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ABSTRACT 

In teaching simulation, the Buffon’s needle is a popular experiment to use for designing a Monte Carlo 
simulation to approximate the number 𝜋. Simulating the Buffon’s needle experiment is a perfect example 
for demonstrating the beauty of a Monte Carlo simulation in a classroom.  However, there is a common 
misconception concerning the Buffon’s needle simulation. Erroneously, the  simulation of the needle drop 
cannot be used to evaluate 𝜋. We have to simulate the needle’s angle from an uniform �0, 𝜋

2
� distribution. 

It is self-referential in theory, since it requires the number 𝜋 as the input value to approximate 𝜋. In this 
study, we propose a new method using the fixed-point iteration to remove the inherent paradox of the 
Buffon’s needle simulation. A new algorithm with Python implementation is proposed. The simulation 
outputs indicate that our new method is as good as if we use the true 𝜋 value as an input.  

1 INTRODUCTION 

Buffon’s needle was the earliest problem in geometric probability to be introduced and solved by Buffon 
(Buffon 1777). In teaching simulation, it is a very popular experiment to use for designing a Monte Carlo 
simulation to approximating the 𝜋 value. No doubt, simulating the Buffon’s needle experiment is perfect 
example for  demonstrating the power and beauty of the Monte Carlo simulation in a classroom. However 
many researchers do not realize that there is a common misconception about the Buffon’s needle 
simulation (Siniksaran 2008; Wicklin 2014; Weisstein 2014; Xie 2013).  In the Buffon’s needle 
simulation model, people erroneously use the true 𝜋 value to simulate the needle’s angles with lines. 
These angles have to be generated from a uniform distribution over an interval �0, 𝜋

2
�. In theory, we 

cannot simulate the Buffon’s needle experiment to approximate the 𝜋 value. It does required the true 𝜋 
value as the input value to approximate 𝜋 value.  

A new method is proposed for simulating the Buffon’s needle experiment without using the true 
𝜋 value as the input. Instead, we use an estimated 𝜋 value as the input. Our method is based on the 
convergence theory of the Fixed-Point iteration method. Of course, there are numbers of methods for 
estimating π (Beckmann 1974) that could be used here. The Fixed-Point iteration is a common numerical 
method for root funding. In teaching Numerical Analysis, Senior Seminar, and Undergraduate Research,  
we use the Buffon’s needle experiment as an example to introduce the Fixed-Point iteration method . The 
Buffon’s needle simulation model can be fitted into the Fixed-Point iteration model. In this study, we 
construct and derive a convergence interval for the initial π value selection in order to guarantee our 
simulation output   π values converge to the true π value.  

3674978-1-4799-7486-3/14/$31.00 ©2014 IEEE



Wand and Wang 
 
A Python implementation program of the new method is proposed. The simulation results show that the 
new method is as good as if the true π value is used as the input.  

One surprising result is that we can use any arbitrary initial 𝜋 values as the input for our simulation 
experiment. The output performance is the same as that of others. Our conjecture is that our simulation 
output  𝜋 values converge to the true 𝜋 value for any arbitrary initial 𝜋 values except zero value. We will 
continue to investigate this issue in our future study.   

2 BUFFON’S NEEDLE PROBLEM 

In this section, we introduce the Buffon’s needle problem. The solution of this problem is derived through 
basic probability and elementary calculus. Using this theoretical result, we design the Buffon’s needle 
Monte Carlo simulation.  A simulation algorithm is proposed. 

2.1 Experiment 

The Buffon's needle problem was first posed by the French mathematician Georges-Louis Leclerc, Comte 
de Buffon (Buffon 1733): 

 
“A large plane area is ruled with equidistant parallel lines, the distance between two consecutive lines 
of the series being a. A thin needle of length 𝑙𝑙 <  𝑎. is tossed randomly onto the plane. What is the 
probability that the needle will intersect one of the lines?" 

 
 
 
 
 
 
 
 
 

 

Figure 1: Needle A intersects a line and Needle B does not. 

This question became known as the famous Buffon’s Needle problem (Buffon 1777;  Burton 2007). It 
can be solved using integral calculus. Based on this analytical solution, the Buffon’s needle experiment 
can be used to approximate the number 𝜋.  

2.2 Integral Calculus Solution  

For a given needle of length 𝑙𝑙, we model the dropping of the needle on the ruled plane with parallel lines 
𝑎 units apart as follows. Let x be the distance from the center of the needle to the nearest line and 𝜃𝜃 be the 
acute angle between the needle and the lines. 
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Figure 2:  𝑥 is the distance from the needle center to the nearest line and 𝜃𝜃 is the acute angle between the 
needle and the line. 
Based on this model setting, x is a uniform random variable over the interval �0, 𝑎

2
� with the probability 

density function: 

𝑓𝑥(𝑥) = �
2
𝑎

, 0 ≤ 𝑥 ≤
𝑎
2 

0, otherwise
 

 
and 𝜃𝜃 is a uniform random variable over the interval �0, 𝜋

2
 � with the probability density function: 

 

𝑓𝜃(𝑥) = �
2
𝜋

,        0 ≤ 𝑥 ≤
𝜋
2 

0,        otherwise
 

 
The two random variables, x and θ, are independent. Therefore the joint probability density function of 
(𝑥,𝜃𝜃)  is  

𝑓(𝑥,𝜃𝜃) =  �
4
𝑎 𝜋

,          0 ≤ 𝑥 ≤
𝑎
2

  and 0 ≤ 𝜃𝜃 ≤
𝜋
2 

0,                    othewise                       
 

 
The original Buffon’s Needle problem is only posed for the short needle case (𝑙𝑙 <  𝑎 ). A needle 
intersects a line if 

𝑥 ≤
𝑙𝑙
2

sin(𝜃𝜃). 
 

The probability that the needle will intersect a line is 
 

                                     𝑝 =  � � 𝑓(𝑥,𝜃𝜃)𝑑𝑥 𝑑𝜃𝜃 = 
𝑙
2sin (𝜃)

0

𝜋
2

0
� �

4
𝑎𝜋

 𝑑𝑥 𝑑𝜃𝜃 =
2𝑙𝑙
𝑎𝜋

.
𝑙
2sin (𝜃)

0

𝜋
2

0
                                (1) 

For the long needle case (𝑙𝑙 ≥  𝑎), a needle intersects a line if 
 

𝑥 ≤ min  �
𝑙𝑙
2

sin(𝜃𝜃) ,
𝑎
2
�  . 

 
The probability that the needle will intersect a line is 

 

𝑝 =  � � 𝑓(𝑥,𝜃𝜃)𝑑𝑥 𝑑𝜃𝜃 = 
min  �𝑙2 sin(𝜃),𝑎2�.

0

𝜋
2

0
� �

4
𝑎𝜋

 𝑑𝑥 𝑑𝜃𝜃  
min  �𝑙2 sin(𝜃),𝑎2�

0

𝜋
2

0
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𝜃𝜃 

𝑙𝑙
2

sin(𝜃𝜃) x 

a 

3676



Wang and Wang 
 

=  �� �  
𝑎𝑟𝑐 sin�𝑎𝑙 �

0 
+  � �  

𝑎
2

0

𝜋
2

0

𝜋
2

0
�

4
𝑎𝜋

 𝑑𝑥 𝑑𝜃𝜃                                                     

 

=  � �  
𝑎𝑟𝑐 sin(𝑎𝑙 )

0 

4
𝑎𝜋

 
𝜋
2

0
𝑑𝑥𝑑𝜃𝜃 +

𝑎
2 �
𝜋
2
− 𝑎𝑟𝑐 sin �

𝑎
𝑙𝑙
��                                     

 

=
2
𝜋

 𝑎𝑟𝑐 cos �
𝑎
𝑙𝑙
� +

2𝑙𝑙
𝑎𝜋

 �1 −√1 − �
𝑎
𝑙𝑙
�
2
�.                                                    

 
Combining both short and long needle cases, the theoretical solution for the Buffon’s needle problem is  
 

                         𝑝 =  

⎩
⎪
⎨

⎪
⎧

    

2𝑙𝑙
𝜋𝑎

,                                                                       if   𝑙𝑙 < 𝑎
 

2
𝜋

 𝑎𝑟𝑐 cos �
𝑎
𝑙𝑙
� +

2𝑙𝑙
𝑎𝜋

 �1 − √1 − �
𝑎
𝑙𝑙
�
2
� ,    if  𝑙𝑙 ≥ 𝑎

.                                                  (2) 

2.3 Estimating 𝝅 

From the equation (2) in the subsection 2.2, the theoretical solution for the short needle case (𝑙𝑙 < 𝑎) is 
 

                                                                            𝑝 =
2𝑙𝑙
𝜋𝑎

 .                                                                                              (3) 
 
Solve equation (3) for 𝜋, we have 

𝜋 =
2𝑙𝑙
𝑝𝑎

. 
 
