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ABSTRACT

We consider the problem of identifying the system with the largest expected mean among a number of
simulated systems. We provide a new fully sequential procedure whose continuation region is developed
based on multivariate Brownian motion when the variances of the systems are known and equal. We provide
an approximation to determine the procedure parameters and we show experimental results.

1. INTRODUCTION

Ranking and Selection (R&S) aims to find the best system among a number of systems for which noisy
performance information is accessible through simulation. The simulation noise gives rise to a fundamental
trade-off between quickly selecting a system and correctly identifying the best system.

The finding-the-best problem, one type of R&S problems, is well-studied in the literature, and there
exist at least three different approaches: the Bayesian approach, the optimal computing budget allocation
(OCBA) approach, and the indifference-zone (IZ) approach. We refer to Chick (2006) for a review of the
Bayesian and OCBA approaches. This paper employs the IZ approach. In the IZ approach, the decision
maker sets a practically meaningful difference (namely the IZ parameter) worth detecting, and it is the
aim to identify a system whose mean is within the IZ parameter of the best system. Fully-sequential
IZ procedures, such as the widely used KN procedure by Kim and Nelson (2001), sequentially take
one observation from competing systems and eliminate clearly inferior systems as observations become
available. A generally accepted assumption is that the discrete-time system observations can be reasonably
approximated by continuous-time stochastic processes such as (variants of) Brownian motion. The mean
configuration where the true difference between the best and other alternative systems is exactly the IZ
parameter is called the slippage configuration (SC) and is known to have the worst-case probability of
correct selection.

Given a target probability of correct selection, one aims to devise procedures that use as few simulation
replications as possible. A key challenge is to choose the parameters of the procedure, for which one often
uses bounds on the worst-case probability of correct selection. These bounds tend to become conservative as
the number of systems increases, for instance when using a Bonferroni-type bound. This conservativeness
is a major source of inefficiencies and we have been exploring a possible way to overcome this fundamental
issue, by developing procedures that treat observations as high-dimensional. This paper works under the
assumption of known and equal variances, but our framework is in principle more flexible.

Several recent works recognize the importance of tight estimates on the probability of correct selection.
Frazier (2014) presents the Bayes-inspired indifference zone (BIZ) procedure whose lower bound on worst-
case probability of correct selection is tight in continuous time, and nearly tight in discrete time. Kim and
Dieker (2011) propose a fully-sequential procedure for three systems when variances are known and equal
based on the behaviors of a bivariate Brownian motion exiting an ellipse. Dieker and Kim (2012) extend
the procedure to unequal variances, but the procedure is still based on grouping three systems. These works
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are closely related to the present paper, but here we work with multivariate (possibly high-dimensional)
Brownian motion.

The paper is organized as follows. Section 2 defines our problem and introduces our notation. Section 3
proposes our new fully-sequential procedure. In Section 4, we give an approximation in order to set the
parameter values of our procedure. Experimental results are presented in Section 5, followed by the
conclusions in Section 6.

2. PROBLEM AND NOTATION

This section introduces our notation and assumptions, and defines the problem. Which system is best
depends on the problem at hand, but in this paper we assume that the system with the largest mean is the
best.

We assume there are k systems, among which we have to select the best system (k ≥ 2). The set of
all systems is defined as Ω = {1, . . . ,k}. Let Xi j represent an observation from replication (or batch) j of
system i for i = 1, . . . ,k and j = 1,2, . . .. The mean and variance of the outputs from system i are defined
as µi = E[Xi j] and σ2 =Var[Xi j], respectively. In addition to equal variances across systems, we also need
the following assumptions:

Assumption 1. Let Xi j represent the jth observation from system i. Then

Xi j
i.i.d.
∼ N(µi,σ

2), j = 1,2, . . . ,

where i.i.d.
∼ represents ‘are independent and identically distributed as’ and N denotes the normal distribution

with mean µi and variance σ2. Moreover, (X1 j, . . . ,Xk j) and (X1 j′ , . . . ,Xk j′) are independent for any j , j′.

