
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

A COMPARISON OF TWO PARALLEL RANKING AND SELECTION PROCEDURES

Eric C. Ni
Shane G. Henderson

Operations Research and Information Engineering
Cornell University

Ithaca, NY 14853, USA

Susan R. Hunter

School of Industrial Engineering
Purdue University

West Lafayette, IN 47907, USA

ABSTRACT

Traditional solutions to ranking and selection problems include two-stage procedures (e.g., the NSGS
procedure of Nelson et al. 2001) and fully-sequential screening procedures (e.g., Kim and Nelson 2001 and
Hong 2006). In a parallel computing environment, a naively-parallelized NSGS procedure may require more
simulation replications than a sequential screening procedure such as that of Ni, Hunter, and Henderson
(2013) (NHH), but requires less communication since there is no periodic screening. The parallel procedure
NHH may require less simulation replications overall, but requires more communication to implement
periodic screening. We numerically explore the trade-offs between these two procedures on a parallel
computing platform. In particular, we discuss their statistical validity, efficiency, and implementation,
including communication and load-balancing. Inspired by the comparison results, we propose a framework
for hybrid procedures that may further reduce simulation cost or guarantee to select a good system when
multiple systems are clustered near the best.

1 INTRODUCTION

The simulation optimization (SO) problem is a nonlinear optimization problem in which the objective function
can only be observed with error through Monte Carlo simulation. Historically, algorithms developed to
solve simulation optimization problems were created with serial computing platforms in mind — either
explicitly, with algorithms incorporating information from function evaluations in a one-at-a-time manner
(e.g., Kim and Nelson 2001) or implicitly, by failing to consider exploitation of parallel computing resources
in algorithms that would otherwise easily be deployed on a parallel platform (e.g., exploitation of the need
for multiple simulation replications in an “embarrassingly parallel” fashion). Given the current ubiquity of
parallel computing platforms, there have been recent efforts by simulation researchers to develop simulation
optimization algorithms that specifically exploit a parallel computing architecture — algorithms that we
call “parallel” SO algorithms. In the context of parallel SO algorithms, we broadly assume that a single
simulation replication is executed on a single core, which differs from work in parallel and distributed
simulation, in which the goal is to coordinate the production of a single simulation replication across
multiple cores (Fujimoto 2000).

Our focus, and the focus of much of the recent work on parallel SO algorithms, is on a class of SO
problems also known as as ranking and selection (R&S), where the search space is a finite set of “systems.”
Algorithms that solve SO problems on finite sets can broadly be characterized as class P procedures, which
provide a finite-time probabilistic guarantee on the solution quality, and class L procedures, which tend
to provide guarantees on simulation efficiency (Pasupathy and Ghosh 2013). While parallel versions of
class L procedures have been explored (Luo et al. 2000; Yoo, Cho, and Yücesan 2009), we further narrow
our focus in this paper to parallel class P procedures that provide a finite-time guarantee. That is, we
broadly focus on procedures that, upon completion, return the “best” system with probability greater than
1−α when the best system is at least δ -better than the second-best for user-specified parameters α and δ .

3761978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Ni, Henderson, and Hunter

On a serial computing platform with a modest number of systems, it is broadly known that fully-
sequential implementations, such as the KN family of procedures (Kim and Nelson 2001), can save
significant simulation replications over two-stage procedures. Thus it is natural to consider creating parallel
versions of fully (or nearly-fully) sequential procedures. Indeed, recent work on parallel R&S procedures
includes algorithms designed to sequentially eliminate systems from consideration via periodic screening
on a parallel platform (Luo and Hong 2011; Luo et al. 2013; Ni, Hunter, and Henderson 2013). However,
when moving from a serial platform to a parallel one, new challenges arise that call into question the relative
efficiency of nearly-fully sequential parallel procedures over naively parallelized two-stage procedures for
some problem types.

The primary challenge that arises on the parallel platform is the need for the algorithm to handle very
large problems. With one hundred or more cores available, it seems reasonable that a parallel R&S algorithm
should be able to handle problem sizes of one hundred to one thousand or more systems. However larger
problems lead to increased computation required for screening, and a large problem deployed on a large
number of cores may incur a large communication load to ensure timely statistical updates and screening
of inferior systems. Further, as systems are eliminated, periodic load-balancing may be required to ensure
full usage of available computing resources. Given the potential overhead required for communication,
screening, and load-balancing that are inherent to designing parallel R&S procedures with sequential
elimination, we ask:

On a stable parallel platform with a constant number of available cores, when is a sequential
elimination procedure such as NHH (Ni, Hunter, and Henderson 2013) more efficient, in
terms of total computational cost or total wall-clock time, than a naively parallelized version
of a two-stage procedure designed for a large number of systems, such as NSGS (Nelson
et al. 2001)?

