
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

MODELING AND ANALYSIS OF STEPPING STONE ATTACKS

David M. Nicol

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

619 South Wright Street
Urbana, IL 61801, USA

Vikas Mallapura

Department of Computer Science
University of Illinois at Urbana-Champaign

201 North Goodwin Ave
Urbana, IL 61801, USA

ABSTRACT

Computer exploits often involve an attacker being able to compromise a sequence of hosts, creating a chain
of ”stepping stones” from his source to ultimate target. Stepping stones are usually necessary to access
well-protected resources, and also serve to mask the attacker’s location. This paper describes means of
constructing models of networks and the access control mechanisms they employ to approach the problem
of finding which stepping stone paths are easiest for an attacker to find. While the simplest formulation of
the problem can be addressed with deterministic shortest-path algorithms, we argue that consideration of
what and how an attacker may (or may not) launch from a compromised host pushes one towards solutions
based on Monte Carlo sampling. We describe the sampling algorithm and some preliminary results obtained
using it.

1 INTRODUCTION

A common technique by which intruders compromise computers within defended networks is through
so-called stepping stone attacks. In these an attacker gains access to a computer, from that position attacks
and gains access to some computer he could not originally access, from there attacks and gains access to
yet another computer not previously accessible, and so on, until some valued target is gained. There is
benefit in system administrators knowing which stepping-stone pathways are most easily taken, so as to
best allocate resources in protecting critical assets.

We are interested in using modeling and analysis to assess how difficult it is for an attacker to reach
a critical asset through stepping stone pathways, to find for a given critical asset stepping stone pathways
that offer the least resistance, and finally to find for a given quantified level of critical asset value, stepping
stone pathways that reach critical assets most easily. To accomplish these goals we need to identify which
stepping stone paths are possible, and to quantify their difficulty. Whether or not a given compromised
computer can reach and compromise another depends on the connectivity of the two, and also depends
on whether, given access, there are any vulnerabilities on the target which can be compromised with the
privileges the attacker has on the attacking host.

One can imagine describing a stepping stone attack as a path through a multi-graph where nodes
represent hosts, and each edge represents one (of potentially many) ways in which an attacker who is
resident on the source host can gain a foothold through an exploit on the destination host. We furthermore
can imagine putting a weight on that edge which scores the difficulty of accomplishing the attack, potentially
making that weight depend on some attribute of the attacking host or capability of the attacker. The score
of a stepping stone path might then be defined to be the sum of its edge weights. A obvious and natural
question asks where these weights come from—a question we answer in more detail later, but for now will
say that there are industry standard databases of vulnerability metrics that form the basis for such weights.

3036978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Nicol and Mallapura

If this were all there is to the story, the kinds of questions we posed before could be solved using
ordinary shortest-path algorithms. In reality though, the difficulty of achieving a particular exploit can be
sensitive to history. Consider: the first time the attacker encounters a vulnerable service he may spend
a lot of time analyzing it, perhaps crafting an exploit for it. If after having compromised that service
he encounters it again, deeper in the network, the difficulty of exploiting it a second time may be much
less. The attacker has the knowledge, or perhaps a toolset he did not have before. The attacker may have
gathered information along the way (e.g., password files, later cracked) from hosts compromised on the
path that make the difficulty of exploiting a particular vulnerability less than it otherwise would have been.
Conversely, by exploiting some vulnerability an attacker may become detected, triggering a number of
responses that may make further exploits harder than they would have been otherwise. The main point is that
costs associated with compromising a vulnerability may depend on history and/or previous vulnerabilities
exploited on the stepping stone path.

The next natural question asks whether, given a more realistic and complex model of stepping stone
path costs, finding the path with least cost is computationally tractable. As we will see, when the cost of
an edge weight on a directed path depends on the path prefix which leads to the edge, the answer is “no”.
This realization forces us to consider heuristic methods to address our problem. The objective of this paper
is to outline the problem we face, describe a software tool that begins to address it, and describe some
preliminary algorithms for finding the most vulnerable stepping stone attacks possible in a given network.

