
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

DESIGN OF A HIGH-FIDELITY TESTING FRAMEWORK FOR SECURE ELECTRIC GRID
CONTROL

Srikanth B. Yoginath
Kalyan S. Perumalla

Computational Sciences and Engineering Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6085, USA

ABSTRACT

A solution methodology and implementation components are presented that can uncover unwanted, unin-
tentional or unanticipated effects on electric grids from changes to actual electric grid control software. A
new design is presented to leapfrog over the limitations of current modeling and testing techniques for
cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified
operational software under test is enabled to interact with simulated surrogates of electric grids. It ena-
bles the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity
environment. Challenges in achieving such capability include achieving low-overhead time control
mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets
emanating from grid software into discrete events of virtual grid models, translation back from virtual
sensors/actuators into data packets to control software, and transplanting the entire system onto an accu-
rately and efficiently maintained virtual-time plane.

1 INTRODUCTION

Energy delivery control systems are predominantly software-driven. Much of the software is supplied by
third party vendors, including hardware providers, application vendors, tool vendors, or operating system
companies. The reality is that software keeps rapidly evolving. Software updates are very common; up-
date frequencies vary wildly, some daily such as patches to popular Linux distributions, to weekly such as
to popular open software applications, to monthly such as to the Microsoft Windows operating systems,
to yearly such as to software maintained under specific contracts.
 Due to the complex and interlinked nature of software components, any update to any portion of the
software system has the potential to alter the operational characteristics of the system as a whole. Such
fragility is unfortunate, but reflects the reality of today. Naturally, as a result, utility operators can be ex-
pected to be reticent to making any changes to existing, operational software systems lest they introduce
unknown, unanticipated or undesirable instabilities. On the other hand, to ensure continued stable opera-
tions and to improve the security robustness of the overall system, avoidance of the software updates may
in fact be precisely the opposite to system stability and security of the system.
 The crux of the problem is that there is currently limited methodology and apparatus to uncover or
predict the effects of software updates on the system operation before the updates are incorporated. Al-
so, the problem is fundamental in nature (i.e., it will not go away by itself if ignored or tolerated) because
software updates cannot be adequately modeled or abstracted to analyze off-line. Software applications
and their updates are self-models. They are often in binary (executable) form and often closed-source.
Installations and inter-module interactions are often too complex to be abstracted to predict the net out-
come of their interactions. Also, cyber technologies (protocols, tools, applications, malware) evolve so

3024978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Yoginath and Perumalla

quickly that they are fast outpacing our ability to model and analyze them with traditional techniques. It
has now come to the point where complex, distributed software systems are often the best and only feasi-
ble models of themselves. Specific TCP/IP stack implementations or complex peer-to-peer protocols, for
example, are extremely difficult to model as abstractions without losing the effects of their critical, often
poorly understood, bugs, features, and performance dynamics. Due to such intractable nature of software
effect prediction, the only way to be assured of acceptability of updates is to somehow incorporate the
updates on the side, exercise the software in full, gory detail as is, and study in a controlled setting its ef-
fects on the grid operation. An effective, high-fidelity experimentation platform is needed to increase the
speed and fidelity with which cyber technologies are designed and tested in conjunction with the opera-
tion of electric grids.

1.1 Technical Challenges

Among the primary challenges is the problem of hosting actual control software systems in full-blown,
gory detail to be tested as is. This requires that the simulated software interact with a controllable surro-
gate of grid hardware. Traditional emulation techniques are inadequate because of real-time execution
challenges – the emulated hardware must guarantee real-time emulation to keep in synchrony with the
software which is executing based on a real-time clock. Sophisticated and customized emulation systems
exist for use as electric grid surrogates (US DOE 2009; Nicol, Davis, and Overbye 2009; Bergman et al.
2009); however, they are prohibitively with increasing scale of the grid simulated expensive (some cost-
ing to the tune of a million dollars per site installation) and untenable in the long run when the level of de-
tail in the surrogate grid needs to be increased (e.g., more complex sensors and actuators, or larger grid
network sizes). Thus, the problem of real-time coupling must first be resolved (ideally, eliminated) if the
actual software must interact directly with virtual hardware.
 The solution we adopt is based on virtual machine technologies that have lately gathered significant
research and development. Note, however, that traditional VM technologies as is cannot be used in grid
software testing because traditional VMs also execute over real-time clocks, albeit by time-sharing the
computer hardware among multiple VMs. The VM approach, however, brings with it the ability to con-
trol the time advances, which we exploit for our present purposes by developing a new, customized
scheduler that is suited for interfacing with a virtual grid. This new scheduler effectively lifts the soft-
ware away from real-time clock to a virtual time clock, which we fully control and synchronize with the
virtual time clock of the virtual grid.
 The reason we employ VMs in this proposed solution methodology is that VMs are the best way to
sustain the immense level of fidelity and ease of experimentation needed to properly account for the fun-
damental, sensitive effects of software patches. Any other method would necessarily have to resort to de-
generated abstractions, which are unknown to begin with, because of the ill-characterized nature of rapid
software updates themselves.
 Also, our virtual testing system approach opens the possibility to introduce a virtual network between
the software systems and the sensors/actuators that control the grid. This virtual network, wired or wire-
less in nature, also becomes important to capture in sufficiently high level of detail in order to uncover
important unforeseen effects such as congestion from simultaneous software updates/patches over rela-
tively low bandwidth or shared links (e.g., as is the case with smart grid devices).