Note that a naively parallelized version of NSGS will require less communication, far less screening, and
very little load-balancing since the required total number of observations is known in the second stage.

We explore this research question both analytically, by estimating the number of replications required
for each procedure under different asymptotic regimes in the various problem parameters, and numerically,
by running NHH and a naively-parallelized version of NSGS on a set of test problems. Our primary findings
are as follows.

• The computational cost (in terms of number of replications) of parallelized NSGS is highly sensitive
to δ , the indifference-zone parameter: cost increases at an approximate rate δ−2.

• The computational cost of NHH is sensitive to the configuration of means and variances of the
systems, being of order δ−1 max{δ ,γ}−1, where γ represents the difference in objective value
between the best and second-best systems. Accordingly, if γ is large, then NHH can be highly
efficient.

• NHH seems to be much more efficient than parallelized NSGS when, as we expect in practice, the
objective values of systems are “well spread out,” in contrast to the (artificial) slippage configuration
where all inferior systems are exactly δ worse than the best system.

• Parallelized NSGS is sensitive to the first-stage sample size n1, whereas NHH is not.

The fact that we can solve ranking and selection problems with very large numbers of systems creates
an interesting quandary. With very large numbers of systems, we might expect that for “most” selection
problems, many systems might lie within δ of the best system. In this case, the correct-selection guarantee
that many selection procedures are designed to deliver is no longer useful, because it offers no guarantee
for such configurations. For these configurations, we prefer a good selection guarantee, e.g., Nelson and
Matejcik (1995), in which a procedure guarantees, with high probability, to return a system within δ of the
best, irrespective of the configuration of the system means. We introduce hybrid procedures, in the spirit

3762

Ni, Henderson, and Hunter

of Nelson et al. (2001), that provide such a good-selection guarantee. These hybrid procedures can be
efficiently implemented on both sequential and parallel computing platforms, so may prove very important
as parallel computing opens the door to a dramatic increase in the number of systems that can be handled
through ranking and selection techniques.

2 PROBLEM SETTING AND PROCEDURES

In this section, we rigorously define the SO problem on finite sets and outline the procedures we analyze:
the parallel procedure with sequential elimination, NHH, and a naively-parallelized version of NSGS.

2.1 Problem Setting

We consider problems of the type
Find: argmax

i∈S
E[f (i;ξ)],

where S is a finite set of systems, ξ is a random vector, and E[f (i;ξ)] is estimated by a sample mean.
(One can consider ξ as the set of uniform random variables used to perform a simulation replication, and
its distribution need not depend on i.) For notational simplicity, we henceforth define µi := E[f (i;ξ)],
such that we consider k systems having mean performance measures µ1 ≤ µ2 ≤ . . .≤ µk−1 < µk, of which
system k is the “best.”

To solve such problems, consider a procedure that, after obtaining some amount of data from each
system, returns to the user an estimated-best system. Let the correct selection (CS) event denote the event
that the estimated-best system is equal to the true best system, System k. Then we broadly consider
procedures that, upon termination, guarantee a CS event with at least probability 1−α for some user-
specified value 0 < α < 1 when the best system is at least δ > 0 better than the second-best system. Here
δ is the user-specified indifference-zone (IZ) parameter.

We also seek procedures that guarantee good selection. For δ > 0, the good selection (GS) event is
the event that the estimated-best system upon termination has a mean lying in the interval [µk−δ ,µk]. We
would also like our procedure to guarantee that the probability of a GS event is at least 1−α .

In the remainder of the paper we let Xi j denote the (random) outcome of the jth simulation repli-
cation from system i and X̄i(n) = ∑

n
l=1 Xil/n for any system i and positive n. Furthermore, we let

S2
i = ∑

n1
l=1(Xil− X̄i(n1))

2/(n1−1) where n1 is the Stage 1 sample size defined in specific contexts.

2.2 Procedure NHH

Ni, Hunter, and Henderson (2013) proposed a R&S procedure (henceforth referred to as NHH) that utilizes
parallel computing platforms in a master-worker pattern. The NHH parallel procedure is based on a
sequential screening mechanism in Hong (2006) and hence inherits the latter’s statistical guarantee on CS.
The NHH procedure was partly motivated by Luo and Hong (2011).

The NHH procedure includes an (optional) initial stage, Stage 0, where workers run simulation
replications in parallel to estimate completion times for each system, which are subsequently used to try
to balance the workload. In Stage 1, a new sample is collected from each system in parallel for estimating
variances. Prior to Stage 2, obviously inferior systems are screened. In Stage 2, the workers iteratively visit
the remaining systems and run additional replications, exchange simulation statistics and independently
perform screening over a subset of systems until all but one systems are eliminated. In more detail, the
procedure is as follows.

Procedure NHH

1. Select overall confidence level 1−α , practically significant difference δ , Stage 0 sample size n0≥ 2,
Stage 1 sample size n1≥ 2, and number of systems k. Set a= n1−1

2δ
{[1−(1−α)1/(k−1)]−2/(n1−1)−1}

and λ = δ/2.

3763

Ni, Henderson, and Hunter

2. (Stage 0, optional) Master sends an approximately equal number of systems to each worker. Each
system is simulated for n0 replications and its average completion time is reported to the master.

3. (Stage 1) Master assigns systems to load-balanced simulation groups G1
` for `= 1, . . . ,m where m

is the total number of workers (using information from Stage 0, if completed).
4. For `= 1,2, . . . ,m in parallel on workers:

(a) Sample Xi j, j = 1,2, . . . ,n1 for all i ∈ G1
` .

(b) Compute Stage 1 sample means and variances X̄i(n1) and S2
i for i ∈ G1

` .
(c) Screen within group G1

` : system i is eliminated if there exists a system j ∈G1
` : j 6= i such that

(S2
i /n1 +S2

j/n1)
−1[X̄i(n1)− X̄ j(n1)]< min[0,−a+λ (S2

i /n1 +S2
j/n1)

−1].
(d) Report survivors, together with their Stage 1 sample means and variances, to the master.

5. (Stage 2) Master assigns surviving systems S to approximately equal-sized screening groups G2
` for

`= 1, . . . ,m. Master determines a sampling rule{ni(r) : i∈ S,r = 1,2, . . .}where each ni(r) represents
the total number of replications to be collected for system i by iteration r. A recommended choice
is ni(r) = n1 + rdβSie where β is a constant and a large batch size dβSie reduces communication.

6. For `= 1,2, . . . ,m in parallel on workers (this step entails some communication with the master in
steps (6b) through (6e), the details of which are omitted):
(a) Set r`← 1. Repeat steps (6b) through (6f) until |S|= 1:
(b) If the r`th iteration has completed for all systems i ∈ G2

` and |G2
` | > 1 then go to step (6d),

otherwise go to step (6c).
(c) (Following the Master’s instructions) Simulate the next system i in S (not necessarily G2

`) for
dβSie replications and go to step (6b).

(d) Screen within group G2
` : system i is eliminated if there exists system j ∈ G2

` : j 6= i such that
τi j(r`)[X̄i(ni(r`))−X̄ j(n j(r`))]<min[0,−a+λτi j(r`)]where τi j(r`)= [S2

i /ni(r`)+S2
j/n j(r`)]−1.

(e) Also use a subset of systems from other workers, e.g., those with the highest sample mean
from each worker, to eliminate systems in G2

` .
(f) Remove any eliminated system from G2

` and S. Let r`← r`+1 and go to step (6b).
7. Report the single surviving system in S as the best.

2.3 A Parallel Version of NSGS

We next outline a parallel version of NSGS (Nelson et al. 2001), which we call NSGSp. In NSGSp,
we use a master-worker framework in which, after an optional Stage 0 to estimate simulation replication
completion time, the master assigns systems to load-balanced groups and deploys the groups to the workers
for simulation of Stage 1. Upon completion of the required replications, the workers calculate the first
stage statistics and the systems are screened — first within groups by the workers, and then across groups
by the master, where only the systems that survive worker-level screening are reported to the master. The
master then computes the second-stage sample sizes for the surviving systems, and organizes the remaining
required simulation replications into batches that are deployed across the workers for simulation of Stage 2.
Upon completion of the required Stage 2 replications, the workers report the final sufficient statistics to
the master, which compiles the results and returns the system with the largest sample mean to the user.

NSGSp preserves the CS guarantee because it simply farms out the simulation work to parallel processors
while employing the same sampling and screening rules as the original NSGS. Compared to NHH, NSGSp
is easier to implement on a parallel platform because the sample sizes are pre-computed and only one
round of screening is required in each stage.

Procedure NSGSp

1. Select overall confidence level 1−α , practically significant difference δ , first-stage sample size
n1 ≥ 2, and number of systems k. Set t = t(1−α0)1/(k−1),n1−1 and h = h(1−α1,n1,k), where h is
Rinott’s constant (see e.g. Bechhofer, Santner, and Goldsman 1995), and α0 +α1 = α .

3764

Ni, Henderson, and Hunter

2. (Stage 0, optional) Conduct the sampling of Stage 0 as in Step 2 of NHH to estimate the simulation
completion time for load-balancing.

3. (Stage 1) Master assigns systems to load-balanced groups G` for `= 1, . . . ,m where m is the total
number of workers (using information from Stage 0, if completed).

4. For `= 1,2, . . . ,m in parallel on workers:
(a) Sample Xi j, j = 1,2, . . . ,n1 for all i ∈ G`.
(b) Compute first-stage sample means and variances X̄ (1)

i = X̄i(n1) and S2
i for i ∈ G`.

(c) Screen within group G`: For all i 6= j, i, j ∈ G`, let Wi j = t(S2
i /n1 + S2

j/n1)
1/2. System i is

eliminated if there exists system j ∈ G` : j 6= i such that X̄ (1)
j − X̄ (1)

i > max{Wi j−δ ,0}.
(d) Report survivors to the master.

5. Master completes all remaining pairwise screening tasks according to step (4c).
6. (Stage 2) For each system i surviving Stage 1 screening, the master computes the additional number

of replications to be obtained in Stage 2

N(2)
i = max{0,

⌈
(hSi/δ)2⌉−n1}. (1)

7. Master load-balances the required remaining work into “batches” which are then completed by the
workers in an efficient manner.

8. Master compiles all Stage 2 sample means X̄ (2)
i = ∑

n1+N(2)
i

j=1 Xi j/(n1 +N(2)
i) and selects the system

with the largest sample mean as best once all sampling has been completed.

3 ANALYSIS OF PROCEDURE PERFORMANCE

Many R&S procedures guarantee to select the best system upon termination, subject to a user-specified
probability of selection error. Among procedures with the same level of statistical guarantee, an efficient
procedure should terminate in as few simulation replications as possible. The most efficient procedure
may vary from one R&S problem to another depending on the configuration (distribution of system
means and variances) of the systems in consideration. In addition, user-specified parameters such as the
indifference-zone parameter δ have a significant impact on the efficiency of R&S procedures.

To assess and predict the efficiency of the NHH and NSGSp procedures under various configurations,
we provide approximations for their expected number of replications needed upon termination. To simplify
our analysis, we assume that an inferior system can only be eliminated by the best system, System k, and
that System k eliminates all other systems. Strictly speaking this assumption does not apply to NHH because
screening is distributed across workers and so not every system will necessarily be compared with System
k. However, NHH shares statistics from systems with high means across cores during screening in Step 6e,
so that a near-optimal system will be compared to inferior systems with high probability. Therefore, the
total number of replications required by the procedure can be approximated by summing the number of
replications needed for System k to eliminate all others. Although in practice the best system is unknown
and an inferior system may eliminate another before System k does, an inferior system i is most likely
eliminated by System k because the difference between µk and µi is the largest.

In the remainder of this section we assume that System k has mean µk = 0 and variance σ2
k , and an

inferior system i has mean µi < 0 and variance σ 2
i . We let µki := µk−µi > 0. The same indifference zone

parameter δ is employed by both procedures. We focus on the case where variances are unknown.

3.1 Expected Number of Replications under NHH

The NHH procedure uses a triangular continuation region C =C(a,λ) = {(t,x) : 0≤ t ≤ a/λ , |x| ≤ a−λ (t)}
and a test statistic Zi j(r) = [S2

i /ni(r)+S2
j/n j(r)]−1[X̄i(ni(r))− X̄ j(n j(r))]. System i is eliminated by System k

when ([S2
i /ni(r)+ S2

k/nk(r)]−1,Zki(r)) exits C for the first time. Using the result that Zki(r) is equal in
distribution to Bµk−µi([σ

2
i /ni(r)+σ 2

k /nk(r)]−1) where B∆(·) denotes a Brownian motion with drift ∆ and

3765

Ni, Henderson, and Hunter

volatility 1, we approximate the expected number of replications from System i 6= k by

NNHH
i ≈ E[ni(inf{r : Bµki([σ

2
i /ni(r)+σ

2
k /nk(r)]−1) 6∈C})]≈ σi(σi +σk)E[inf{t : Bµki(t) 6∈C}] (2)

assuming, as recommended in Hong (2006) and Ni, Hunter, and Henderson (2013), ni(r)≈ Sir ≈ σir. The
last expectation is the expected time that a Brownian motion with drift µki exits the triangular region C,
and is given in Hall (1997) by

E[inf{t : Bµki(t) 6∈C}] = ∑
µ∈{µki,−µki}

∞

∑
j=0

(−1) j a(2 j+1)
µ +λ

· e2a j(λ j−µ)·[
Φ̄

(
(2 j+1− (µ +λ)/λ)a√

a/λ

)
− e2a(2 j+1)(µ+λ)

Φ̄

(
(2 j+1+(µ +λ)/λ)a√

a/λ

)]
(3)

where Φ̄(x) is the tail probability of the standard normal distribution and can be approximated by
x−1e−x2/2/

√
2π for large x.

Equation (3) is complicated, so we approximate it by focusing on one parameter at a time. First, the
terms in the infinite sum rapidly approach zero as j increases, so the j = 0 term dominates. Second, when
System i is significantly worst than System k, µki is large, and then (3) is of order O(µ−1

ki) and we expect
NHH to eliminate System i in very few replications. Third, (3) does not involve σ2

i and by (2) the cost of
eliminating system i should be approximately proportional to σ2

i +σiσk.
Moreover, since the indifference-zone parameters a and λ are typically chosen such that a ∝ δ−1 and

λ ∝ δ , we may analyze the expectation in (3) in terms of δ . After some simplification we see that as δ ↓ 0,
(3) is dominated by the a(2 j+1)

µki+λ
term which is O(δ−1) when µki ≥ δ and O(δ−2) when µki� δ .

In conclusion, the expected number of replications needed to eliminate system i is on the order of
O((σ 2

i +σiσk)µ
−1
ki δ−1) for sufficiently large µki and O((σ 2

i +σiσk)δ
−2) when µki� δ . This result agrees

with intuition: high variances require larger samples to achieve the same level of statistical confidence, a
large difference in system means helps to eliminate inferior systems early, and a more tolerant level of
practical significance requires lower precision, hence a smaller sample.

3.2 Expected Number of Replications under NSGSp

As stated in §2.3, the NSGSp procedure begins by taking a sample of n1 replications from each system in
the first stage, and uses the sample for variance estimation and a round of screening. System i is eliminated
by system k in this stage if (t((S2

i + S2
k)/n1)

1/2− δ)+ < X̄ (1)
k − X̄ (1)

i (henceforth denoted as event A). If
system i is not eliminated in the first stage, then a second-stage sample of size N(2)

i is taken per Equation (1).
Dropping other systems and considering only systems i and k, we can approximate the expected number of
replications from system i needed by NSGSp by NNSGSp

i ≈ n1+E[(1−1(A))N(2)
i] where 1(·) is the indicator

function. Replacing random quantities by their expectations, and using a deterministic approximation for
the indicator-function term, we obtain the crude approximation

NNSGSp
i ≈ n1 +1{(t[((σ2

i +σ
2
k)/n1)

1/2−δ]+−µki > 0}(
⌈
(hσi/δ)2⌉−n1)

+. (4)

Like NHH, (4) shows that higher σ2
i , σ 2

k , δ−1 or µ
−1
ki may lead to higher elimination cost. In addition,

the dependence on Stage 1 sample size n1 is somewhat ambiguous: small n1 reduces the probability of
elimination P[A], whereas big n1 may be wasteful. An optimal choice of n1 depends on the problem
configuration and is unknown from the user’s perspective. Furthermore, it can be easily checked that for
sufficiently large n1(≥ 20), the constants t and h are very insensitive to n1 and k.

The dependence of NNSGS
i on µki differs somewhat from that of NNHH

i . For sufficiently large µki, P[A]
is very low and the NSGSp procedure requires a minimum of n1 replications for elimination. On the other

3766

Ni, Henderson, and Hunter

hand, when µki is small, the elimination cost is less sensitive to µki as the Stage 2 sample size is bounded
from above. Moreover, for sufficiently large σ2

i , σ2
k , and δ−1, the NSGSp procedure almost always enters

Stage 2, and (4) implies that the elimination cost is then directly proportional to σ2
i and δ−2.

To summarize, it takes O(σ2
i δ−2) replications for the NSGSp procedure to eliminate an inferior system i.

Compared to our previous analysis on NHH, this result suggests that NSGSp is less sensitive to σ2
k , but

more sensitive to small δ , and may spend too much simulation effort on inferior systems when µki is large.

4 NUMERICAL EXPERIMENTS

To complement the analytical arguments in the previous section, we present empirical evidence on the
efficiency of the NHH and NSGSp procedures by running them on a tractable and scalable test problem.

4.1 The Test Problem

We consider a simulation optimization problem with the objective of finding the optimal resource allocation
on a three-server flow line. On an abstract level, the problem can be stated as

max
x=(r1,r2,r3,b2,b3)∈Z5

+

E[g(x;ξ)] (5)

s.t. r1 + r2 + r3 = R

b2 +b3 = B

where the random vector ξ captures the uncertainty in each sample path and the stochastic function g(x;ξ)
returns the simulated average flow line throughput given allocation x. Parameters R and B represent available
units of resources and jointly determine the (finite) number of feasible solutions.

A more detailed description and sample simulation code in both Matlab and C++ in for this problem
can be found on SimOpt.org (Pasupathy and Henderson 2011). A number of prior studies including
Pichitlamken, Nelson, and Hong (2006), Ni, Hunter, and Henderson (2013) and Luo et al. (2013) have used
different R&S approaches to solve a small version of the problem with R = B = 20 and k = 3249 systems.
Compared to those studies, the parallel R&S procedures we use enable us to solve instances of the problem
that have many more systems using a moderate amount of computation time on parallel platforms.

The three instances we study are based on R = B = 20, R = B = 50, and R = B = 128. By increasing
the amount of available resources, we make the problem harder through increasing the number of feasible
solutions. Fortunately, as the problem assumes exponentially distributed service times, we can model the
state of the flow-line system with a Markov chain and calculate the steady-state expectation in (5) analytically
for every feasible resource allocation x. The distribution of system expectations provides insights on the
“hardness” of different instances of the problem, and is summarized in Table 1. We also plot in Figure 1 the
distribution of system mean (computed using the Markov chain) and variance (estimated using simulation)
for two problem instances, where each point on the plot represents a feasible solution.

Table 1: Summary of three instances of the throughput maximization problem.

Number of Highest pth percentile of system means No. of systems in [µk−δ ,µk]
Instance systems k mean µk p = 75 p = 50 p = 25 δ = 0.01 δ = 0.1 δ = 1

1 3249 5.78 3.52 2.00 1.00 6 21 256
2 57624 15.70 8.47 5.00 3.00 12 43 552
3 1016127 41.66 21.9 13.2 6.15 28 97 866

This example shows that system configurations for an actual SO problem can deviate quite dramatically
from the typical slippage or equal-variance configurations assumed in traditional R&S literature. From
the plots as well as Table 1, we see that the feasible regions contain many “inferior” systems that are far
from the best, so conservative procedures based on worst-case assumptions may not perform well. We also

3767

Ni, Henderson, and Hunter

0 1 2 3 4 5 6 7
Mean µ

0.0

0.2

0.4

0.6

0.8

1.0

S
ta
n
d
a
rd
 D
e
v
ia
ti
o
n
 σ

Instance 1: 3249 systems

0 5 10 15 20
Mean µ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
ta
n
d
a
rd
 D
e
v
ia
ti
o
n
 σ

Instance 2: 57624 systems

Figure 1: Mean-standard deviation profiles of three instances of the Throughput Maximization problem.

observe many “good” systems close to the best. As the problem gets bigger, we get more systems in the
indifference zone [µk−δ ,µk] for any user-specified δ , and thus it becomes harder to select the best system
correctly. In addition, system mean and variance are shown to be positively correlated and the variance
is highly nonuniform, so we expect procedures that allocate simulation replications according to variance
estimates to outperform those that do not.

4.2 Performance of Parallel Procedures

Our numerical experiments are conducted on Extreme Science and Engineering Discovery Environment
(XSEDE)’s Stampede HPC cluster. The Stampede cluster contains over 6,400 computer nodes, each
equipped with two 8-core Intel Xeon E5 processors and 32 GB of memory and runs Linux Centos 6.3 OS
(Stampede User Guide, Texas Advanced Computing Center 2014). Both NHH and NSGSp procedures are
implemented in C++, using Message Passing Interface (MPI) for communication between cores. MPI is the
de-facto standard of parallel programming supported by many high-performance platforms, and programs
written in MPI tend to have low dependency on specific parallel computer architecture and can be migrated
across computing platforms with relative ease. Our MPI implementation of NHH and NSGSp is available
in source code on a Bitbucket repository (Ni 2014) and is being continuously developed.

We measure the empirical cost of R&S procedures by counting the total number of simulation replications
collected upon procedure termination and measuring the wallclock time, while keeping the confidence level
fixed at 95% in all test cases. We do not test the procedures’ statistical validity in terms of the probability
of making a correct selection, because to obtain an accurate estimate of the CS probability (which we
expect to be close to one) requires running many metareplications on the same problem, which is too costly
given that our computational budget is limited. Further, the CS guarantees have been proven in theory and
verified for small problems (Nelson et al. 2001; Ni, Hunter, and Henderson 2013).

The results appear in Table 2. Columns 4 and 5 of Table 2 give sample averages over 20 metareplications
which are accurate to approximately two significant figures, except for the problem with over one million
systems. Column 6 is computed from Columns 4 and 5 and the number of cores employed.

The total computational cost of a parallel R&S procedure consists of two major components: the
cost of obtaining simulation replications, which is affected by how efficiently the procedure collects and
uses information and henceforth referred to as the “simulation cost”, and the procedure “overhead” which
includes screening, communication and waste due to imperfect load-balancing. The results in Table 2 show
that the simulation cost, measured by the total number of simulation replications taken, is very sensitive
to the choice of δ for NSGSp. In both k = 3249 and k = 57624 cases, the number of total simulation
replications used by NSGSp is increased by almost two orders of magnitude as δ is reduced from 0.1
to 0.01. The same change in δ increases the cost of NHH by less than one order of magnitude. This

3768

Ni, Henderson, and Hunter

Table 2: Summary of procedure costs on 3 instances of the throughput maximization problem with α = 0.05,
n0 = 20, Stage 2 batch size constant β = 500k/∑

k
i=1 Si.

Number of Total simulation Total running Per replication
systems k n1 δ Procedure replications (×105) time (s) time (µs)
3249 60 0.01 NHH 39.0 23 375
(average of 20 NSGSp 150.0 182 758
metareplications 0.1 NHH 11.0 7.0 396
on 64 cores) NSGSp 3.7 2.9 480
57624 80 0.01 NHH 920.0 536 365
(average of 20 NSGSp 16,000.0 10,327 403
metareplications 0.1 NHH 300.0 179 371
on 64 cores) NSGSp 220.0 158 455
1016127 100 0.01 NHH 36,000.0 1,901 726
(one NSGSp N/A (too costly)
metareplication 0.1 NHH 7,200.0 324 572
on 1024 cores) NSGSp 23,000.0 1,724 564

3 15 63 255 1023
Number of workers

101

102

103

W
a
llc

lo
ck

 t
im

e
 (
s)

NHH procedure

Perfect scaling

Actual performance

3 15 63 255 1023
Number of workers

101

102

103

W
a
llc

lo
ck

 t
im

e
 (
s)

NSGS procedure

Perfect scaling

Actual performance

Figure 2: Scaling result on 57,624 systems with δ = 0.1.

observation is consistent with our conclusion in Section 3 that NSGS is more sensitive to small δ . As a
result, NHH outperforms NSGSp when δ = 0.01, but underperforms when δ = 0.1.

To assess procedure overhead, in Table 2 we also report the average time per replication, which is
slightly higher for NSGSp than for NHH in most cases, implying that NSGSp incurs slightly more overhead.
When k is increased from 3249 to 57624 while the number of cores remains at 64, the time-per-replication
for NHH does not increase significantly, suggesting that it can handle larger problem instances without much
additional overhead. However, when δ = 0.01, the per-replication time for NSGSp changes dramatically,
suggesting some inefficiency, perhaps in load-balancing (NHH balances workload in every iteration of
Step 6, whereas NSGSp only does it once in Step 7). Eventually, as more cores are employed to solve the
largest instance with 1016127 systems, we observe an increase in per-replication time for both procedures
as parallel overhead increases.

In Figure 2 we further investigate procedure overhead with a scaling plot. We choose one particular
problem instance with δ = 0.1 and k = 57624 (because NHH and NSGSp perform similarly on this instance
with 64 cores) and employ m = 4,16,64,256 and 1024 parallel cores to solve the same instance. In an ideal
situation with no parallel overhead, we expect the wallclock time of running the problem on m processors

3769

Ni, Henderson, and Hunter

to be inversely proportional to m, as illustrated by the straight dashed line in the log-log plot (we subtract 1
from m because one core is designated as the master). However, the plots exhibit gaps between the actual
performance and the perfect scaling line due to parallel overhead, the amount of which is characterized by
the size of the gap. As evidenced in Figure 2, the NHH procedure incurs less overhead relative to NSGSp,
but both parallel procedures deliver fairly strong scaling performance.

5 COMBINING SEQUENTIAL SCREENING AND INDIFFERENCE-ZONE SELECTION

In this section, we explore a class of hybrid R&S procedures which starts with sequential screening as the
first stage, and at some point switches to a Rinott-like indifference-zone selection such as Stage 2 of NSGSp.
This approach allows us to combine different screening and switching rules to create hybrid procedures
with desired properties, such as reduction in simulation cost (Nelson et al. 2001), or a probability guarantee
of good selection when multiple systems fall in the indifference zone, or perhaps even both.

5.1 A Framework for Hybrid Procedures

A hybrid procedure begins by running sequential screening such as NHH as the first stage, simulating and
screening various systems until some switching criterion is met or only one system remains. If multiple
systems survive, then the procedure applies the Rinott (1978) indifference-zone method on the surviving
systems in a second stage, taking N(2)

i additional samples from each system i as per (1). Finally, the
procedure combines the first- and second-stage samples and selects the system with the highest sample
mean as the best. In effect, the first stage acts like a subset-selection procedure (Kim and Nelson 2006).

A basic requirement for a hybrid procedure is that it should guarantee correct selection with high
probability under the usual indifference-zone qualification. To achieve that, the first-stage screening rule
should ensure that the best system survives the first-stage with high probability. Then, among the systems
that survive the first stage, the Rinott procedure performed in the second stage should select the best, again
with high probability. If the probabilities of making an error in both stages are carefully bounded, then
the overall hybrid procedure guarantees CS with high probability as required (Nelson et al. 2001).

There are multiple ways to design the screening and switching rules employed in the first stage, each
of which may result in different properties of the hybrid procedure. We discuss two approaches here. One
switching rule attempts to directly reduce the total simulation cost by switching from sequential screening
to Rinott when the latter is expected to terminate sooner. To achieve this, the procedure needs to compute
the additional Rinott sample size N(2)

i in each iteration in the first stage, and to estimate the expected number
of extra replications needed for sequential screening to terminate. If it is determined that, to complete
screening the surviving systems, sequential screening will require a significantly larger sample than that
determined by (1), we would switch to the second stage.

Another choice of switching rule deals with situations where there are many systems near the best.
While some procedures (for instance, NSGSp) are specifically designed to deliver a good-selection guarantee
regardless of µk−µk−1 (Nelson et al. 2001), others (e.g., Kim and Nelson 2001, Hong 2006, and NHH)
are designed to deliver a correct-selection guarantee when µk−µk−1 ≥ δ , and for the latter procedures it
is not clear whether they also satisfy a good-selection guarantee or not when µk− µk−1 < δ (Hong and
Nelson 2014). We can deliver a GS guarantee if we adopt a two-stage structure as outlined next.

5.2 Good-Selection Procedure (GSP)

Using the hybrid framework, we may choose the sequential selection parameters and specify a switching time
such that the best system survives the first stage with high probability, regardless of the actual distribution
of system means. Then, the Rinott procedure in the second stage will guarantee to select a “good” system
among those that survive the first stage (Nelson and Matejcik 1995). One can therefore prove that overall
the hybrid procedure has a high probability of making a good selection.

3770

Ni, Henderson, and Hunter

For illustration, we present here a good-selection procedure (GSP) assuming system variances{σ2
i : i∈ S}

are known, in which case there is no need to estimate variances in a separate stage, and the Rinott procedure
in the second stage can be replaced by its known-variance equivalent; see, e.g., Kim and Nelson 2006 §2.2.
We omit parallelism and load-balancing from our presentation, even though we continue to use them,
because our focus is on guaranteeing good selection.

Procedure GSP

1. Choose the indifference zone parameter δ > 0, Type-I error rates α0, α1, triangular continuation
parameters a > 0,λ > 0. Choose a stopping time tS such that P0(tS,U)≤ 1− (1−α0)

1/(k−1) where
P∆(t,U) is the probability that a Brownian motion with drift ∆ exits the continuation region along
the upper boundary before t, and can be calculated following Hall (1997). Choose a sampling
rule n(s) = {n1(s), . . . ,nk(s)} where each ni(s) is an integer-valued, non-decreasing sequence in s
representing the total number of replications to be collected for system i by iteration s. Let r← 0.

2. (Stage 1) Let r← r+1 and take the rth sample (i.e. ni(r)−ni(r−1) additional replications from
each surviving system i) following the sampling rule.

3. For each i 6= j compute ti j(r)=
[
σ 2

i /ni(r)+σ2
j /n j(r)

]−1
and Zi j(ti j(r))= ti j(r) [X̄i(ni(r))− X̄ j(ni(r))].

4. S← S\{i ∈ S : Zi j(ti j(r))< min[0,−a+λ ti j(r)] for some j ∈ S such that j 6= i and ti j(r)< tS]}.
5. If |S|= 1 then select the system whose index is in S.
6. If ti j(r)> tS for all pairs i, j ∈ S then go to Step 7. Otherwise go to Step 2.

7. (Stage 2) For all systems i ∈ S compute Ni = max
{

ni(r),d2(hσi/δ)2e
}

using significance level
1−α1 for calculating h (see Kim and Nelson 2006, pp. 504-505 for details). Take Ni− ni(r)
additional samples from each system i. