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ABSTRACT

This paper is concerned with continuous simulation optimization problems with stochastic constraints. Thus
both the objective function and constraints need to be estimated via simulation. We propose an Adaptive
Search with Discarding and Penalization (ASDP) method for solving this problem. ASDP utilizes the
penalty function approach from deterministic optimization to convert the original problem into a series of
simulation optimization problems without stochastic constraints. We present conditions under which the
ASDP algorithm converges almost surely, and conduct numerical studies aimed at assessing its efficiency.

1 INTRODUCTION

This paper develops a provably convergent algorithm for solving optimization problems involving continuous
decision variables, constraints, and uncertainties. More specifically, in the following, we consider the
benchmark problem:

Maximize
θ∈Θ

f (θ) = E[h(θ ,X(ω))]

subject to g j(θ) = E[u j(θ ,Yj(ω))]≤ b j, j ∈ C ,
(1)

where the feasible region Θ is a subset of Rs, E denotes the mathematical expectation operation, C is
a finite set of indexes, X(ω) and Yj(ω), j ∈ C , are random elements defined on some probability space
(Ω,Σ,P), and h, u j, j ∈ C , are deterministic functions. We allow the feasible region Θ to be uncountable
and assume f (θ) and g j(θ) at any θ ∈ Θ and j ∈ C cannot be evaluated exactly. Thus, if there are
deterministic constraints, we assume they are incorporated in the feasible region Θ. Let f ∗ be the optimal
objective value of the optimization problem (1) and f̄ = supθ∈Θ f (θ), so that f ∗ ≤ f̄ . Assume f̄ < ∞.

Several simulation optimization techniques have been developed to solve the problem (1) when Θ is
discrete and no stochastic constraints are present; a thoroughly review can be found in Fu (2002). When Θ is
discrete, and stochastic constraints are involved in (1), the Optimal Computing Budget Allocation (OCBA)
approach can be used to maximize the probability of selecting the best system, see, e.g., Pujowidianto et al.
(2009) and Hunter and Pasupathy (2013). Moreover, Li, Sava, and Xie (2009) and Park and Kim (2011)
proposed random search methods where stochastic constraints are taken into account in an augmented
performance function via a nonnegative penalty factor.

When Θ is continuous and there are no stochastic constraints in (1), a few simulation optimization
algorithms that do not use gradient information have been proposed. For example, Baumert and Smith
(2002) proposed a deterministic shrinking ball method based on pure random search and Yakowitz and
Lugosi (1990) developed a global random search with resampling method. Moreover, Norkin, Pflug,
and Ruszczyński (1998) proposed a stochastic branch and bound method, Rubinstein and Kroese (2004)
developed the cross entropy approach, Hu, Fu, and Marcus (2008) proposed stochastic model reference
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adaptive search, Andradóttir and Prudius (2010) proposed adaptive search with resampling, and Hu and
Andradóttir (2014a) proposed adaptive search with resampling and discarding.

When Θ is continuous and stochastic constraints are involved in (1), the sample average approximation
approach can handle the stochastic constraints, see, for example, Dentcheva and Ruszczynski (2003) and
Pagnoncelli, Ahmed, and Shapiro (2009). However, to the best of our knowledge, very few papers have
addressed provably convergent random search algorithms to solve the benchmark problem (1). The main
advantage of random search over sample average approximation is that it assumes little structure (of the
objective and constraint functions). In this paper, we propose a provably convergent algorithm called
Adaptive Search with Discarding and Penalization (ASDP) to solve (1). We use a sequence of positive
real numbers to dynamically penalize the sample points that appear to be infeasible or whose feasibility is
ambiguous (meaning that they appear to be very close to the boundary of the feasible region), as well as
two other sequences of non-negative real numbers to discard points that are likely to be infeasible and/or
inferior.

The remainder of this article is organized as follows. In Section 2, we present our ASDP algorithm. In
Section 3, we prove its almost sure convergence. In Section 4, we provide a numerical study. In Section
5, we summarize the main contributions of this article.