1.2 Time Control and Synchronization

The heart of the hypervisor is its scheduler, which determines which VM gets to execute next at any given
moment on the host processor on which the grid software is being virtually tested. The custom scheduler
is built from the ground up to suit the purposes of time control and synchronization of the software VMs
with the virtual grid. In our project, we will use a virtual time control scheduler that introduces the relax-
ation necessary in the relation between real time and virtual simulation time.

3025

Yoginath and Perumalla

 The virtual machines capture all the detail needed, including the actual versions of the operating sys-
tems and software tools executing on those computers. While VM technology is in use for common ap-
plications, the type of VM technology needed to enable our solution approach is unique and requires fur-
ther research and development before VMs can in fact be interface correctly and efficiently with virtual
electric grid sensors, actuators, communication network and electric network (transmission or distribu-
tion). Conventional VM technologies are concerned with utilization of the computer, whereas testing
software accurately interfaced with the complex timing and functionality of virtual electric grid requires a
different type of VM execution altogether.

1.3 Time Controlled Communication

Another important technical challenge to realize virtual software testing with virtual grid lies in achieving
time-synchronized communication between the software and the grid interface elements. The control
mechanism of the software ultimately manifests itself in the form of network packets emerging out of
network devices of the software host platform. These packets, routed over the network, reach the various
sensors and actuators which are equipped to translate the command data from network data language to
control signals on the grid side. Similarly, this sequence operates in reverse, with the sensors translating
the sensed information back to packets and conveying them over the network to the software. The chal-
lenge in “in vitro” testing is to correctly virtualize this entire control sequence as well, with correct tim-
ing, pacing and ordering of the software such that the network packets arrive and depart in the correct se-
quence with respect to simulated hardware. None of the existing testing methods or systems currently
provides the technology to enable such controlled communications.
 We resolve this by developing a virtual time-controlled communications module in the hypervisor,
trap all incoming and outgoing network activity of the VMs in which the software is executing, and wrap
the packets inside time-stamped events. These time-stamped events are then synchronized with virtual
time progress across the entire virtual system, ensuring correctness of time advancements and relative or-
dering of events between the software and virtual grid. To develop and implement this scheme, we will
build over recent success with a similar approach in the area of VM-based simulations of battlefield
communications.

2 ARCHITECTURE

A core requirement in developing a testing framework for electric grid control is to interface the electric
grid simulator with supervisory control and data acquisition (SCADA) and telecommunication network
simulators/emulators (Lemay, 2013). In the rest of the paper, the terms telecommunication network simu-
lator and network simulator are synonymously used. High-fidelity time-accurate network simulation sys-
tems such as NetWarp (Yoginath and Perumalla, 2011; Yoginath, Perumalla, and Henz 2012), based on
VMs are extremely attractive for the task of including networked VMs to model grid control networks.
However, such network simulation test-beds for distributed protocols and applications are not directly
amenable to work in tandem with a electric grid simulator. Also, executing parallel simulations in a VM
environment suffers a performance degradation, unless the scheduling of the Virtual Central Processing
Units (VCPUs) of VMs hosting the parallel simulator is handled carefully. To extract the best runtime
from the electric grid simulator and to utilize the high-fidelity VM based network simulations, such as the
NetWarp simulator, to work with the electric grid simulator, we introduce a framework. This framework,
in principle, can interface any application-specific simulators with VM-based network simulator. In par-
ticular, the design presented in this paper focuses on electric-grid simulations.

2.1 Electric Grid Modeling and Simulation Framework

Figure 1, shows different layers of mapping of (a) simulation model to a logical parallel executive frame-
work (b) logical executive framework to VM-based execution framework (c) VM based execution

3026

Yoginath and Perumalla

framework on to the physical hardware. Layer (a) is well understood and often uses a spatial decomposi-
tion approach, (b) and (c) mapping levels are customized to ensure correctness of simulations and to yield
good performance.
 The entire framework is developed over a hypervisor customized for virtual time-ordered execution
of simulations. This customized hypervisor is capable of scheduling the VCPUs of the virtual machines
in virtual-time-ordered manner for ensuring correctness in simulations involving VMs (network simula-
tions) and enhancing the performance of parallel simulations executing on this customized hypervisor.

Figure 1: Functional diagram of the test framework for secure electric grid.

Figure 1 identifies two distinct networks in the simulation model namely, the electric grid and the net-
worked SCADA units or telecommunication network. The dynamics of the electric grid is different from
the telecommunication network dynamics and so does their simulation models. The logical mapping of
network simulation to NetWarp like simulators using the VMs as the end-hosts and, the mapping of elec-
tric grid simulations to the generic parallel discrete event simulation (PDES) processes (Fujimoto 2000)
using the VMs as execution environment, provides us with a powerful and high-fidelity simulation
framework for secure-electric grid.
 To achieve this all the simulation processes corresponding to both electric-grid and network simula-
tors are instantiated. Note that all these simulation processes are hosted on VMs as shown in the mapping
of PDES onto hypervisor in Figure 1. In addition, a selected set of simulation processes corresponding to
the network simulator maintain additional VM surrogate. The events from the electric-grid simulation
processes to the network simulation processes are delegated to their corresponding VMs by these network
simulation processes. A VM instantiated for a network simulation process is referred as VMSP in the rest
of the paper and every VMSP hosts the actual SCADA application that services the events from electric
grid. Hence, the high-fidelity simulation characteristic can be expected from the SCADA unit compo-
nents of the electric-grid. Given this setup, the synchronization between the electric-grid simulation pro-

3027

Yoginath and Perumalla

cesses, network simulation processes and the VMSPs become an issue. To address the synchronization
issue the local virtual time (LVT) from the simulation processes and the VMSPs are communicated
through the hypervisor.
 The hypervisor layer in the Figure 1 shows LVT values passing from the VMs hosting simulation
processes to the hypervisor and also shows the VMSPs reading this LVT values, this communication of
LVTs ensures synchronized execution of the secure-electric grid framework. Hence, a few VMs hosted by
the hypervisor will be executing the simulation, while the other VMs will actually be working as a com-
ponent of the same simulation. Hence, VMs hosting simulations as well as VMs serving as components
of the simulation will be executing on the same physical machine sharing the compute resources.
 The main challenge in such an assembly of simulators that are functionally and operationally different
is the handling of the multiple simulation-timelines and being able to consolidate the simulation-time
mismatch between the simulators. Unlike VM-based network emulators (Liu 2008; Apostolopoulos and
Hasapis 2006; Bergstrom, Varadarajan, and Back 2006) that rely on wall-clock time alone, NetWarp
maintains its own simulation timeline, keeping track of the number of physical CPU cycles utilized by the
VM. Hence, the integrated framework requires the simulation time from the electric-grid simulator and
network simulator surrogates be passed to the hypervisor. At this point, the VMSPs perform necessary
functionality, while communicating the elapsed simulation time along with the relevant subsequent events
for the electric simulator.

3 DESIGN ASPECTS

3.1 Simulation Events

With multiple simulation modules in the framework, the types of events within the framework can be
broadly classified into two, namely (a) module specific events and (b) inter-module events.

3.1.1 Module-Specific Events

Module-specific events are those events which do not affect the behavior of the other simulator modules
in the framework. For example, the network simulator module-specific events does not affect the behav-
ior of the electric-grid simulator module and vice-versa. However, their precision in simulation time af-
fects the fidelity and state at any point in the simulation and hence, are important. This is because when
inter-module interactions occur, these independent individual modules together determine the state from
which the whole simulation state evolves. Hence, these events are significant in cyber security applica-
tion (worms or hot-patches) effects are to be tested. Thus, synchronization among the electric-grid SPs
and the network simulation VMSPs is necessary even during handling module-specific events. This ena-
bles maintaining a single virtual time line in which both these simulation modules evolve.

3.1.2 Inter-Module Events

Inter-module events are those events, which affect the behavior of the peer simulator module and in turn
might expect reactive set of events from the affected peer. In the context of secure electric grid simulator
framework these events can be a) network simulation process events (from VMSP) affecting electric-grid
simulation process; and b) electric-grid simulation process events affecting the network simulation pro-
cesses and hence VMSP. Note that the each of the above mentioned inter-module events may or may not
trigger state transformation in the simulation process, where it scheduled an event. Hence, based on the
above mentioned combinations four types of inter-module events is expected in this simulation frame-
work.

3028

Yoginath and Perumalla

3.2 Synchronization in VM Platforms

To provide the insight on synchronization scheme in this framework, where VMs are assumed to be used
both as execution platform as well as simulation processes of simulation (VMSP). We discuss each simu-
lation module in this framework separately.

3.2.1 Electric-Grid and Telecommunication Network Simulation Modules

Within the electric-grid simulation module various grid nodes including the SCADA unit objects that del-
egate the event to their VM counter-parts are realized as DES based simulation processes (SP). The syn-
chronization scheme for this module is either traditional conservative or optimistic synchronization
schemes. However, as the secure electric grid framework is realized over a VM environment, for the per-
formance reasons the hypervisor scheduler needs to be modified as has been demonstrated in Yoginath
and Perumalla (2013). Similar arguments hold true for telecommunication network simulation modules.
 This modified hypervisor scheduler changes the strategy of scheduling virtual CPUs on to physical
CPUs, it uses least-LVT first principle to schedule the VCPUs. An LVT value is held by each VCPU and
these LVT values are delegated to the VCPU objects in hypervisor by the SPs. However, this scheme is
prone to deadlock and livelocks (Yoginath and Perumalla 2013) due to the need of the global-virtual-time
computations in PDES. While this limitation can be overcome with algorithmic modifications, these
modifications make the hypervisor scheduler very specific for the PDES applications. This essential
specificity compromises the generality of least-LVT-first principle of hypervisor scheduling.

3.2.2 VM-Based Network Simulation Module

The VM based network simulation module in consideration within the secure electric-grid framework uti-
lizes VMs as the end-hosts. In order to ensure correctness of the simulation time-ordered scheduling of
VMs becomes necessary (Yoginath and Perumalla 2011; Yoginath, Perumalla, and Henz 2012). To over-
come this, the virtual time for each VM based on the number of CPU cycles utilized is recorded by each
VCPU of the VM and this value is the LVT in the network simulator context. Again, with least-LVT-first
principle the hypervisor scheduler overcomes the correctness issue. However, as the network simulation
advances the staggering of LVTs from different VCPUs spanning across different VMs become pro-
nounce. In order to maintain a single simulation time-line across all the VMs involved in the network
simulation, resetting the LVTs of all VCPUs to an appropriate approximation periodically overcomes this
LVT staggering issue. However, this essential synchronization specificity compromises the generality of
least-LVT principle of hypervisor scheduler.

3.2.3 Combined Execution of VM-Based Electric-Grid and Network Module

The secure electric grid framework requires the electric-grid and network simulation processes and VM
based network simulation process instances to work in tandem. The distinction between the two hypervi-
sor schedulers used in either of these applications need to be clear for realizing a combined framework.
The electric grid and network SPs pass the LVT value to the hypervisor and VMSPs corresponding to the
network SPs read their respective LVTs from the hypervisor.
 The LVT values must be passed to the hypervisor, without which the VMSPs would by no means
know the current simulation time of the electric-grid simulator. Also, the electric-grid simulator would
suffer from deadlock and/or livelocks in the absence of the passage of LVT value from SPs to hypervisor.
Hence, the onus to ensure working of the electric-grid simulation and the network simulation in tandem
lies in intelligently adapting the VM based network simulation functionality to the specific needs of the
framework.
 The simulation time advancement in all SPs and VMSPs should be advanced synchronously requiring
regular consolidation of the timelines of among the VM hosting SPs, and VMSPs. In addition to the syn-

3029

Yoginath and Perumalla

chronized advancements, the simulator modules should have the capability to schedule an event to its peer
and such events should be evaluated in simulation time order.

