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ABSTRACT

In literature, multi-objective particle swarm optimization (PSO) algorithms are shown to have great potential
in solving simulation optimization problems with real number decision variables and objectives. This paper
develops a multi-objective PSO algorithm based on weighted scalarization (MPSOws) in which objectives
are scalarized by different sets of weights at individual particles while evaluation results are shared among the
swarm. Various scalarizing functions, such as simple weighted aggregation (SWA), weighted compromise
programming (WCP), and penalized boundary intersection (PBI) can be applied in the algorithm. To
improve the diversity and uniformity of the Pareto set, a hybrid external archiving technique consisting
of both KNN and ε-dominance methods is proposed. Numerical experiments on noise-free problems are
conducted to show that MPSOws outperforms the benchmark algorithm and WCP is the most preferable
strategy for the scalarization. In addition, simulation allocation rules (SARs) can be further applied with
MPSOws when evaluation error is considered.

1 INTRODUCTION

The Particle Swarm Optimization (PSO) originates from the simulation of the movement of flocks of birds
(Parsopoulos and Vrahatis 2002). PSO has become a popular metaheuristic especially for solving problems
involving real number decision variables and objective functions (Margarita and Coello 2006).

From an abstract level, in the PSO algorithm, a set (swarm) of candidate solutions (particles) to the
optimization problem “fly” through the decision space. Particles move according to a pre-defined velocity
function. The velocity function usually takes the following as arguments: the current velocity of the
particle, the current position of the particle, the best position visited so far by the particle (lbest) and the
best position visited by the swarm (gbest). Selection of lbest and gbest usually occurs according to a
predefined leader selection strategy (Nebro et al. 2013).

In this paper, we apply the PSO concept in solving a multi-objective optimization problem that has the
following form (Margarita and Coello 2006):

min
x

f(x) = [ f (1)(x), f (2)(x), . . . , f (J)(x)], s.t. l≤ x≤ u,

where x is the vector of decision variables, f ( j) : Rn→ R for j = {1, . . . ,J} are the objective functions,
and l and u are the lower and upper bounds of the decision variables.

Since the J objective functions usually conflict with each other, the identification of a single global
minimum at the same point is impossible. The goal of multi-objective optimization is to detect the highest
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possible number of Pareto optimal solutions that correspond to an adequately spread Pareto front, with the
smallest possible deviation from the true Pareto front (Parsopoulos and Vrahatis 2008).

We propose the new multi-objective particle swarm optimization algorithm based on weighted scalarizing
functions (MPSOws) for solving multi-objective global optimization problems. Under appropriate weighted
scalarizing schemes, particles each having a unique weight vector tend to be attracted towards different
regions in the objective space, resulting in a diverse set of solutions. Different weighted scalarizing
functions are tested, namely Simple Weighted Aggregation (SWA), Weighted Compromise Programming
(WCP), Tchebycheff Method (TCH) and Penalized Boundary Intersection (PBI). All the four scalarizing
schemes convert multiple objectives into a scalar value and use it to select leaders and guide particles
towards the Pareto front. Unlike SWA which often fails when the Pareto front is non-convex, WCP, TCH
and PBI methods can deal with non-convex problems. Furthermore, WCP and PBI yield more consistent
performance compared to TCH. A k-nearest neighbour-based crowding measure coupled with ε-dominance
is used to maintain the external archive. The archiving method is empirically shown to outperform the
conventional crowding distance archiving in terms of diversity and uniformity preservation. MPSOws is
compared against the well-known multi-objective optimization algorithm NSGA-II using 2-dimensional
ZDT and 3-dimensional DTLZ test problems. For all the twelve test problems, MPSOws performs better
or similarly well compared to NSGA-II in terms of both convergence and diversity measures.