2 THE ASDP ALGORITHM

In this section, we present our algorithm for solving continuous simulation optimization problems with
stochastic constraints. We start by introducing some notation. For all θ ∈ Θ and k ∈ N, let Nk(θ) be the
number of observations of the objective function f (θ) as well as the constraint functions g j(θ) by the end
of iteration k, and let Sk(θ) be the sum of these Nk(θ) observations of f (θ) and S j,k(θ) be the sum of these
Nk(θ) observations of g j(θ) for all j ∈ C . Also, for all θ ∈Θ, j ∈ C , and k ∈N, let f̂k(θ) = Sk(θ)/Nk(θ)
and ĝ j,k(θ) = S j,k(θ)/Nk(θ). In addition, a sequence {ak} is said to be O(kn) for some n ∈ R if there
exists a C1 ∈ R+ such that 0 ≤ ak ≤C1kn for all k ∈ N. A sequence {ak} is said to be Φ(kn) for some
n ∈R if there exists a C2 ∈R+ such that ak ≥C2kn for all k ∈N. A sequence {ak} is said to be Ω(kn) for
some n ∈ R if it is both O(kn) and Φ(kn).

Let {M(i)}∞
i=1 be a strictly increasing sequence of positive integers with M(1) = 1. In our ASDP

Algorithm, we alternate between adaptively sampling from the feasible region (if the current iteration
number is equal to some element in the sequence {M(i)}∞

i=1), or resampling a previously sampled point
(otherwise). After a new point has been sampled, we decide whether or not to accept the newly sampled
point (because it appears promising), ensure that we have collected enough objective function observations
at each sampled point under consideration, and update the estimate of the optimal solution. Then those
points exhibiting inferior qualities are discarded.

Due to the randomness involved in the constraints in problem (1), a penalty addressing the feasibility
of estimated constraints is added to the estimate of the objective function as follows. Let {λi}∞

i=1, {ξi}∞
i=1

be two sequences of positive real numbers. For all θ ∈Θ and i ∈ N+, at iteration M(i), define

Fi(θ) = f̂M(i)(θ)−λiGi(θ ,ξi),

where Gi(θ ,ξi) = 1{∑ j∈C 1{ĝ j,M(i)(θ)>b j−ξi}≥1} and 1A is 1 if event A is true, 0 otherwise. Note that the penalty

Gi(θ , ·) is positive when the current point θ either appears to be infeasible or shows ambiguity between
feasible and infeasible (meaning that θ appears to be feasible but is very close to the boundary). Here
we use the sequence {ξi}∞

i=1 to control our criteria to test feasibility, and {λi}∞
i=1 to control the scale of

penalty when Gi(θ ,ξi) is positive.
Next, let Θi be the set of solutions sampled and accepted by the end of iteration M(i) without discarding

already accepted points. Let Θ∗i denote the set of solutions sampled, accepted, and not discarded by the
end of iteration M(i). Let Θ

+
i be the set of solutions sampled and accepted by iteration M(i), and not

discarded prior to the discarding procedure in iteration M(i). Our ASDP algorithm focuses on finding the
optimum θ ∗i ∈ argmaxθ∈Θ∗i

Fi(θ), and its pseudo-code is given in Algorithm 1.
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Algorithm 1 Adaptive Search with Discarding and Penalization (ASDP).

1: Select c > 0, {λi}∞
i=1, {ξi}∞

i=1, and {δi}∞
i=1, three sequences of positive real numbers, {K(i)}∞

i=1, a
nondecreasing sequence of positive integers with K(i) = Φ(ic), a sampling strategy, a resampling
strategy, and an acceptance criterion. Let ηi = 3ξi, ∀i ∈ N+, Θ∗0 = /0, i = 1, and k = 0.

2: while Stopping criterion is not satisfied do
3: Let k = k+1
4: if k = M(i) then
5: Sample a solution θi from Θ using the sampling strategy
6: Based on the acceptance criterion, decide whether to include θi in the set Θ

+
i , so that Θ

+
i

∈ {Θ∗i−1,Θ
∗
i−1∪{θi}}, and update Nk(θi), Sk(θi), and S j,k(θi) if needed

7: For each θ ∈ Θ
+
i , if Nk(θ) < K(i), obtain K(i)−Nk(θ) additional observations of f (θ)

and g j(θ) ( j ∈ C ), and update Nk(θ), Sk(θ), and S j,k(θ) accordingly
8: Let Θ∗i = Θ

+
i

9: Select an estimate of the current best solution θ ∗i ∈ argmaxθ∈Θ∗i
Fi(θ)

10: if ĝ j,k(θ
∗
i )≤ b j−ηi,∀ j ∈ C then

11: For each θ ∈Θ∗i , if Fi(θ
∗
i )−Fi(θ)> δi, remove θ from Θ∗i and update Θ∗i = Θ∗i \{θ}