The remainder of this paper is organized as follows. We lead in Section 2 with a description of
CVSS, an industry standard way of describing known exploits. Next in Section 3 we develop a notational
model of hosts, connectivity, and exploitable vulnerabilities. We state the theorems we’ve proven elsewhere
which show that finding least-cost stepping stone attacks is computationally intractible, thereby motivating
heuristic approaches such as the simulation based ones proposed in this paper. Section 4 describes a
software system we have developed which enables our results to be employed in realistic contexts. Section
5 describes the Monte-Carlo-based heuristics we’ve developed to look for low-cost stepping-stone paths,
and Section 6 describes our preliminary results with those heuristics. Section 7 outlines a body of related
work, while Section 8 summarizes this paper and sketches future research directions.

2 CVSS

The Common Vulnerability Scoring System (CVSS) (Mell, Scarfone, and Romanosky 2006; Mell, Kent,
and Romanosky 2007) is an industry standard vulnerability scoring system designed to provide an open and
standardized method for rating IT vulnerabilities. A number of organizations use CVSS to provide their
assessment of vulnerabilities, including, for instance, the National Institute of Standards and Technology,
who publish a publicly accessible National Vulnerability Database (NVD).

CVSS describes a vulnerability with over a dozen metrics, organized into three groups. The Base
metric group quantifies aspects of the vulnerability that are intrinsic, fundamental, and are unaffected by
time or location. Within this group are descriptions of how one accesses the vulnerability, how complex
the vulnerability is to exploit, and the number of times one has to authenticate in order to exploit the
vulnerability. All of these sub-metrics have bearing on our goal of scoring stepping-stone paths. The
Temporal metric group represents attributes of a vulnerability that may change in time. A relevant metric
for us in this group describes the availability of code to exploit the vulnerability. The Environmental metric
group contains no metrics related to difficulty of accessing the vulnerability, but (like the Base group) has
metrics that speak to the impact of an exploit, which would be of interest in an analysis, for example, of
finding stepping-stone paths that maximize impact subject to a bounded level of difficulty in access.

The NVD database we use1 provides only the Base metrics, which are described in Table 1.
Each has a qualitative part, and a corresponding quantitative part; both parts come from the CVSS

standard. AccessVector (Av) describes how close the attack must be to the victim host in order to gain

1 https://nvd.nist.gov

3037

Nicol and Mallapura

Table 1: Three base group CVSS metrics.

local access required 0.395
AccessVector accessible from adjacent network 0.64

(Av) accessible from remote network 1.0
high 0.35

AccessComplexity medium 0.61
(Ac) low 0.71

requires multiple authentications 0.45
Authentication requires single authentication 0.56

(Aa) no authentication required 0.704

access to the exploit. AccessComplexity (Ac) qualifies the difficulty of executing an exploit. A “high” is
given if specialized conditions are required, e.g. the attacker has administrative privileges, or the exploit
requires some sort of spoofing. It may be given if the attack needs to get inside of a race condition with
a narrow window of opportunity. A “medium” score is given if the conditions are somewhat specialized,
e.g., requires a user with some particular level of authorization, some information has to be gathered
before an attack can be launched, or a small amount of social engineering is needed. A “low” score is
given if specialized conditions don’t exist. AccessAuthentication (Aa) differentiates based on the number
of authentications required to exploit the vulnerability.

According to the CVSS standard these three metrics are combined to create a composite Exploitability
Score,

ε = 20×Av×Ac×Aa.

By construction, 0 < ε ≤ 10.0; the larger ε , the easier it is to exploit the vulnerability.
CVSS scores also address the impact of the vulnerability on confidentiality, integrity, and availability.

We use these to limit our attention to vulnerabilities with impact.

3 MODEL

A host hi has an associated set of known applications or services that are remotely accessible, called Si. For
each a ∈ Si there is a set (possibly empty) of known vulnerabilities in a, denoted v(a), and a set of access
points (e.g. open IP ports), denoted pts(a), through which users (legitimate or otherwise) may access a.
chani, j denotes the channel from host hi to h j, and is the set of application vulnerabilities in h j which the
system’s routers and firewall rules permit hi to access. More formally,

v ∈ chani, j ⇐⇒ ∃ a ∈ S j with v ∈ v(a) and some p ∈ pts(a)

such that the system supports hi connecting to h j through p.

Given a set of hosts and the channels between them we construct a vulnerability multi-graph where an
edge exists from hi to h j for each unique (v,a, p) triple where v ∈ chani, j, v ∈ v(a), a ∈ S j, and p ∈ pts(a)
the source host satisfies the AccessVector qualification of e (e.g., access from adjacent network). In short,
an edge corresponds to a vulnerability that allows an attacker on hi to compromise h j. It is important to
note that the existence of this edge depends on the full connection details; the vulnerable service needs to
have an open port, using a protocol, by which the underlaying access control rules permit hi to reach h j.

A stepping stone path is a path through a vulnerability multi-graph, where the edges denote the
vulnerabiliteis exploited by the attacker to reach the last host in the path from the first. We describe each
step in a stepping stone path by the triple (hi,ei, j,h j) which identifies the source and destination hosts and the
edge used to connect them. We aim to construct a scoring function for stepping stone paths that quantifies
the difficulty of the sequence of attacks it describes. A natural first approach is to weight each edge with

3038

Nicol and Mallapura

a value derived from the associated vulnerability’s CVSS score. That derivation removes the dependency
of the score on the vulnerability’s AccessVector, since access is coded into the existence of the edge; it
also transforms the score so that easier exploitability is coded by smaller values. If ε = 20×Av×Ac×Aa
is the edge vulnerability’s exploitability score, the transformed score is ε

′
= 10−ε/Av, which again has a

range between 0 and 10.0. We call this the exploit complexity score for the vulnerability.
One might define the cost of a stepping-stone path to be the sum of the costs of the edges of the path.

The easiest successful stepping-stone attacks can then be efficiently found using well-understood shortest
path algorithms, e.g., finding the k shortest paths (Yen 1971). Our software provides this analysis, but
the point of this paper is observe that this formulation is not true to experience, and to consider other
formulations and simulation-based methods of solution.

As an attacker penetrates more deeply into a system, two different kinds of things may occur.

• The attack gains more knowledge of the system, in particular, how a particular vulnerability may be
exploited. The attack may acquire software tools to accelerate his penetration. Thus, as the attack
progresses some as-yet-to-be-exploited vulnerabilities may actually become easier to exploit. In
graphical terms, the weight of an edge in a potential next exploit may depend on the path used to
reach it. In particular, the weight on that edge may decrease from the original ε

′
CVSS value we

might ascribe to it.
• The execution of some particular exploit may be detected, with the result that defender activity

is triggered that make vulnerabilities harder to access. For example, network configuration may
be dynamically changed to contain the attacker (thereby changing the graph’s channels), different
versions of services may be swapped in (changing which vulnerabilities might be accessed) or even
hot patches might be applied, eliminating vulnerabilities altogether. Thus, at the attack progresses
some as-yet-to-be-exploited vulnerabilities may become inaccessible, or harder to exploit. In
particular, as a function of the stepping-stone path taken the topology of the graph may change,
and weights on some edges may increase.

If we include in the cost function the possibility that exploiting a vulnerability in may make exploiting
another vulnerability in a different host either more expensive or less expensive, we can prove that the
problem of finding the least-cost path becomes computationally intractable. This result is stated precisely
by the two theorems below.
Theorem 1 Let (G,E) be a directed multi-graph, with every edge e ∈ E labeled with non-negative weight
w(e). Suppose E1,E2, . . . ,Ek−1 is a non-cyclic stepping stone path and consider a host hk not yet visited
but is accessible from the last host hk−1 in the path. For every v in chank−1,k suppose that if v appears in
any prior step, then the cost of exploiting v is no larger than its edge weight in (G,E), and may be smaller,
as a function of E1,E2, . . . ,Ek−1. Then the problem of finding a min-cost stepping stone path between any
two hosts is NP-hard.
Theorem 2 Let (G,E) be a directed multi-graph, with every edge e ∈ E labeled with non-negative weight
w(e). Suppose E1,E2, . . . ,Ek−1 is a non-cyclic stepping stone path and consider a host hk not yet visited
but is accessible from the last host hk−1 in the path. For every v in chank−1,k suppose that the cost of
exploiting v is at least as large as its edge weight in (G,E), as a function of E1,E2, . . . ,Ek−1. Then the
problem of finding a min-cost stepping stone path between any two hosts is NP-hard.

Formal proof of these claims is beyond the scope of this paper, however we can sketch the strategy.
The “monotone exact satisfiability” problem (monotone XSAT) accepts a conjunction of three clauses,
each the disjunction of three uncomplemented literals, and seeks a Boolean assignment to the literals with
the constraint that in every clause at exactly one of the literals is “True”. This problem is known to be
NP-Complete (Schaefer 1978). For both theorems we show how to transform an arbitrary monotone XSAT
problem into a min-cost path vulnerability path problem under the restrictions named in this theorem.
Since XSAT is formally “hard” by virtue of being in NP-Complete, the min-cost path problem with path

3039

Nicol and Mallapura

Figure 1: Screen-shot of NP-View analysis software showing stepping stone vulnerabilities.

dependent edges problem is at least as hard. This fact motivates our work in seeking simulation-based
solutions to the problem.

4 NP-VIEW

We have embodied the analysis described in this paper within a software tool, NP-View, orginally developed
under research contracts at the University of Illinois, now licensed by Network Perception. 2 NP-View is
marketed for use in security audits performed in the power industry, but has more general application. From
the configuration files of routers, switches, and firewalls it infers the network topology, and augments this
with evidence of additional hosts obtainable from the scanning tool nmap (Lyon 2009). It then computes
all of the connectivity the configurations permit; for our purposes, in particular, it computes which pairs
of hosts (hs,hd) exist such that hs can send a message that reaches hd , and all of the ports (and protocols)
involved in those transfers. Figure 1 presents a screen shot of NP-View on a sample network, and then the
results of a stepping-stone analysis based solely on hop-count distance between attacked host and networks
from which attacks might be launched.

nmap is an active scanning tool capable of discovering and reporting a significant amount of information
about the state of a host. NP-View can import an nmap report from which it extracts information about open
services on the host, and the Common Vulnerabilities and Exposures (CVE) identity of their vulnerabilities.
It then looks up the CVSS score for each CVE entry from the NIST NVD database, and uses it in the kind

2 http://network-perception.com

3040

Nicol and Mallapura

of analysis developed in this paper. The most easily accessible pathways to vulnerable hosts are reported
and (ultimately displayed in ways similar to that in Figure 1).

5 HEURISTIC

We are interested in finding low-cost paths from a given attacking host ha to a given victim host hv (other
variants are easily accommodated, such as finding the set of attacking hosts that can reach hv with low
effort). Given the computational difficulty of finding the least-cost stepping stone path, we turn to heuristics.
The one we consider is based on Monte Carlo simulation. One of the attractive features is ease of trading
off the amount of computation. for the quality of the solution; more explorations yields more opportunities
to find lower cost paths. We first describe the data structure used by the computation, and then the algorithm
applied to that data structure.

5.1 Graph Construction

The NP-View tool computes a precise connectivity matrix for hosts that are separated by one or more
firewalls. For each host hs it finds every host hd such that there there is an internet protocol p, a set of
ports Ps on ha and a set of ports Pd on hd such that a message sent from some port in Ps on hs is delivered
to some port in Pd on hd , using protocol p. NP-View records the full particulars of the ports and protocols
that allow such flows.

Using this graph, a breadth-first search identifies the set Tf (ha, j) of the hosts that are reachable from
ha in j hops or fewer moving forward, and a set Tb(hv, j) of hosts that can reach hv in j hops or fewer. Any
path from ha to hv using j or fewer hops can visit hosts only in the intersection set Tf (ha, j)∪Tb(hv, j);
after choosing the j of interest our attention is restricted to nodes in this set.

Next we transform the connectivity matrix into a multi-graph. For every pair of hosts hs and hd in
the set of interest and every vulnerability v associated with hd , we create a directed edge from a node
representing hs to a node representing hd , labeled by the CVE vulnerability identity, and the associated
CVSS score.

Next we describe the algorithm used to find stepping stone attack paths.

5.2 Finding Low-Cost Paths

The basic idea is to stochastically sample paths and remember the the low cost ones. The randomness of
path selection causes the algorithm to sometimes take what appear to be costly steps, against the possibility
that by doing so an attacker gains access to a region where it becomes very easy to reach the target victime.

Given a stepping stone path E1,E2, . . . ,Ek−1 that is rooted in ha the algorithm chooses randomly which
of the edges lead away from the last host visited and do not lead back to a host already in the path. The
probability distribution used to govern that sampling tries to skew sampling towards edges that appear
from its limited vantage point to lead efficiently towards hv. The technical details lay in building the graph
(given already), and sampling paths from it.

Figure 2 illustrates the choice to be made. From the current position in the stepping stone pathway,
one of several next vulnerabilities to exploit is to be selected. In Figure 2 the linear sequence of nodes
beginning with ha illustrate the path already traversed, with the “current position” being the last node in that
sequence, with the several branching options shown, each labeled with a cost ci. The algorithm’s logic is
inspired by the principle of dynamic programming. If, for each of the reachable nodes hi (in the figure the
nodes directly reachable from the current position) we knew the least cost of a path from hi to the victim
hv, then the minimum cost of reaching hv from here will be the minimum among summing the edge cost ci
with the minimum remaining cost Li. The challenge for us is that the edge costs beyond the layer of next
reachable nodes depend on the paths used to reach them, and so at this point are unknown. However, if we
assume that as yet unseen edges costs are invariant, then standard shortest path algorithms can be used to
estimate the Li values. Those invariant costs may be a function of the path seen to date, but are assumed

3041

Nicol and Mallapura

Figure 2: Edge sampling selection.

to not change as the path lengthens. For example, if we assume that once a vulnerability is exploited then
any future exploit of that same vulnerability has cost 0, we’d compute the Li values by zeroing out costs
of every edges labeled by a vulnerability seen in the path leading to hc and the vulnerability on the edge
chosen from hc.

In a shortest path algorithm on graphs with static edge costs, we’d select that i which minimizes ci+Li.
In the sampling version we build a probability distribution that favors the selections where ci +Li is lower
than other. Construction of this distribution has the following steps.

1. Compute S = ∑
n
i=1(ci +Li), where n is the number of edges.

2. Compute probabilities for each edge that are proportional to its cost: For each i compute qi =
(ci +Li)/S.

3. Invert the probabilities to give greater weight to the edges with lower costs: for each i compute
ai = (1−qi)/(n−1).

4. Rescale probabilities to either emphasize choices leading to shortest paths, or to make the distribution
more uniform.

The rescaling step is done parametrically, based on parameter α , with 0≤ α ≤ 2.0. For the purposes
of exposition we assume that the i are presented so that the ai values are in increasing sorted order. For
i = 1,2, . . .n define Ai = ∑

i
j=1 a j to denote the cumulative distribution function. For any discrete distribution

we must have 0≤ Ai≤ i
n , with the upper bound being the CDF of a uniform distribution. Depending whether

α ≤ 1.0 or not, the rescaling moves Ai (for all but i = n) closer to either its lower bound of 0, or its upper
bound of i

n . When α ≤ 1.0, we rescale A′i = αAi, and when 1 < α we rescale A′i = Ai +(2−α)∗ (i
n −Ai).

In both cases we can interpret the rescaling as taking the distance between Ai and its bound, and retaining
α (or in the case of 1 < α , 2−α) of that difference.

With α as a control parameter, we can skew the sampling to be as close to the deterministic min-cost
selection as we like, or as close to uniform as we like.

6 EXPERIMENTAL RESULTS

We now present some preliminary results. The experimental setting is the network illustrated in Figure 1,
where we’ve seeded hosts with a set of vulnerabilities with a variety of CVSS scores. We look at how well
the algorithm identifies low-cost paths between a particular attacker and victim, where a minimum of two

3042

Nicol and Mallapura

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
V

S
S

 S
co

re

Path Cost Order (increasing order)

deterministic
25 samples, fixed costs

100 samples, fixed costs
250 samples, fixed costs

25 samples, variable costs
100 samples, variable costs
250 samples, variable costs

Figure 3: Tracking of minimal costs as a function of Monte Carlo replications.

penetrations are needed for the attacker to gain access to the victim. We’re interested in the algorithm’s
behavior as a function of two parameters: the number of replications, and the skewedness of the sampling
distribution.

As finding the optimal shortest paths is combinatorially complex when edge costs change dynamically,
we ask instead how effective the sampling approach is when the edges don’t change. We can then compare
the path lengths found with optimal path lengths obtained from a deterministic algorithm.

The x-axis of Figure 3 orders the path lengths, with 1 being least, 2 being next least, and so on. The
y-axis gives the sum of CVSS scores on the path. A given experiment computes the 15 least cost unique
paths seen based on some number of Monte Carlo trials: 25, 100, and 250. Of course the results of an
experiment will depend on the initial random number seeding. So, for each number of Monte Carlo trials
we perform 10 experiments, and compute for each ordinal position the mean and standard deviation of
the cost for that position. The figure also plots the optimal minimum cost for each ordinal position, using
Yen’s minimum k shortest path algorithms (Yen 1971).

We plot costs obtained both under the assumption of fixed edge weights, and under a model with
variable edge weights. In the latter model the cost of the first exploit of a given vulnerability is its original
edge weight, but thereafter every exploit of that same vulnerability is assumed to have cost 0.

The main take-away points for the fixed edge cost sets of experiments are that for the first handful
of ordinal positions, all numbers of trials work equally well, but that more significant differences are
seen—particularly for the 25 sample case—with the most costly paths. The second point is the comparative
difference between 100 trials and 250 trials is not large. This really has to do with the size of the network;
the main insight here is there appears to be a sweet spot in the space trading off closeness to the optimal
and the number of replications; one expects each problem to have its own sweet spot, and one of the
challenges will be to automate ways of finding it. Looking at behavior with variable edge weights we
again see a large difference between using 25 and 100 samples, but much less difference for 250 samples.
The most interesting point though is that for these larger sample runs, the minimal cost for larger ordinal

3043

Nicol and Mallapura

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
V

S
S

 S
co

re

Path Cost Order (increasing order)

reduce cdf to 25%
reduce cdf to 50%
reduce cdf to 75%

retain cdf
50% towards uniformity
75% towards uniformity

uniform distribution

Figure 4: Effect of re-scaling sampling distribution.

positions is essentially constant, with very little variation between experiments. What is happening here is
that the lowering of costs of already exploited vulnerabilities makes a difference class of paths attactive,
ones that repeatedly use the same exploit—the one with least cost in the model. This gives evidence
to the intuition that a sampling approach is useful to find these paths that are not identified by existing
deterministic algorithms.

Figure 4 looks at the impact of smoothness parameter α on the algorithm’s performance. For these
plots we used 100 Monte Carlo replications, and we omit the standard deviation for visual clarity. Different
values of α push the distribution closer to selecting the estimated min-cost next edge, or becoming closer
to uniform. What stands out from this data is the seeming insensitivity to α , except for values that skew the
sampling strongly towards the min-cost edge. The explanation for significantly higher costs at larger ordinal
positions is simply that few unique paths are explored. Deeper inspection shows that the distributions
before rescaling are already close to uniform to begin with, which is an artifact of the relatively small
network we’re analyzing and the costs of the vulnerabilities in this model. Furthermore will include larger
models and greater variation in the vulnerabilites embedded in it.

7 RELATED WORK

For over fifteen years researchers have considered ways to represent the vulnerabilities in a system in such
a way that an attacker’s pathways to compromise critical assets might be analyzed (Phillips and Swiler
1998). These data structures have historically become known as attack graphs. The nodes in an attack
graph typically represent the state of a system during an attack, which will incorporate how far the intruder
has penetrated, and the capabilities the attack has at this point in the attack. Edges exist from node s1 to
another state s2 if there is a vulnerability that can be exploited which transforms the system from s1 to
s2. Problems studied include automated construction of attack graphs (Ou, Boyer, and McQueen 2006;
Swiler et al. 2001; Ingols, Lippmann, and Piwowarski 2006) correlating observations on a network with

3044

Nicol and Mallapura

an attack model for that network (Noel, Robertson, and Jajodia 2004), discovery of attack sequences that
can compromise a targeted critical asset (Sheyner et al. 2002; Ammann, Wijesekera, and Kaushik 2002),
and development of metrics that score the insecurity of a network as a function of its known vulnerabilities
and their relationship to attack graph (Wang et al. 2008).

While stepping stone attack paths and paths through an attack graph are related, they are not identical
because the concepts represented by a node are different. In an attack graph, following an edge from one
state to another may correspond in a stepping stone path to launching an attack from some compromised
node earlier in the path, not necessarily the most recently compromised node. In this attack graphs are more
general, with the main difference being that they embody the possibility of an attacker gaining capabilities
by proceeding non-linearly that enable him to execute some exploits he could not otherwise accomplish.
In the end the difference comes down to how one models the attacker, and for the model we adopt there
is no advantage to using the classical attack graph formulation.

It turns out that under the most general assumptions about an attack graph, the problem of determining
whether a given critical asset can be compromised is NP-complete (Sheyner et al. 2002). However,
Ammann, Wijesekera, and Kaushik (2002) had the important insight that under an intuitive constraint that
problem can be solved in polynomial time. The constraint—called monotonicity—is easily understood.
It says that it is never the case that a successful attack somehow limits the capability of the attacker to
later exploit a vulnerability he otherwise could have exploited. This makes sense in a context or model
where the attacker and his attacks are invisible to the defenders, so that there is no cost to the attacker
of exercising any particular exploit. We bring this point up because of result of our own that relates to
it. We have shown that under the stepping stone model, while the existence of a stepping stone path that
compromises a given critical asset can be determined with computational efficiency, under intuitive and
realistic assumptions about costs ascribed to a path, the problem of finding the stepping stone path with
least cost is computationally intractable. The models we analyze may enjoy the monotonicity property, but
finding min-cost stepping stone attacks remains computationally hard.

The application of NP-View resembles the research project NetSPA (Lippmann et al. 2006; Ingols,
Lippmann, and Piwowarski 2006; Lippmann et al. 2006) developed at MIT Lincoln Labs. The stated
motivation for NetSPA was to work backwards from hosts with known vulnerabilities to determine whether
those vulnerabilities are accessible from outside the firewalls protecting those hosts. In this NP-View
accomplishes the same capabilities. However, from a network analysis perspective NP-View provides more
detailed information (e.g., comparison of potential flows with global policy, explitict identification and
analysis of rules that admit flows, etc.), and like almost all other attack graph projects, NetSPA is focused
on the existence of attack vectors, not the identification of those that pose the least difficulty to the attacker.
NetSPA appears to have been inactive for several years.

8 SUMMARY

This paper describes an approach for finding the most vulnerable pathways by which an attacker might
reach a target victim in a protected network. The idea is that a defender can use this information to decide
how best to increase defense of critical assets. The approach is built into a software tool, NP-View, which
determines the connections that are supported by firewall and routing configurations, and reports from a
scanning tool nmap which discovers live hosts and the services running on them. The National Vulnerability
Database (NVD) identfies the known vulnerabilities associated with the identified services, and Common
Vulnerability Scoring System (CVSS) scores are obtained from the NVD. These scores serve as the basis
of edge weights on a graph where paths correspond to exploits that form a stepping-stone attack.

We have argued that the costs of exploiting vulnerabilities in reality can depend on what the attacker
has done before, and learned, as well as the increased risk of being detected by exploiting vulnerabilities
that might be detected. These facets make computationally intractable the problem of finding a path that
minimizes the sum of weights of vulnerabilities exploited. In this paper we propose and begin a preliminary
exploration of an approach that uses Monte Carlo sampling to look for lowest cost stepping stone pathways.

3045

Nicol and Mallapura

The work we propose might serve as the basis for an analysis that identifies those vulnerabilities that
contribute most significantly to low-cost stepping stone attacks, and/or provide an evaluation engine for
performing simulation based optimization that seeks to maximally improve performance subject to some
sort of time or budget constraint. Other future work includes looking at variance reduction techniques such
as splitting to squeeze more information out of a set among of computational effort. This makes particular
sense given the relatively high cost we have of computing a selection distribution at each path extension.

ACKNOWLEDGMENTS

This material is based upon work supported by the Army Research Office under Award No. W911NF-13-
1-0086.