The p value can be estimated through the Buffon’s needle experiment. If the experiment contains n 
needles and there are m needles intersect lines, then the probability p can be estimated by the proportion: 
 

𝑝̂𝑛 =
𝑚
𝑛

. 
 

The 𝜋 value can be directly estimated by 
 

𝜋�𝑛 =
2𝑛𝑙𝑙
𝑚𝑎

.  
  

2.4 Monte Carlo Simulation Design 

The Buffon’s needle experiment can be implemented through Monte Carlo simulation. We generate n 
independent needle tosses to estimate the probability that a needle intersects a line. We summarize our 
simulation design into the following algorithm: 
 Algorithm 1  
  

 m = 0; 
 do i = 1 to n; 

  generate xi ~ uniform �0, a
2
� ;  

  generate θi ~ uniform �0, π
2
�; 

  if xi < min �l
2

sin(θ) , a
2
 � : 

   m = m + 1 
  end if 
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 end do 

 print  p�n = m
n

; 

 print  π�n = 2nl
ma

.  
 
Here 𝑥𝑖 is the distance from the center of the ith  needle to a nearest line, and 𝜃𝜃𝑖 is the acute angle between 
the ith needle and the lines.  

3 PARADOX 

From Algorithm 1, we can see that Monte Carlo  simulation of Buffon’s needle experiment is simple and 
easy to implement. It is a perfect example that demonstrates the beauty of Monte Carlo simulation in a 
classroom.  However, there is a common misconception concerning the Buffon’s needle simulation. Does 
it work?  Erroneously (Wicklin 2014; Wikipedia 2014) , the  simulation of the needle drop cannot be used 
to evaluate π. Why? We have to simulate the needle’s angle from an uniform �0, 𝜋

2
� distribution. It is self-

referential in theory, since it requires number π as an input value to approximate π. The following SAS 
code program is from the paper “Simulation of Buffon's needle in SAS” from SAS company website 
(Wicklin 2014): 

 
Program Start 
/* Buffon's Needle */ 
 proc iml; 
 call randseed(123); 
 pi = constant("pi"); 
 N = 1000; 
 z = j(N,2); /* allocate space for (x,y) in unit square */ 
 call randgen(z,"Uniform"); /* fill with random U(0,1) */ 
 theta = pi*z[,1]; /* theta ~ U(0, pi) */ 
 y = z[,2] / 2; /* y ~ U(0, 0.5) */ 
 P = sum(y < sin(theta)/2) / N; /* proportion of intersections */ 
 piEst = 2/P; 
 print P piEst; 
Program End 

In this SAS program, the SAS system constant pi value is called (used) as an input for the Buffon’s 
needle simulation for estimating the number 𝜋.  

4 REMOVING THE INHERENT PARADOX 

In this section, we briefly introduce the Fixed-Point iteration method and discuss its convergence theorem 
and algorithm.  The Buffon’s needle simulation model can be fitted into the Fixed-Point iteration model. 
A convergence interval for selecting the initial input 𝜋 value is derived for using the Fixed-point theory.  
A new algorithm is proposed. Its Python implementation program is introduced. At the end of this 
section, we provide a simulation output analysis. A conjecture is proposed. 

4.1 The Fixed-Point Iteration Method 

In order to solve the equation 𝑓(𝑥) = 0 directly, the Fixed-Point iteration is based upon changing the 
equation 𝑓(𝑥) = 0 into the form 𝑔(𝑥) = 𝑥, and it solves 𝑔(𝑥) = 𝑥  instead. Details of this method can be 
found in any Numerical Analysis book (Burden, Faires, and Reynolds 1981).   
 
 Definition 1 If 𝑔(𝑥) is defined on [𝑎, 𝑏] and 𝑔(𝑝) = 𝑝 for some 𝑝 ∈ [𝑎, 𝑏], then the function 𝑔(𝑥) is  
                              said to have the fixed point 𝑝 on [𝑎, 𝑏]. 
 

3678



Wang and Wang 
 

The following theorem gives sufficient conditions for the existence and uniqueness of a fixed point. It can 
be easily proved using the Intermediate Value Theorem from Calculus.  
 
 Theorem 1 If 𝑔(𝑥) is continuous on [𝑎, 𝑏] and 𝑔(𝑥) ∈ [𝑎, 𝑏],  then 𝑔(𝑥) has a fixed point in [𝑎, 𝑏].   
                            Further, suppose 𝑔′(𝑥) exists on (𝑎, 𝑏), and  
 
                                                         |𝑔′(𝑥)| ≤ 𝑘 < 1        for all 𝑥 ∈ (𝑎, 𝑏).                                                        (4) 

 
                            Then 𝑔(𝑥) has a unique fixed point 𝑝 in [𝑎, 𝑏]. 
 
From Theorem 1, we have the following Algorithm. 
 
 Algorithm 2 Start from any point initial approximation 𝑝0 ∈ [𝑎, 𝑏] and consider the recursive 
                               process 

𝑝𝑛+1 = 𝑔(𝑝𝑛),      𝑛 = 0, 1, 2, … 
 
If conditions from Theorem 1 are satisfied, 𝑝𝑛 converges to a unique fixed point. Moreover, when 𝑛 is 
large, 𝑝𝑛 can be used to the solution of 𝑔(𝑥) = 𝑥.  

4.2 Modeling the Fixed-Point Equation 

We let 𝑙𝑙 = 𝑎 = 2,  then equation (1) becomes, 
 

                                           𝑝 =  � � 𝑓(𝑥,𝜃𝜃)𝑑𝑥 𝑑𝜃𝜃 = 
𝑙
2sin (𝜃)

0

𝜋
2

0
� �

2
𝜋

 𝑑𝑥 𝑑𝜃𝜃 =
2
𝜋

.
sin (𝜃)

0

𝜋
2

0
                                 (5) 

 

Since 𝑝 = 2
𝜋

 ,  equation (5) is equivalent to the following equation, 
 

𝑝 =  � sin(𝜃𝜃)𝑝 𝑑𝑥
1
𝑝

0
= 𝑝 �1 − cos �

1
𝑝
��. 

 
This implies  

𝑔(𝑝) = 𝑝 �1 − cos �
1
𝑝
��. 

Consider its 1st order derivative  

𝑔′(𝑝) = 1 − cos �
1
𝑝
� −

1
𝑝

sin�
1
𝑝
�. 

 
We need to find the maximum value of 𝑔′(𝑝).  Consider its 2nd order derivative, 
 

𝑔"(𝑝)  =  
1
𝑝3

  cos  �
1
𝑝
� .  

 
Let 𝑔"(𝑥)  =  0,  it implies 𝑝 = 2

𝜋
 ,  when 𝑝 is in a reasonable neighborhood of 2

𝜋
.  Then we have, 

 

max|𝑔′(𝑝)| = �𝑔′ �
𝜋
2
�� = �1 −

𝜋
2�

< 1. 
 
Let’s derive the reasonable neighborhood for p to guarantee that the Fixed-Point iteration converges to the 
solution. Consider the following figure: 
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Figure 3:  The unit circle is dominated by two squares. 
 

From Figure 3, we know that the area of the unit circle is 𝜋,  the area of the big circle is 4, and the area of 
the small square is 2. Then we have the following inequalities, 
 

2 < 𝜋 < 4 
This implies  

0.4 < 𝑝 < 1  �since 𝑝 =
2
𝜋
�. 

The interval [0.4, 1] is the reasonable neighborhood of 2
𝜋

.  Therefore 

|𝑔′(𝑝)| < �1 −
𝜋
2�

< 1,    for all  𝑝 ∈ [0.4, 1]. 
It is easy to check that  𝑔(𝑝) is a decreasing function and 𝑔(𝑝) ∈ [0.4, 1] for all  𝑝 ∈ [0.4, 1].  In 
summary, our function 𝑔(𝑝) satisfies all conditions from Theorem 1.  By Theorem 1, we conclude that 
there is a unique fixed point (solution) in [0.4, 1].  In theory, we know that fixed point is 2

𝜋
. 