Assumption 2. µ1 ≤ µ2 ≤ . . . ≤ µk−1 ≤ µk −δ for δ ∈ R+.

Assumption 1 implies that the output data from each system is marginally i.i.d. normally distributed
and systems are simulated independently (thus no common random numbers). Without loss of generality,
Assumption 2 assumes that system k is the best and its mean is at least δ better than any alternative
system. The parameter δ is a user-specified parameter known as the IZ parameter, a practically meaningful
difference worth detecting.

It is our aim to devise a method that observes systems sequentially, on the basis of which it can decide
that some systems are inferior and thus eliminate them from further consideration. The method stops once
only one system remains, and this system is declared the best system. Due to random fluctuations, the true
best system could have been eliminated and thus there is a trade-off between computationally advantageous
quick elimination and the probability of correct selection. Our method takes in a target probability of
incorrect selection α and we study its performance in terms of the actual probability of incorrect selection
and the number of simulation replications required.
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Additional notation is needed for later sections:

n ≡ the current number of observations or the current stage number;
I ≡ set of competing systems at the nth stage;

X̄i(n) ≡
1
n

n∑
j=1

Xi j, the sample mean of system i based on the first n observations;

X(n) ≡ k×1 vector of
∑n

j=1 Xi j for i = 1, . . . ,k;
Λs ≡ (s−1)× (s−1) matrix with diagonal elements equal to 1 and non-diagonal elements equal to 1/2

for any positive integer s;

δ2
k ≡

δ2

σ2

k−1
k

.

3. OUR PROCEDURE

This section presents a new procedure, which we call N . The procedure is based on a continuation region
related to a quadratic form SI . For x ∈ Rk and I ⊂ {1, . . . ,k} with I = {i1, . . . , is}, it is defined as

SI(x) =
1

2σ2


xi2 − xi1

...

xis − xi1


T

Λ−1
|I|


xi2 − xi1

...

xis − xi1

 .
From this definition it is not immediate why SI only depends on the set I, and not on the order in which
its elements are listed. This becomes apparent from the next lemma; see also Lemma 1 in Dieker and Kim
(2012). The proof is given in the appendix.
Lemma 1. For x ∈ Rk, we have

SI(x) =
1
σ2

1
|I|

∑
i<`

i,`∈I

(xi− x`)2.

We can now describe Procedure N .

New Procedure N

Setup: Select the nominal level 1−α and the IZ parameter δ. Choose η (which will be discussed in
Section 4). Set I = {1,2, . . . ,k} and take one observation from each system. Set n = 1 and go to Calculation.

Calculation: Calculate SI(X(n)).

Screening: If SI(X(n)) ≥
(
η
δk

)2
, then eliminate the system with the smallest X̄i(n) among i ∈ I. Update I

and go back to Calculation. Otherwise, go to Stopping Rule.

Stopping Rule: If |I| = 1, stop and declare the surviving system as the best. Otherwise, take one more
observation for all i ∈ I, set n = n + 1, and go to Calculation.

Note that our screening condition is

SI(x) ≥
η2

δ2

k
k−1

σ2. (1)
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The next lemma implies that we in fact automatically check the screening condition for all sets J ⊆ I if we
check it for the largest set J = I, which explains why we start with I = {1,2, . . . ,k} and shrink it successively.
The procedure thus automatically considers (1) for all possible subsets. A proof of the lemma is given in
the appendix.
Lemma 2. For any x ∈ Rk, we have SI1 (x) ≤ SI2 (x) if I1 ⊆ I2.

4. APPROXIMATIONS

This section presents an approximation for the probability of incorrect selection under the new procedure
N presented in Section 3. We use these approximations in lieu of possibly conservative bounds in order
to choose the parameter η of the procedure N , thus bypassing a main source of inefficiencies.

The event of incorrect selection can be partitioned according to when the best system is eliminated. If
the best system is eliminated first, then we say that the level of elimination is 1. Similarly, if the second
system to be eliminated is the best system, then we say that the level of elimination is 2. Thus, the possible
levels of incorrect elimination are 1, . . . ,k− 1. The key building block for our approximation scheme is
an approximation for the probability of incorrect selection at the first elimination level, which we discuss
in Section 4.1. Other levels of incorrect elimination are studied in Section 4.2. With this, we devise a
procedure for choosing the parameter η in Section 4.3.

4.1 Immediate (Level 1) Elimination of the Best System

Our approximation for the probability of eliminating system k first is based on an asymptotic analysis as
the number of systems k→∞. Our results use the commonly employed idea of replacing the (discrete)
Gaussian observation sequence with a (continuous) Brownian motion.

Throughout this section we use the following notation. For a given a vector x ∈ Rk,

Ek(x) =
1
k

k∑
i=1

xi, Vark(x) = Ek(x2)−Ek(x)2,

where x2 should be understood componentwise.
In the continuous analog of our problem, the discrete observation window is replaced with a continuous

one. The analog of the random walk X(n) is σB(t), where B(t) is a standard Brownian motion in Rk with
drift (0, . . . ,0, δ/σ).

It is relevant to note that B(t)−Ek(B(t)) is a standard Brownian motion with drift (−1/k, . . . ,−1/k, (1−
1/k))×δ/σ on the hyperplane

H =

x ∈ Rk :
k∑

i=1

xi = 0

 .
Setting r = η/δk, we define a (k−1)-dimensional ball in H by

C =

x ∈ Rk :
k∑

i=1

xi = 0,‖x‖ = r

 .
Elimination of the best system can be formulated as B(t)−Ek(B(t)) hitting C in the region

Ek = {x ∈C : xk = min(x1, . . . , xk)}.

We now state the main result of this section. (Note that δkr = η.)
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Lemma 3. Suppose that Z1, . . . ,Zk are i.i.d. standard normal. The probability that the process B(t)−Ek(B(t))
first hits C in the part Ek where the best system k gets eliminated equals∫ r

−r eδk xdP(Zk = min(Z1, . . . ,Zk),r(Zk −Ek(Z)) ≤ x
√

kVark(Z))(
δkr
2

)−ν
Γ(ν+ 1)Iν (δkr)

, (2)

where ν = k/2− 1, Γ stands for the Gamma function, and Iν for the modified Bessel function of the first
kind.

Proof. The norm of the drift of B(t)−Ek(B(t)) is δk. Therefore, the hitting place of B(t)−Ek(B(t)) on
C has density f with respect to the uniform distribution µC on C with (e.g., Rogers and Pitman (1981))

f (x) =
1∫

C eδk xkµC(dx)
eδk xk , x ∈C.

This distribution is known as the von Mises distribution. It is known that (e.g., Rogers and Pitman (1981))∫
C

eδk xkµC(dx) =

(
δkr
2

)−ν
Γ(ν+ 1)Iν (δkr) .

Note that larger values of Bk(t)−Ek(B(t)) are more likely than smaller values when the process hits C,
which should be expected because system k is the best one.

The probability of eliminating the best system first equals∫
Ek

f (x)µC(dx) = E[1(Xk = min(X1, . . . ,Xk)) f (X)]

=
E[1(Xk = min(X1, . . . ,Xk))eδkXk ]∫

C eδk xkµC(dx)
,

where X has a uniform distribution on C and 1 stands for the indicator function. The random vector

X =
r(Z1−Ek(Z), . . . ,Zk −Ek(Z))

√
kVark(Z)

is a sample from the uniform distribution on C by symmetry. Therefore the sought probability equals

E[1(Zk = min(Z1, . . . ,Zk))eδkr(Zk−Ek(Z))/
√

kVark(Z)]∫
C eδk xkµC(dx)