12: end if
13: Let i = i+1
14: else
15: Sample a solution θ from Θ∗i−1 using the resampling strategy
16: Obtain additional estimates of f (θ), g j(θ) ( j ∈ C ), and update Nk(θ), Sk(θ), and S j,k(θ)
17: end if
18: end while
19: Return θ ∗i−1 as an estimate of the optimal solution.
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3 CONVERGENCE ANALYSIS

In this section, we present our main convergence result for Algorithm 1. Let ΘF = {θ ∈Θ|g j(θ)≤ b j,∀ j ∈
C }. For each ε,∆ ∈R, define Θε = {θ ∈Θ| f (θ)≥ f ∗ −ε} and ΘF ,∆ = {θ ∈Θ|g j(θ)≤ b j−∆,∀ j ∈ C },
and let Θε,∆ = Θε ∩ΘF ,∆. Define θ ∈Θ to be a “near-optimal” point with respect to ε if θ ∈Θε . Let fn(θ)
be the estimate of f (θ) obtained from a sample average of n independent observations of f (θ), g j,n(θ)
be the estimate of g j(θ) obtained from a sample average of n independent observations of g j(θ), where
j ∈ C . We need the following assumptions.
Assumption 1 For each θ ∈Θ, we can generate independent and unbiased observations {h(θ ,Xk(ω)} of
f (θ), and {u j(θ ,Yj,k(ω)} of g j(θ) for each j ∈ C . Moreover, there exist l,w ∈N\{0,1} and R ∈R+ such
that E[(h(θ ,Xk(ω))− f (θ))2l]≤ R and E[(u j(θ ,Yj,k(ω))−g j(θ))

2w]≤ R for j ∈ C , θ ∈Θ, and k ∈ N+.
Assumption 2 The random elements used for estimating the objective function and constraints values (e.g.,
in steps 7 and 16 of ASDP) are independent of the random elements used in the execution of algorithmic
decisions (e.g., in steps 5 and 15 of ASDP).
Assumption 3 For each ε > 0, there exists ∆(ε) > 0 such that P(θi ∈ Θi ∩Θε,∆(ε), i.o.) = 1, where i.o.
stands for “infinitely often.”

Assumption 1 imposes the finiteness of moments for the random variables under consideration in this
paper. Assumption 2 is an assumption about implementation that can always be satisfied and allows for
the use of common random numbers to estimate the objective function and constraints values at different
solutions. Assumption 3 imposes restrictions on the optimization problem (1), namely that there exist
“enough” near-optimal points with respect to ε in the interior of the feasible region (e.g., objective function
with an isolated optimal solution would violate Assumption 3). We show how Assumption 3 can be verified
in Hu and Andradóttir (2014b). Now we present our main theorem in this paper; the detailed proof is also
provided in Hu and Andradóttir (2014b).
Theorem 1 Suppose Assumptions 1, 2, and 3 hold. Choose {λi}∞

i=1 such that liminfi→∞ λi > f̄ − f ∗. Let
δi = Ω(i−γ1) and ξi = Ω(i−γ2), where γ2 > 0. If c(l−1)> 3, c(l−1)−2γ1l > 3, and c(w−1)−2γ2w > 3,
then f (θ ∗i )→ f ∗ and θ ∗i ∈ΘF almost surely (a.s.) as i→ ∞.

Note that Theorem 1 not only guarantees almost surely convergence (i.e., that f (θ ∗i )→ f ∗ a.s. as
i→∞), but we also have θ ∗i ∈ΘF a.s. as i→∞. The latter ensures that the estimate of the optimal solution
converges from inside the feasible region.

Sketch of the proof of Theorem 1: Let Ā denote the complement of any set A. Fix 0< ε < liminfi→∞[λi−
( f̄ − f ∗)]/2. To prove the algorithm converges from inside ΘF almost surely, it suffices to show that (a)
P(Θ∗i ∩Θε/2,2ξi = /0, i.o.) = 0 and (b) P(θ ∗i ∈ Θ̄ε ∪ Θ̄F ,Θ∗i ∩Θε/2,2ξi 6= /0, i.o.) = 0. Note that (a) ensures
that all near-optimal interior points are not discarded infinitely often, and (b) ensures that the algorithm
does a good job with estimation so that the estimate θ ∗i of the optimal solution is selected well when
near-optimal interior points are available.

4 NUMERICAL ANALYSIS

In this section, we conduct a numerical analysis aimed at investigating how stochastic constraints affect
the performance of ASDP; refer to Hu and Andradóttir (2014b) for additional numerical examples.

More specifically, consider (1) with

f (θ) =−θ
2 +100,

g(θ) = θ ≤ b.

The feasible region is Θ = [−10,10]. The global maximum is 100 at θ = 0, the range of f (θ) on Θ is
[0,100], and we consider b ∈ {0,5}. Let h(θ ,X(ω)) = f (θ)+X(ω) and u(θ ,Y (ω)) = g(θ)+Y (ω) for
all θ ∈ Θ, with X(ω) being N (0,100) and Y (ω) being N (0,10). Here N (µ,σ 2) denotes the normal
distribution with mean µ and variance σ2.
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We use balanced exploration and exploitation to sample new points, as in Andradóttir and Prudius
(2009). Explicitly, in iteration k = M(i), with probability p > 0, a new solution is sampled uniformly from
the whole feasible set Θ, and with probability 1− p, a new solution is sampled uniformly from N(θ ∗i−1),
where

N(θ) = {θ ′ ∈Θ : |θ −θ
′| ≤ r}

for all θ ∈ Θ (the first point is sampled uniformly from Θ). Here r denotes the radius of the “local”
neighborhood. We accept every newly sampled point.

We use the same resampling strategy as Andradóttir and Prudius (2010) and Hu and Andradóttir (2014a).
For any x ∈ R, dxe denotes the smallest integer not less than x and bxc denotes the largest integer not
greater than x. Let M(i) = bivc, and note that mk = bk1/vc is the number of points sampled by the end of
iteration k. Then, a point θ ∈Θ∗mk

is resampled in iteration k with probability

pk(θ) =
exp(Fmk(θ)/Tmk)

∑θ ′∈Θ∗mk
exp(Fmk(θ

′)/Tmk)
,

where Ti = T/ log(M(i)+1) with T > 0. This resampling procedure puts more weight on the points that
have better estimated objective function values.

Finally, we choose δi =
D1
iγ1 and ξi =

D2
iγ2 , where γ2 > 0. Choose γ1 = γ2 = 0.2, D1 = 10, and D2 =

√
10.

Let T = 1, r = 0.2, v = 1.1, λi = ip, and K(i) = dice , where p = c = 0.5.
Let Nk = ∑θ∈Θ̃mk

Nk(θ) be the total number of objective function evaluations by the end of iteration k,

where Θ̃mk denotes the set of sampled points by the end of iteration k. Let N = 10,000 be the simulation
budget. The performance of the ASDP algorithm is averaged over 100 independent replications. Its
performance is documented by plotting 100 pairs (x,y), where x ∈ {0.01N,0.02N, . . . ,N} and y is the
average objective function value at the estimated optimal solution after x objective function observations
have been collected.

Figure 1: Performance of ASDP under different constraints.

Figure 1 shows the empirical performance of the ASDP method for b ∈ {0,5}. The horizontal line
labeled f ∗ denotes the optimal objective function value under b ∈ {0,5}. From Figure 1, it is clear that
the ASDP algorithm converges for both choices of b. Moreover, although the optimal solution is the same
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for b ∈ {0,5}, the convergence rate is slower for b = 0 due to the difficulty of ensuring convergence from
inside the feasible region when the optimal solution is on the boundary of the feasible region.

5 CONCLUSION

In this paper, we propose and analyze a novel penalty function based random search algorithm, called
Adaptive Search with Discarding and Penalization (ASDP), for continuous simulation optimization with
stochastic constraints. We show that ASDP is an almost surely convergent algorithm, that the estimate of
the optimal solution converges from inside the feasible region, and provide numerical results for a simple
quadratic problem.
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Andradóttir, S., and A. A. Prudius. 2010. “Adaptive Random Search for Continuous Simulation Optimiza-
tion”. Naval Research Logistics 57:853–604.

Baumert, S., and R. L. Smith. 2002. “Pure Random Search for Noisy Objective Functions”. Technical
Report 01-03, University of Michigan.

Dentcheva, D., and A. Ruszczynski. 2003. “Optimization with Stochastic Dominance Constraints”. SIAM
Journal on Optimization 14:548–566.

Fu, M. C. 2002. “Optimization for Simulation: Theory vs. Practice”. INFORMS Journal on Comput-
ing 14:192–215.

Hu, J., M. C. Fu, and S. I. Marcus. 2008. “A Model Reference Adaptive Search Method for Stochastic
Global Optimization”. Communications in Information and Systems 8 (3): 245–276.
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