4.3 Removing the Paradox 

Now we are ready to propose a new method to remove the inherent  paradox of the Buffon’s needle 
simulation.  We modify our algorithm 1 in two parts. In part I, we use an approximated  𝜋  value  as the 
simulation input instead of the true 𝜋 value. In part II, we consider Algorithm 1 is an inner loop for 
simulating  𝜋 value. An out loop is added to run the Fixed-Point iterations to improve the quality of the 
approximated 𝜋 value for the inner loop input. In theory, if an initial 𝜋 value is selected from interval 
[2, 4], our simulation output estimated 𝜋 value  𝜋�𝑛 converges to  the true 𝜋  value, due to the Fixed Point 
Theory. We summarize our new method into the following algorithm. 
 
 Algorithm 1  

  
 input: 

  pi_initial ∈ [2, 4]; 
  k = the number of the Fixed-Point iterations; 
  n = the number of the Buffon’s needles 
 do j = 1 to k; 
  p = 2/pi_initail 
     m = 0; 
  do i = 1 to n; 

   generate xi ~ uniform �0, a
2
� ;  

   generate θi ~ uniform �0, 1
p
�; 

   if xi < min �l
2

sin(θ) , a
2
 � : 

    m = m + 1 
   end if 
  end do 

  𝑝 = 𝑚
𝑛

;  # updating the estimated 𝜋 value 
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 end do 
 print  p�n = p; 

 print  π�n = 2l
pa

.  

4.4 Python implementation and Output Analysis 

Our new algorithm can be easily implemented in any computer language. We provide a Python 
implementation program here.  
Program Start 

import random, math 
 
def main(): 
    pi_initial = float(input("Enter an initial value for Pi from [2, 4]:  ")) 
    p = 2/pi_initial 
    n = int(input("Enter the number of  fixed point iterations:  ")) 
    m = int(input("Enter the number of Buffon needles:   ")) 
    for i in range(n): 
        sum = 0 
        for j in range(m): 
            x = random.random() 
            theta = random.random()/p 
            if x < math.sin(theta): 
                sum+=1 
        p_hat=sum/m 
        p = p_hat 
    print("The estimated Pi value is: ", 2/p)                  
      

 main() 
Program End 

We summarize our simulation outputs into the following Table 1.  

Table 1: Simulation Outputs 

Initial 𝜋  
Value 

The Number of  
Fixed-Point Iterations 

The Number of  
The Buffon’s Needles 

The Estimated 
𝜋 Values 

2.0 100 10000 3.1177 
3.0 100 10000 3.1392 
4.0 100 10000 3.1412 

    
2.0 1000 10000 3.1109 
3.0 1000 10000 3.1586 
4.0 1000 10000 3.1995 

    
20 1000 10000 3.1711 
200 1000 10000 3.1422 
-150 1000 10000 3.1486 

-7 1000 10000 3.1276 
    

3.14156 1000 10000 3.1626 
3.14156 1000 10000 3.1240 
3.14156 1000 10000 3.1177 
3.14156 1000 10000 3.1271 

 
For the last four simulation outputs, we use the true 𝜋 value 3.14156 as the initial input 𝜋 value. Overall, 
our simulation outputs are as good the last four outputs. In theory, our results cannot be better than the 
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last four outputs. For the first six simulation outputs, all initial 𝜋 values are selected from the Fixed-Point 
iteration convergence interval [2,4]. All results are as we expected.  

 
We have tried a few initial 𝜋 values outside of the convergence interval. For the initial 𝜋 values 20, 

200, -150, and -7, all outputs are as good as others. We propose a conjecture here: our new method works 
for any arbitrary initial 𝜋 values. It is part of our future research objectives. As an additional note, we 
certainly cannot use zero as the initial 𝜋 value, since 𝑝 = 2

𝜋
 is the input of our simulation model and 

denominator cannot be zero. One possible way to disassociate the selection of a starting point complete 
from 𝜋  is to consider the periodical property of the sine function. The period of sine function is 2𝜋.  That 
explains why the initial  𝜋 values can be negative, very small, or very large.   

5 CONCLUSIONS 

In theory, the Buffon’s needle Monte Carlo simulation is not functional for approximating the number  𝜋. 
The simulation model of the Buffon’s needle experiment requires the true 𝜋 value to evaluate 𝜋 value. 
This is a self-referential paradox. We propose a new simulation model for the Buffon’s needle 
experiment. This new method does not require the true 𝜋 value as the simulation input. The simulation 
outputs from our Python implementation program indicate that the new method is doing as well as if the 
true π value is used as the simulation input. In addition, we realize that the new method works for any 
arbitrary initial 𝜋 values. As a conjecture, we will continue to work on the convergence theory for the new 
method. 
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