The rest of this section introduces some basic concepts such as multi-objective optimization and particle
swarm optimization. Section 2 lists some relevant work done by other researchers. Section 3 introduces
the four weighted scalarizing functions which have been tested in this paper. This section also discusses
about the use of velocity function and external archive in MPSOws. Experiment results are presented in
Section 4, which also benchmarks MPSOws against NSGA-II.

2 LITERATURE REVIEW

A comprehensive survey of different approaches of PSO in solving multi-objective problems was conducted
by Parsopoulos and Vrahatis (2008). The paper summarized a few main approaches. Conventional Weighted
Aggregation (CWA), Bang-Bang Weighted Aggregation (BWA), Dynamic Weighted Aggregation (DWA),
Pareto Dominance Approaches and Objective Function Ordering Approaches were among the methods
being discussed.

Jin et al. (2001) provided a schematic theory illustrating why CWA methods fail to solve multi-
objective problems with non-convex Pareto front. It is shown empirically that Evolutionary Dynamic
Weighted Aggregation (EDWA) can deal with multi-objective optimization problems with a concave Pareto
front. EDWA dynamically changes the weights of all particles to force them to trace along the Pareto front.

Weighted compromise programming (WCP) was discussed by Athan and Papalambros (1996) as a
method for converting multi-objective formulation into a substitute problem with a scalar objective. WCP
raises each objective value to a large integer power m before aggregating them using weights raised to the
same power. The WCP method is further discussed in Section 3.1.2.

A decomposition-based multi-objective evolutionary algorithm named MOEA/D was introduced by
Zhang and Li (2007). This algorithm decomposes a multi-objective optimization problem into a number of
single-objective scalar optimization sub-problems and optimizes them simultaneously. It was demonstrated
that MOEA/D performed outstandingly on a number of multi-objective test problems. Several scalariz-
ing schemes were introduced, namely Weighted Sum Approach, Tchebycheff Approach and Boundary
Intersection Approach.

Some research has been done to incorporate weighted scalarization, e.g., Tchebycheff method, into
PSO by Al Moubayed et al. (2010) in the algorithm SDMOPSO which was reported to be competitive
against five other standard algorithms.

Instead of focusing on a specific scalarizing function, in this paper we first propose a general framework
of MPSOws that works well with a wide range of scalarizing functions. Then, four of the scalarizing
functions, which have mainly been applied in evolutionary algorithm, are introduced and incorporated in
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to the MPSOws. Through the numerical experiments, we identified that the WCP is the best among the
four and outperforms the Tchebycheff method as in Al Moubayed et al. (2010). In addition, we also
suggest that the constrained velocity function and a new archiving method can be applied in the algorithm
to improve the performance. The numerical experiment is conducted to show the comparison results.

3 METHODOLOGY

In MPSOws, particles with unique weight vectors are used to search for solutions in the objective space.
During each iteration, particles share their own objective values among the swarm so as to make better use
of the computation effort. At the same time, since particles have different sets of weights, their measures
about the fitness of the same particle usually differ from each other. In other words, the fittest from the
perspective of one particle may not be the fittest from the perspective of another because particles use
different weights to assess the swarm. The procedure of MPSOws is shown in Algorithm 1.

Algorithm 1: Multi-objective PSO with weighted scalarizing function (MPSOws)

Set the iteration count k = 1;1

forall h ∈ {1, . . . ,N} do2

assign a weight vector wh to the particle h ;3

initialize xh← x by randomly selecting x ∈ [l,u] and evaluate f(xh) ;4

vh← 0, lbesth← xh, gbesth← xh5

end6

while k < K do7

k← k +1 ;8

insert xh into the external archive ζ which stores the non-dominated solutions;9

forall h ∈ {1, . . . ,N} do10

update lbesth ← xh if g(f(xh),wh) < g(f(lbesth),wh) ;11

update gbesth ← xi∗ if g(f(xi∗),wh) < g(f(gbesth),wh) where12

i∗ = argmini∈{1,...,N} g(f(xi),wh) ;
update vh by velocity function, considering lbesth and gbesth ;13

xh ← xh +vh, mutate according to γ , and evaluate f(xh) ;14

end15

end16

Note that as the input setting of the algorithm, N is the number of particles, K is the maximum number
of iterations, and γ is the mutation rate. Emphasized terms, i.e., the weighted scalarizing function g(f,wh),
the velocity function, and the archiving method in the algorithm will be further discussed in later sections.
Empirical results are presented in Section 4 .

3.1 Weighted Scalarizing Function

A number of weighted scalarizing functions have been tested during the construction of MPSOws. Simple
Weighted Aggregation (SWA), Weight Compromise Programming (WCP), Tchebycheff Method (TCH)
and Penalized Boundary Intersection (PBI) will be discussed. In Section 4.1, it will be demonstrated that
WCP and PBI are preferred in the context of MPSOws because of their consistency in achieving good
convergence and diversity.
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3.1.1 Simple Weighted Aggregation (SWA)

When the weight vector wh is set, the SWA function (Jin et al. 2001) returns a scalar value which is the
weighted sum of each objective value f ( j) with respect to w( j). This can be considered the simplest and most
intuitive way of converting a multi-objective problem into N single objective optimization sub-problems.
For any particle h, the weighted scalarizing function by SWA has the form

gswa(f,wh) = f ∙wh =
J

∑
j

f ( j) ∙w( j)
h .

Since gswa is essentially a convex combination of the elements of f, it suffers from the disadvantage of
not being able to find a diverse set solutions if the Pareto front is non-convex (Jin et al. 2001). As shown
in Figure 1 , for the convex ZDT1 Pareto front, as w(1) changes from 0 to 1, f ∗(1) which minimizes gswa

changes as well. Using different weights can therefore lead to a diverse set of non-dominated solutions.
However, this is not the case when the Pareto front is non-convex, as in ZDT2. Regardless of the weights
used, the particles are drawn towards either extremes of the Pareto front. This weakness of SWA is further
demonstrated in Section 4.1 where empirical results comparing SWA and its alternatives are presented.

Figure 1: The Pareto front and optimal f ∗(1) led by weight w(1) for SWA on ZDT1 & ZDT2.

3.1.2 Weighted Compromising Programming (WCP)

The disadvantage of SWA can be dealt with using a simple but powerful strategy as discussed by Athan
and Papalambros (1996). For particle h, the WCP weighting function has the form:

gwcp(f,wh) =
J

∑
j

[
f ( j) ∙w( j)

h

]m
, where m = 3,5,7,9, or 11, . . . .

The structure of the WCP is similar to that of SWA. The only difference is that WCP raises the product
f ( j) ∙w( j)

h to an integer power m before the summation. In fact, SWA is just a special case of WCP with
m = 1. Two features of this scalarizing function are worth mentioning. Firstly, the WCP weighting function
is sufficient for obtaining Pareto optimality because gwcp increases monotonically with respect to f ( j) for
every dimension j. Secondly, Athan and Papalambros (1996) proves that, when integer m is large enough,
a set of weights exists for every point on the Pareto front. This implies that the whole Pareto front can
be covered when a large number of different weight vectors are used. An intuitive understanding of WCP
is shown in Figure 2 that, for every point f =

[
f (1), f (2)

]
on the non-convex Pareto front of ZDT2, a

corresponding weight vector can be found at
[
w(1),1−w(1)

]
. Moreover, if the curve on the right is smooth

and close to a straight line, using equally-spaced weight vectors can potentially lead to a set of almost
uniformly spaced Pareto solutions.
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Figure 2: The Pareto front and optimal f ∗(1) led by weight w(1) for WCP on ZDT2.

3.1.3 Tchebycheff Method (TCH)

The TCH method (Zhang and Li 2007) converts multi-objective optimization into a number of single-
objective ones using weighting function in this form:

gtch(f,wh) = max
1≤ j≤J

∣
∣
∣ f ( j)− r∗( j)

∣
∣
∣ ∙w

( j)
h

where r∗ is the “ideal point”, i.e. the vector containing the best objective value in each dimension found
so-far. This scalarizing scheme is adopted in a number of decomposition-based PSO algorithms such as
SDMOPSO (Al Moubayed et al. 2010) and MOPSO-PD (Liu and Niu 2013). In Section 4.1, TCH method is
benchmarked against other schemes and it is found that TCH is not competitive in the context of MPSOws.

3.1.4 Penalized Boundary Intersection (PBI)

The PBI method (Zhang and Li 2007) is a modification of the Normal Boundary Intersection (NBI) method
(Das and Dennis 1998). It uses a penalty-based method to handle the equality constraint in the NBI
sub-problem (see Figure 3). The PBI weighting function for the particle h has the form

gpbi(f,wh) = d1 +θ ∙d2

in which

d1 =

∥
∥
∥(r∗ − f)T×wh

∥
∥
∥

‖wh‖
and d2 = ‖f− (r∗ −d1wh)‖ .

Again, r∗ is the “ideal point”; θ is an arbitrary constant set to 5.0 according to Zhang and Li (2007).
In gpbi, d1 can be thought of as the length of the projection of the (f− r∗) vector onto the intersecting

line. d2 is then the distance of f from the intersecting line. The PBI method has the advantage of being
able to deal with both convex and non-convex problems. Furthermore, the resulting solutions tend to be
uniformly distributed when equally spaced weight vectors are used. The empirical comparisons of PBI and
WCP methods are presented in Section 4.1.

3.2 Velocity Function

The speed constrained velocity function developed by Nebro et al. (2009) in SMPSO is adopted for
MPSOws due to its proven performance. According to the method, for a particle h, the velocity vh can be
updated as in Algorithm 2. The main feature of this velocity function is that it constricts the velocity using
a constriction factor χ determined according a probability distribution. It also limits the velocity between
the lower and upper bound of the velocity allowed, i.e., vl and vu. Note that, ω is a constant indicating
the tendency of particle to continue with its current velocity.
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Figure 3: Illustration of Penalized Boundary Intersection (PBI).

Algorithm 2: The speed constrained velocity function (Nebro et al. 2009)

Generate r1 and r2 from the uniform distribution (0,1) ;1

Generate c1 and c2 from the uniform distribution (1.5,2.5) ;2

if c1 + c2 ≤ 4 then3

χ ← 1 ;4

end5

else6

ρ ← c1 + c2 ;7

χ ← 2.0
2.0−ρ−

√
ρ2−4ρ

;
8

end9

vh← χ (ωvh + c1r1 (lbesth−xh)+ c2r2 (gbesth−xh)) ;10

vh←min
(
max

(
vh,vl

)
,vu
)

;11

return vh .12

3.3 External Archive

The non-dominated solution obtained by the algorithm is stored in a solution set called “external archive”.
To save the computational resources needed by the optimizer, not every non-dominated solution found
during the iterations need to be stored in the archive. Since scalarizing methods such as WCP and PBI
cannot guarantee the diversity and uniformity of solutions, careful selection of non-dominated solutions
into the external archive is important for MPSOws.

An archiving method that is widely used for multi-objective PSO is the crowding distance archiving
(Raquel and Naval Jr. 2005). This method works very well for 2-d problems but performance quickly
deteriorates when dealing with higher dimensional problems (Kukkonen and Deb 2006).

In our study, we combine the advantages of k-nearest neighbour (KNN) archiving (Kukkonen and Deb
2006) and ε-dominance archiving (Laumanns et al. 2002). We name the hybrid method as ε-KNN archive.
As described by Algorithm 3, when a new solution x is to be inserted to the archive ζ , it checks the existing
solutions and removes those that are ε-dominated by the new solution. If the archive is over capacity
after the insertion, it performs a shrinking. It calculates the sum of the Euclidean distance to k-nearest
neighbours for each solution and removes the one having the smallest sum of distance.
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Algorithm 3: The ε-KNN external archive procedure

forall z ∈ ζ do1

if f(x) ε-dominates f(z) and they are in different boxes then2

Remove z from ζ ;3

end4

else if f(z) ε-dominates f(x) then5

Terminates.6

end7

end8

Add x into ζ ;9

if ‖ζ‖> external archive capacity then10

Calculate the KNN distance for each z ∈ ζ ;11

Remove the solution with the minimum sum of KNN distance ;12

end13

Empirical evidence has shown that ε-KNN archive performs better than the traditional crowding distance
archive in terms of dominated hypervolume of Pareto front. The representative experiment results comparing
crowding distance and ε-KNN archive are shown in Section 4.2.

4 RESULTS AND DISCUSSION

All the experimental settings below make comparisons by running each configuration 20 times using
different random seeds each time. The test problems, i.e., ZDTs and DTLZs, are defined in Zitzler et al.
(2000) and Deb et al. (2005) respectively.

4.1 Comparison of Weighted Scalarizing Functions

WCP and PBI clearly outperform SWA and TCH in most of the test problems. The advantage of WCP and
PBI over SWA is clear especially when the Pareto front is non-convex. The advantage of PBI over WCP is
seen in the case of DTLZ4 which poses the difficulty that solutions are denser along the edges of the true
Pareto front . Despite the challenge, the PBI method still finds a set of fairly uniformly distributed solutions.
When using TCH on problems such as ZDT4 and DTLZ4, particles seem to have strong preference towards
certain regions on the Pareto front. The performance of TCH does not seem to be consistent. Plots of
solutions obtained by MPSOws using different weighted scalarizing functions for some representative test
problems are shown in Figure 4.

The boxplots of total dominated hypervolume achieved by MPSOws using the four scalarizing schemes
are shown in Figure 5.

4.2 Comparison of Crowding Distance and ε-KNN Archive

The use of ε-KNN archive helps improve the diversity, uniformity and total hypervolume of the results of
MPSOws. The comparison of results obtained by MPSOws using crowding distance archive and ε-KNN
archive is presented in Figure 6. For the ε-KNN archive, the number of nearest neighbours is set to k +1
with k being the number of objectives. For example, for 3-d problems, KNN distance of an archived solution
is found by summing the distance to its 4 nearest neighbours in the archive. As previously mentioned, the
advantage of ε-KNN archive is clear especially for 3-d DTLZ problems.
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4.3 Benchmarking Against NSGA-II

To evaluate the performance of MPSOws, it is benchmarked against the well-known multi-objective
evolutionary algorithm NSGA-II (Deb et al. 2002). The configurations used for MPSOws is WCP
weighted scalarizing function (m = 9), equally-spaced weight vectors and ε-KNN archive. Both MPSOws
and NSGA-II evaluate the objective function 30,000 times for 2-d problems and 31,500 times for 3-d
problems (A multiple of 105 is used because MPSOws needs to have such number of particles in order to
use equally-spaced 3-d weight vectors. NSGA-II is set accordingly for fair comparison). The population
size of NSGA-II is set to 100. The external archive size of MPSOws is set to 100. Each algorithm is
executed 20 times on each test problem. It is demonstrated that MPSOws performs better than NSGA-II
for most of the twelve test problems in terms of total dominated hypervolume. The visual appearance of
most of the problems’ Pareto optimal solutions is better than that obtained by NSGA-II most likely due to
the use of ε-KNN archive. Graphical plots of solutions for some representative test problems are shown
in Figure 7. Statistics of total dominated hypervolume, i.e., the mean and standard deviation from the 20
runs, is shown in Table 1.

Table 1: Dominated hypervolume (μ ,σ ) achieved by NSGA-II and MPSOws on twelve test problems.