REFERENCES

Ammann, P., D. Wijesekera, and S. Kaushik. 2002. “Scalable, graph-based network vulnerability analysis”.
In Proceedings of the 9th ACM Conference on Computer and Communications Security, 217–224.
ACM.

Ingols, K., R. Lippmann, and K. Piwowarski. 2006. “Practical attack graph generation for network defense”.
In Proceedings of the 22nd Annual Computer Security Applications Conference, 121–130. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Lippmann, R., K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz, M. Artz, and R. Cunningham. 2006.
“Validating and restoring defense in depth using attack graphs”. In Proceedings of the 2006 Military
Communications Conference, 981–990. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Lyon, G. F. 2009. nmap Network Scanning: The Official nmap Project Guide to Network Discovery and
Security Scanning. Insecure, USA.

Mell, P., K. A. Kent, and S. Romanosky. 2007. “The common vulnerability scoring system (CVSS) and its
applicability to federal agency systems”. Technical Report 7435, National Institute of Standards and
Technology Interagency Report.

Mell, P., K. Scarfone, and S. Romanosky. 2006. “Common vulnerability scoring system”. IEEE Security
& Privacy 4 (6): 85–89.

Noel, S., E. Robertson, and S. Jajodia. 2004. “Correlating intrusion events and building attack scenarios
through attack graph distances”. In Proceedings of the 20th Annual Computer Security Applications
Conference, 350–359. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Ou, X., W. F. Boyer, and M. A. McQueen. 2006. “A scalable approach to attack graph generation”. In
Proceedings of the 13th ACM Conference on Computer and Communications Security, 336–345. ACM.

Phillips, C., and L. P. Swiler. 1998. “A graph-based system for network-vulnerability analysis”. In Proceedings
of the 1998 Workshop on New Security Paradigms, 71–79. ACM.

Schaefer, T. J. 1978. “The complexity of satisfiability problems”. In Proceedings of the 10th annual ACM
Symposium on Theory of Computing, 216–226. ACM.

Sheyner, O., J. Haines, S. Jha, R. Lippmann, and J. M. Wing. 2002. “Automated generation and analysis
of attack graphs”. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, 273–284.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Swiler, L. P., C. Phillips, D. Ellis, and S. Chakerian. 2001. “Computer-attack graph generation tool”. In
Proceedings of the 2001 DARPA Information Survivability Conference, Volume 2, 307–321. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Wang, L., T. Islam, T. Long, A. Singhal, and S. Jajodia. 2008. “An attack graph-based probabilistic security
metric”. In Data and Applications Security XXII, edited by V. Atluri, Volume 5094 of Lecture Notes
in Computer Science, 283–296. Springer.

3046

Nicol and Mallapura

Yen, J. Y. 1971, July. “Finding the k Shortest Loopless Paths in a Network”. Management Science 17 (11):
712–716.

AUTHOR BIOGRAPHIES

DAVID M. NICOL is the Franklin W. Woeltge Professor of Electrical and Computer Engineering at the
University of Illinois at Urbana-Champaign, and is Director of the Information Trust Institute. He holds a
B.A. in mathematics from Carleton College (1979), and M.S. and Ph.D. degrees in computer science from
the University of Virginia (1983,1985). Prior to joining UIUC, he taught at The College of William & Mary,
and Dartmouth College. He has served in many roles in the simulation community (e.g., Editor-in-Chief of
ACM TOMACS, General Chair of the Winter Simulation Conference Executive Board of the WSC), was
elected Fellow of the IEEE and Fellow of the ACM for his work in discrete-event simulation, and was the
inaugural recipient of the ACM SIGSIM Distinguished Contributions award. His current research interests
include application of simulation methodologies to the study of security in computer and communication
systems. His email address is dmnicol@illinois.edu.

VIKAS B. MALLAPURA is a Master’s student in the Department of Computer Science at University
of Illinois, Urbana-Champaign. His research interests include network security. He received his B.E. in
Computer Science and Engineering from Visvesvaraya Technological University, Karnataka, India in 2010.
He worked at Oracle India for 3 years prior to his Master’s studies. His email address is mallapu2@illinois.edu.

3047