3.3 Data Interoperability

We know that the electric grid simulation framework comprises two different simulation models namely,
electric-grid and network simulation models. However, the implementation of these models can widely
differ in terms of their data-models, for example: the representation of event in the electric-grid can be
very different from the event of the SCADA network simulator. It should also be noted that two different
implementations of same simulations can highly differ.
 Based on such implementation differences, data-interoperability between the events from one simula-
tor to other becomes necessary. The events from one simulator with certain implementation specifics
should be interpreted by an intermediate entity before scheduling it to another simulator such that the
meaning of such an event is rightly conveyed to the simulator on which the event is scheduled. With a
basic minimal support from the simulators like, APIs to read simulation time at any point in simulation,
APIs to schedule external discrete events at a desired instance of simulation time and by being aware of
data-model of the simulators, one can realize a data interoperability entities.
 In the secure electric grid framework we envision using third party simulators for electric grid and
network simulator, to work with high-fidelity VM based network simulator. The idea is while most of the
electric-grid and SCADA network simulations are executed using low fidelity simulation processes, only
few selected SCADA simulation processes will utilize VMSPs. Such a requirement necessitates data in-
teroperability between electric-grid simulator and SCADA network simulators, SCADA network simula-
tor and VM based network simulator. Further, the interoperability between two simulators has to be both
ways, i.e. data or events from the electric-grid simulator to SCADA network simulator must be converted
appropriately to SCADA network simulator understandable data-model and vice-versa. Note that with
the knowledge of the data-model of each of the simulators along with supporting APIs for necessary sim-
ulation functionalities the realization of data-interoperability is merely a laborious implementation exer-
cise rather than a technical hindrance.

4 IMPLEMENTATION ISSUES

4.1 Realizing Secure Electric Grid Framework

Three important aspects arise in realizing a secure electric grid framework (a) To be able to schedule in-
ter-module events (b) To evaluate the inter-module events in simulation time-order (c) To be able to
maintain a synchronized simulation timeline between the modules through out the simulation.
 The network simulation process SP corresponding to the SCADA unit delegates event information to
the VMSP. Similarly, the VMSP event information to the network simulation SP, which schedules an
event in the electric grid simulation process based on the input from VMSP. For this to happen, we need
a database (DB) that is accessible by all the VMs and can store event information. In Xen (D. Chisnall,
2008), the Xenstore serves this purpose and is ideal for small information exchange among VMs.

3030

Yoginath and Perumalla

Figure 2: Inter-module event handling.

Consider, the electric simulator advances in periodic steps of certain granularity. At each step the net-
work simulation process SPs write to the shared database if it needs to schedule an event in the VMSP
and reads for any events to be processed at that simulation instance. The network SP then passes the sim-
ulation time to the hypervisor. The hypervisor scheduler updates the VCPU-LVT value of the corre-
sponding VMSP. When the VMSP gets scheduled for execution, it reads its VCPU LVT value and
checks for any event request in the shared DB. If there is a request it will service the request, stores the
execution time in shared DB and it also schedules any event for the electric grid by providing the simula-
tion time of future event and type of event information. These steps are numerically marked in the se-
quence of their functioning, as shown in Figure 2. Note that the VMSP is scheduled only after the LVT
value is sent and it’s different from the currently read LVT value of its VCPU. After scheduling events
for the electric simulator and if it does not have to service any module-specific events then the VMSP as-
signs its VCPU a very large LVT value, thus not allowing its VCPU to be scheduled for execution.
 In the presence of module-specific events the CPU-cycles equivalent to the single step-size of the
electric grid simulation are utilized by the VMSP in servicing those events, after which it assigns a high
LVT value to its VCPU. Hence, this scheme of processing events helps addressing both module-specific
and inter-module events.

4.2 Event Processing Algorithms

Apart from the module-specific events there could be four types of inter-module events as discussed pre-
viously. Based on these types of events the flow chart for network SP and its corresponding VMSP func-
tioning is illustrated in Figure 3 and Figure 4, respectively. These event processing algorithms are used to
ensure time-ordered execution of electric-grid SPs, network SPs and VMSPs in synchronization with each
other. Note here we have not discussed the synchronization between electric-grid SPs and network SPs
because it is ensured by the PDES synchronization algorithms.

3031

Yoginath and Perumalla

Figure 3: Telecommunication network SP functioning when scheduled to process an event.

 In Figure 3 the algorithm on the functioning of a network SP with its corresponding VMSP is shown.
When the VM hosting network SP obtains time-slice for execution, it first checks for any inter-module
event from the VMSP to the electric grid in the shared DB. In the presence of such an event the network
SP using its corresponding data-interoperability entity schedules corresponding event in the correspond-
ing electric grid SP and clears the event from the shared DB. Then the network SP checks its event list
for the presence of any inter module event scheduled by the electric-grid SP and schedules an event for
VMSP in the shared DB in presence of such an event. Then the network SP passes its LVT or current
simulation time value to the VCPU of its corresponding VMSP and waits for the response from its
VMSP. This algorithm is iteratively executed by the network SP and hence delegates the inter module
events from electric-grid SP to its corresponding VMSP.
 Figure 4 provides the algorithm of VMSP functioning when it is scheduled for execution by the hy-
pervisor scheduler. By default, the VCPU of any non-executing VMSP is held at a large value
(MAX_LVT) and the least-LVT first based scheduler ensures that the VCPU is not given any CPU cycles
at this stage. The LVT provided by the SP to the VCPU of its corresponding VMSP ensures that VMSP
is given CPU cycles for execution. At this stage the VMSP reads the shared DB for any events for that
LVT instance from the electric grid simulator. In presence of such an event the SCADA application host-
ed by the VMSP is invoked to service the event, while keeping track of the exhausted cycles in the pro-
cess. If the SCADA application in response to the electric-grid event serviced creates further events to
the electric-grid, then to convey these events to the electric-grid SPs appropriate events with simulation
time (LVT + exhausted_cpu_cycles) is created in shared DB. Then VMSP checks for any module-
specific event and if present, exhausts (LVT + step_size) worth of CPU cycles to process module specific
events. Here, the step_size corresponds to the simulation time step size of the electric grid simulator. Af-

3032

Yoginath and Perumalla

ter this the VMSP lets its corresponding SP (waiting) know about its completion and overwrites its VCPU
LVT to the default MAX_LVT.

Figure 4: VMSP functioning.

5 SUMMARY

The design of an integrated simulation framework has been presented for high-fidelity testing of electric
grid control software. The design using the new simulation algorithms and supporting modeling tools
makes it possible to virtualize the four major components of advanced energy system: (1) application
software, (2) operating system, (3) digital networks linking these, and (4) the physical machinery that the
applications monitor and control. Our design provides the ability to probe the (simulated) grid to a high
degree of detail to analyze the details of an undesirable operation uncovered from an applied software up-
date, with minimal perturbation from probing or visibility inside the system. The design supports the fol-
lowing:

 Nearly Universal Visibility: The Direct Execution methods provide the ability for our system to
potentially insert sensor and probing functionality at will at various points of execution. Visibil-
ity is not restricted to network activity or actual hardware sensors alone.

3033

Yoginath and Perumalla

 Defeating the “Uncertainty Principle”: The design allows the insertion of arbitrary types and

amounts of instrumentation at various execution points without affecting the original behavior of
the system under test. Since our hypervisor freezes time advance during query or probing of the
system state, the system behavior is unaffected by the amount of real time taken by logging and
archival activity imposed on the system for observation.

 Repeatability and Determinism: The behavior of the system under test is unaffected with visi-
bility; hence the execution remains deterministic and repeatable despite variation in the levels of
probing. Time advances and temporal buffering inside the runtime engine ensure preservation of
correct mutual orderings despite real time variation during execution of the experiments. In other
words, our approach provides real time resilience to the system under test.

The integrated execution is realized via virtual time-ordered scheduling of virtual machines hosting the
distributed grid control software, electric grid simulator, and network simulator. The virtual machines are
divided into two types: one “time-regulating” class to host discrete event simulators that push their local
virtual time (next earliest event time) to the hypervisor, and the other “time-constrained” class to host
unmodified grid software whose virtual time is charged dynamically by the hypervisor. Inter-class and
intra-class interactions are also time-synchronized as events delivered in global virtual time order. The
combined operation enables the use of many virtual machines on a single multi-core platform integrated
with an electric grid simulator and a network simulator also running on the same platform. Overall, the
combined operation enables the possibility of a unique combination of scale and fidelity for simulating
the effects of actual grid cyber infrastructure on grid operation.

ACKNOWLEDGMENTS

This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S.
Department of Energy. Accordingly, the United States Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The authors thank James Nutaro for useful
discussions on the internal organization of electric grid surrogates.