,

as claimed. �

To approximate the probability (2), we replace several of its components by asymptotic approximations.
For instance, as k→ ∞, the random variables Ek(Z) and Vark(Z) converge in distribution to 0 and 1,
respectively, by the strong law of large numbers. The rate of convergence is relatively fast (order 1/

√
k

by the central limit theorem). We therefore approximate those variables by their deterministic asymptotic
approximations. The term with the minimum is slightly more complicated. Writing

ck =
√

2logk−
log logk + log(4π)

2
√

2logk
,
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min(Z1, . . . ,Zk−1)+ck−1 converges in distribution to 0, cf. Example 3.3.29 in (Embrechts, Klüppelberg, and
Mikosch 1997). The rate of convergence is relatively slow (order 1/

√
2logk), so we use an approximation

based on the fact that √
2logk(min(Z1, . . . ,Zk−1) + ck−1)

converges in distribution to a Gumbel distributed random variable G, which is equal in distribution to
− log(− log(U)) where U is standard uniformly distributed. Even when the central limit theorem is used
for the sum instead of the law of large numbers, the minimum and sum are asymptotically independent
(e.g., Chow and Teugels (1978)).

This motivates the approximation, for x ∈ (−r,r),

dP(Zk = min(Z1, . . . ,Zk),r(Zk −Ek(Z)) ≤ x
√

kVark(Z))

≈ dP(Zk ≤G/
√

2logk− ck−1,rZk ≤ x
√

k),

where Zk and G are independent.
We are now ready to formulate our approximation for (2).

Lemma 4. For fixed g ∈ R, we have∫ r

−r
eδk xdP(Zk ≤ g/

√
2logk− ck−1,rZk/

√
k ≤ x)

= exp

δ2
kr2

2k

Ψ(
−
√

k−
δkr
√

k

)
−Ψ

 g√
2logk

− ck−1−
δkr
√

k


where Ψ(·) is the cumulative distribution function of the standard normal random variable.

Proof. We prove the statement g = 0 without loss of generality since one could shift ck−1 appropriately.
Letting Y be a centered Gaussian variable with variance r2/k, we have∫ r

−r
eδk xdP(Zk ≤ −ck−1,rZk/

√
k ≤ x)

=

∫ −rck−1/
√

k

−r
eδkydP(Y ≤ y)

=

∫ −rck−1/
√

k

−r
eδky

√
k

r
√

2π
exp

(
−

ky2

2r2

)
dy

= e
δ2k r2

2k

√
k

√
2πr

∫ −rck−1/
√

k

−r
exp

−
(
y− δkr2

k

)2

2r2/k

dy,

and the claim readily follows. �

We thus approximate the probability of first eliminating the best system by

exp
(
δ2

kr2

2k

) [
Ψ

(
−
√

k− δkr
√

k

)
−EΨ

(
G√

2logk
− ck−1−

δkr
√

k

)]
(δkr/(2))−νΓ(ν+ 1)Iν(δkr)

. (3)

Note that r = η/δk (i.e., δkr = η), so (3) is a function of η and k independent of δ and σ2. On the computer
we estimate the term with the expectation by sampling one million replications of G. We also take logs
to avoid numerical overflows and underflows in the denominator, since the Gamma term can be very large
and the Bessel term can be very small.
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4.2 Other Ways of Incorrect Selection

The preceding subsection has dealt in depth with elimination level 1, and we now study the probabilities
of incorrect selection on other levels.

We currently have no mathematical results for the other levels of elimination, so we devise an
approximation by ‘lifting’ some computations for a lower-dimensional problem to a higher-dimensional
setting. The lower-dimensional problem requires two inputs: the number of systems k0� k and a reasonable
guess for the radius η0. The quality of the guess is not so important because the output of the lower-
dimensional problem demonstrates its quality and one could then improve it if necessary.

We then run simulations to estimate the incorrect selection probabilities on each level for the lower-
dimensional problem. A representative outcome is depicted in Figure 1 when k0 = 50. The probability of
incorrect selection is the sum of the probabilities over the different levels. If this is far off from the target
then one could revise the choice of η0.
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(a) 1−α = 0.9
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(b) 1−α = 0.95

Figure 1: The incorrect selection probabilities on each level as a function of level when k0 = 50 and
µ1 = . . . = µk0−1 = µk0 −δ = 0 with δ = 0.3 and σ2 = 1.

The lower-dimensional problem thus gives rise to a curve, and a scaled version of this curve is used
to approximate the elimination probabilities for the high-dimensional problem. We rely on the idea that
these curves resemble the shape of Beta densities. Formally, if p1

0, . . . , p
k0−1
0 are the estimated probabilities

of incorrect selection at levels 1, . . . ,k0−1, respectively, we fit the points (1/k0, p1
0), . . . , ((k0−1)/k0, p

k0−1
0 )

to a function in a form of a Beta density (up to a constant) through an appropriate regression; say

C0

(
x
k0

)α0
(
1−

x
k0

)β0

for x = 1, . . . ,k0−1,

where C0,α0,β0 are estimated constants.
Let pi denote the probability of level i incorrect selection for k number of systems. Then the fitted

curve for k0 is used to approximate pi as follows:

pi =
k0

k
C0

( i
k

)α0 (
1−

i
k

)β0

for i = 1, . . . ,k−1. (4)

To get a good fitted graph, k0 should not be too small but not too large because extremely small
probabilities are hard to estimate. We found that k0 = 50 works well. For example, when 1−α = 0.9,
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δ = 0.3 and σ2 = 1 with mean configuration µ1 = . . . = µk0−1 = µk0 −δ = 0, the fitted curve with k0 = 50 is

50× exp−5.22 y0.258(1− y)0.892 for y ∈ (0,1).

Then, for any k, we can get the probability of level i incorrect selection pi as follows:

pi =
50
k

exp−5.22
( i
k

)0.258 (
1−

i
k

)0.892
for i = 1,2, . . . ,k−1.

4.3 Choosing η

We now give an algorithm for choosing the parameter η for general k.

Determining η

0. Given the nominal level 1−α, select k0 � k and find η0 such that estimated probability of correct
selection is approximately 1−α.

1. Run simulations with k0 systems to estimate the probabilities of incorrect selections on each level.
Calculate C0,α0, and β0 through regression.

2. Determine p1 by (4) and numerically find η for k systems such that (3) equals p1.

Remark: In Step 0, η0 such that our approximation of the level 1 probability of incorrect selection (3)
equals α/k0 provides a good starting point.

5. EXPERIMENTS

In this section, we compare the performance of the new procedure with a procedure (Procedure P) due to
Wang and Kim (2011), which is a version of the KN procedure for known and equal variances. We start
with a description of Procedure P.

Procedure P

Setup: Select the nominal level 1−α and the IZ parameter δ. Calculate η = − ln2β where β = α/(k−1).
Set I = {1,2, . . . ,k}, take one observation from each system. Set r = 1 and go to Screening.

Screening: Set Iold = I. Let

I =

i : i ∈ Iold and
r∑

j=1

(Xi j−X` j) ≥ −
η(2σ2)
δ

+
δ

2
r for i, ` ∈ Iold and i , `

 .
Stopping Rule: If |I| = 1, then stop and select the remaining system as the best one. Otherwise, take one
additional observation Xi,r+1 from each active system i ∈ I, set r = r + 1, and go to Screening.

The number of systems k varies over the set {5,25,50,100,200,300,400,500,600,700,800,900,1000}.
Only one mean configuration is considered: slippage configuration (SC). Under SC, µk = δ = 0.3 and
µi = 0 for i = 2, . . . ,k, which is considered to be the most difficult mean configuration with the worst-case
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probability of incorrect selection in many ranking and selection procedures. Variances across systems are
assumed to be equal and set to σ2 = 1. The nominal confidence level is set to 1−α = 0.9 or 0.95. Estimated
probability of correct selection (PCS) and average total number of observations until a decision is made
(REP) are reported based on 10,000 macro replications.

