 0.4258

Node betweenness centrality | 0.0028  0.00  0.7912
Path lengths | 4.2244 1 11

We considered the 53 nodes in the topology with more than one link to be the nodes that could host a
service (the facilities in the FLP terminology) and all of them (including the facilities) to be potential service
consumers (the clients in the FLP). Considering facilities to be also consumers is one of the features in the
community cloud and contributory communities proposals, as users originally contribute their resources to
support the platforms with the only reward of accessing these services.
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Although in this example we assume complete knowledge about the network topology, probing techniques
like traceroute could be used in a real system to explore the underlying network connecting the nodes, in
a similar way than Ryden et al. (2013) do with available bandwidth used by their allocation strategy.

To transform the network graph into a classical FLP instance, connection costs were established as
the number of network hops from one node to another and the opening cost for each facility was defined
as ¢; = 1000 x closeness_centrality;. The closeness centrality is a graph measure on how close is a vertex
to all other vertices in a graph. Thus, directly linking the opening cost of a facility at a given spot to this
measure intuitively seemed a good strategy to associate higher costs to well connected hosts.

We studied the application of our methodology in the described scenario and compared it to the following
allocation strategies:

1. A greedy method that selects the top N nodes ordered by descending opening cost.
2. A greedy method, that selects the top N nodes ordered by ascending opening cost.
3. A random selection of N nodes from all the available facilities.

In all cases, we set NV to the same number of nodes selected by our FLP solving method, so the distance
and cost comparison is done with the same level of resource usage. For the random selection strategy, we
took the average from 100 samples. We gave 1 second of running time to our heuristic, a restricted time
that would allow its use in a user-interactive service deployment process. We plot in Figure 2a the distance
of all clients in the network to its closest facility when selected with each of the explained methodologies.
Figure 2b shows the cost incurred by each of the service allocations.
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Figure 2: Results for the first service allocation.

As can be observed in Figure 2, our simulation-based methodology selects nodes in the network to host
a single service that are closer to all other ones while maintaining a low deployment cost. Observing the
dispare distances and costs obtained with both greedy methodologies, we can also deduct that (a) selecting
those nodes with higher closeness centrality values results in low network distances and restrained total
deployment costs; and (b) selecting nodes with lower closeness centrality results in very low opening costs
but prohibitively high connecting ones and longer network distances. Both facts are a direct consequence
of the cost function used to assign open costs for facilities in the FLP instance, but they help to value our
proposal on finding low distance and low cost deployments.

In a real-life scenario, several services or applications should be concurrently supported in the same
network. To show the behavior of our methodology in such case, we evaluated the network distances after
five consecutive service allocations, considering only one service replica was supported at a time on each
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host. We show in Figure 3a the distance of each node in the network to the closest facility of each of the
five deployed services when replicas are allocated with the explained methodologies. Figure 3b shows the
accumulated costs at each of the
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to its closest replica. with each methodology.

Figure 3: Results for five concurrent service allocations.

Figure 3a shows our methodology consistently allocates replicas closer to all other nodes in the network
by using the same number of resources. Specially, if we look at the maximum distance, our proposal is able
to allocate replicas at half the distance than other approaches. Thus, we can highlight our methodology does
a better resource utilization, getting lower network distances without increasing the number of consumed
resources. Moreover, as Figure 3b reflects, the selected service allocations are also cheaper.

6 CONCLUSIONS

In the context of the Facility Location Problem applied to computer networks, this paper discusses the use
of random variates generated from skewed probabilty distributions to induce a biased-randomized behavior
inside a solving metaheuristic. The use of biased randomization helps the algorithm during the local search,
thus providing shorter convergence times than the ones obtained by using standard uniform randomization.
The resulting algorithm has been tested against a classical and well-studied benchmark for the FLP. As
well, we applied our proposal to a real case scenario of a community platform and showed our methodology
regularly selects network locations closer than the ones selected by any of the simple methods compared.

The proposed algorithm while simple, as it is only requiring a single-parameter during the tuning phase,
it is obtaining competitive results. These results confirm that simulation-inspired approaches like the one
introduced in this proposal can become an efficient tool for solving FLP and other similar optimization
problems in the field of distributed computing systems or telecommunication networks. We expect to apply
the presented methodology to larger network instances and study its application in real system deployments.
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