REFERENCES

Apostolopoulos, G. and C. Hasapis. 2006. “V-eM: A Cluster of Virtual Machines for Robust, Detailed
and High-performance Network Emulation.” In Proceedings of the 14th IEEE International Symposi-
um on Modeling, Analysis and Simulation of Computing and Telecommunication Systems, 117-126.

Bergstrom, C., S. Varadarajan, and G. Back. 2006. “The Distributed Open Network Emulator: Using Rel-
ativistic Time for Distributed Scalable Simulation.” In Proceedings of the 20th Workshop on Princi-
ples of Advanced and Distributed Simulation, 19-28.

Bergman, D. C., D. Jin, D. M. Nicol., and T. Yardley. 2009. “The Virtual Power System Testbed and In-
ter-Testbed Integration.” In Proceedings of the 2nd Workshop on Cyber Security Experimentation and
Test.

Chisnall, D. 2008. The Definitive Guide to the Xen Hypervisor. Prentice Hall.
Fujimoto, R. M.. 2000. Parallel and Distributed Simulation Systems. Wiley Interscience.
Liu, J., 2008. “A primer for real-time simulation of large-scale networks.” In Proceedings of the 41st An-

nual Simulation Symposium, 85-94.
Lemay, A., J. Fernandez, and S. Knight., 2013. “An isolated virtual cluster for SCADA network security

research.” In Proceedings of the 1st International Symposium for ICS & SCADA Cyber Security Re-
search, 88-96.

3034

Yoginath and Perumalla

Sztipanovits, J., G. Hemingway, A. Bose, and A. Srivastava. 2011. “Model-based Integration Technology
for Next-Generation Electric Grid Simulations.” In Computational Needs for Next Generation Elec-
tric Grid, edited by J. H. Eto and R. J. Thomas, 4-1—4-44.

Maier, S., A. Grau, H. Weinschrott, and K. Rothermel. 2007. “Scalable Network Emulation: A Compari-
son of Virtual Routing and Virtual Machines.” In Proceedings of the 12th IEEE Symposium on Com-
puters and Communications, 395-402.

Nicol, D. M., C. M. Davis, and T. Overbye. 2009. “A testbed for power system security evalua-
tion.” International Journal of Information and Computer Security 3(2): 114-131.

Yoginath, S. B., and K. S. Perumalla. 2011. “Efficiently Scheduling Multi-core Guest Virtual Machines
on Multi-core Hosts in Network Simulation.” In Proceedings of the 25th Workshop on Principles of
Advanced and Distributed Simulation, Nice, France.

Yoginath, S. B., and K. S. Perumalla. 2013. “Optimized hypervisor scheduler for parallel discrete event
simulations on virtual machine platforms.” In Proceedings of the 6th International ICST Conference
on Simulation Tools and Techniques, 1-9. Brussels, Belgium: Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering.

Yoginath, S. B., and K. S. Perumalla. 2013. “Empirical evaluation of conservative and optimistic discrete
event execution on cloud and VM platforms.” In Proceedings of the 2013 ACM SIGSIM conference
on Principles of Advanced Discrete Simulation, 201-210. New York, NY: ACM.

Yoginath, S. B., K. S. Perumalla, and B. J. Henz. 2012. “Taming Wild Horses: The Need for Virtual
Time-based Scheduling of VMs in Network Simulations.” In Proceedings of the 20th IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems, 68-77.

US DOE. 2009. “National SCADA Test Bed (NSTB) Fact Sheet.” U.S. Department of Energy.
www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/NSTB_Fact_Sheet_FINAL_09-16-
09.pdf

AUTHOR BIOGRAPHIES

SRIKANTH B. YOGINATH is a Research Staff Member in the Discrete Computing Systems Group of
the Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN,
USA. He is also a PhD candidate at the School of Computaional Sciences and Engineering, Georgia
Institute of Technology, Atlanta, GA. His email address is yoginathsb@ornl.gov.

KALYAN S. PERUMALLA founded and leads the Discrete Computing Systems Group of the
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN,
USA. He is a Senior R&D Staff Member and Manager at the Oak Ridge National Laboratory, and an
Adjunct Professor at the Georgia Institute of Technology. He holds a PhD in Computer Science (1999,
Georgia Institute of Technology). His email address is perumallaks@ornl.gov.

3035