Problem NSGA-II MPSOws
ZDT1 (0.660357, 2.33×10−4) (0.662068, 2.09×10−5)
ZDT2 (0.327298, 2.95×10−4) (0.328715, 2.31×10−5)
ZDT3 (0.515081, 7.75×10−4) (0.515807, 3.20×10−5)
ZDT4 (0.657277, 2.26×10−3) (0.660276, 1.33×10−3)
ZDT6 (0.395814, 7.26×10−4) (0.401449, 1.83×10−5)

DTLZ1 (0.747002, 2.53×10−2) (0.758574, 7.57×10−3)
DTLZ2 (0.388222, 4.97×10−3) (0.401466, 2.36×10−3)
DTLZ3 (0,0) (0.371043, 1.85×10−2)
DTLZ4 (0.389151, 3.76×10−3) (0.395365, 3.92×10−3)
DTLZ5 (0.094131, 1.52×10−4) (0.093817, 1.10×10−4)
DTLZ6 (0,0) (0.094414, 1.45×10−4)
DTLZ7 (0.293703, 3.64×10−3) (0.304843, 9.88×10−4)

5 SIMULATION ALLOCATION RULES

All experiment results shown above assume that solutions can be evaluated with sufficient accuracy, in
the sense that no false selection of gbest and lbest is made in each iteration. However, in simulation
optimization where evaluation error occurs, this assumption can be violated. Therefore, some simulation
allocation rule (SAR) needs to be applied to allow one solution to be evaluated multiple times, such that
we can increase the chance of making the correct decision. A simple SAR is to equally allocate simulation
runs to each solution visited by particles, until the measure of selection quality (Lee et al. 2010) is observed
to reach the desired level. Alternatively, when computing budget is limited, Chen and Lee (2011), Lee
et al. (2010) suggest that the MOCBA (multi-objective optimal computing budget allocation) concept can
be applied to utilize simulation runs most efficiently, in the sense that the probability of correct selection
(PCS) of the Pareto set can be maximized.

However, with MPSOws, the previous works about MOCBA cannot be directly applied, because instead
of finding a unique Pareto set, we are more interested in comparing weighted objectives of gbest and lbest
simultaneously from each particle’s perspective. By setting the corresponding PCS as the main objective to
be maximized and applying the general MOCBA framework, we can develop an efficient SAR for MPSOws
in future research.
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6 CONCLUSION

The proposed algorithm MPSOws uses weighted scalarizing functions to breakdown a multi-objective
optimization problem into a number of single objective problems and solves them simultaneously. Particles
are assigned different weight vectors which make them prefer different regions in the objective space.
WCP achieves better total hypervolume for most of the test problems but PBI is able to generate a more
uniformly distributed solution set for some problems. The external archive is maintained by means of
KNN distance coupled with ε-dominance which has significant advantages over the conventional crowding
distance archiving especially for higher dimensional problems.

The proposed algorithm has been shown to perform better or similarly compared to NSGA-II over a
number of test problems in terms of diversity and convergence. The work in this paper provides a framework
which facilitates the testing of different weighted scalarizing functions in the context of PSO.

Future work can explore other scalarizing schemes other than the ones already introduced. More
work can be done on finding a better weight generation mechanism to deal with Pareto fronts with
disconnected or complex geometric shapes. Adaptive weight update can be developed to improve the
efficiency when dealing with new problems having complex Pareto fronts. Other archiving methods such
as hypervolume archive can be readily incorporated especially if the complexity for the computation of
hypervolume improves. Additional benchmarking can be performed using MPSOws against other standard
multi-objective algorithms to better understand its performance.
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Figure 4: Pareto fronts obtained by MPSOws with four scalarization schemes.

Figure 5: Dominated hypervolume achieved by MPSOws with four scalarizing schemes.
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Figure 6: Dominated hypervolume (boxplot) achieved by MPSOws with two archiving strategies.

Figure 7: Pareto front and dominated hypervolume (boxplot) achieved by NSGA-II and MPSOws.
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