Figure 2 shows the estimated PCS for the procedures N and P under the slippage configuration. The
N procedure is tight and produces estimated PCS close to 1−α for all values of k tested though some PCS
are slightly lower than 1−α.

Figures 3 reports REP under the SC. Under the SC, theN procedure spends 20%∼39% fewer observations
than the P procedure for 1−α = 0.9. The percentage of savings is 12% ∼ 34% for 1−α = 0.95.
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Figure 2: Estimated PCS when 1−α is 90%(left) and 95%(right) under the slippage mean configuration
as a function of k.
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Figure 3: Estimated REP when 1−α is 90%(left) and 95%(right) under the slippage mean configuration
as a function of k.
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6. CONCLUSIONS

We present a new fully-sequential procedure whose continuation region is derived based on multivariate
Brownian motion. Compared to the existing fully-sequential IZ procedure, which is a version of the KN
procedure, the proposed procedure shows a tight worst-case probability of incorrect selection and significant
savings in the number of observations needed until a decision is made when the mean configuration follows
the slippage configuration. The extension to unequal variances is currently work in progress.
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A. Proofs of Lemmas 1 and 2

Proof of Lemma 1. We first derive an explicit expression for Λ−1
|I| :

Λ−1
|I| =

2
|I|



|I| −1 −1 · · · · · · −1
−1 |I| −1 −1 · · · −1
...

. . .
...

...
. . . −1

−1 · · · · · · −1 |I| −1


. (5)

Assume without loss of generality that I = {1, . . . , s}. Then we have

SI(x) =
1

2σ2


x2− x1
...

xs− x1


T

Λ−1
s


x2− x1
...

xs− x1


=

1
σ2

s−1
s

 s∑
i=2

(xi− x1)2−
2

s−1

∑
2≤i<`≤s

(xi− x1)(x` − x1)


=

1
σ2

1
|I|

∑
i<`

i,`∈I

(xi− x`)2,

as claimed. �

Proof of Lemma 2. We may set σ = 1, and it suffices to prove the claim for |I2| = |I1|+1. By relabeling
systems if necessary, we work with I = I1 = {1, . . . , s} and I2 = {1, . . . , s + 1}. For i = 1, . . . ,k, we set

Vi =

x ∈ Rk :
k∑
`=1

x` = 0, xi+1 = · · · = xk = 0

 .
It suffices to prove the claim for x ∈ Vs+1 since SI(x) is invariant under shifting each component of x by
the same amount and both SI1 (x) and SI2 (x) do not depend on xs+2, . . . , xk.

We show that SI1 (x) =SI2 (Πsx), where Πs+1 is the orthogonal projection matrix on Vs. Since projecting
decreases any quadratic form, the claim follows.

By Lemma 1 and the remark preceding it, we have

SI2 (x) =
1
2


x1− xs+1

...

xs− xs+1


T

Λ−1
s+1


x1− xs+1

...

xs− xs+1

 .
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From (5),

Λ−1
s+1 =

2
s + 1

{(s + 1) ids−1s}

where ids is the s× s identity matrix and 1s is the s× s matrix of ones.
Setting xs+1 = 0 (i.e., applying the projection matrix Πs) and noting that Λ−1

s+1 equals 2ids when it acts
on the space {y ∈ Rs :

∑s
i=1 yi = 0}, we get

SI2 (Πsx) =

s∑
i=1

x2
i .

We now show that this same expression holds for SI1 (x). By definition of SI1 (x), we have

SI1 (x) =
1
2

xT VT Λ−1
s V x,

where V is the (s−1)× s matrix given by

V =


−1

ids−1
...

−1

 ,
and we find that SI1 (x) =

∑s
i=1 x2

i upon noting that VT Λ−1
s V = 2ids. �
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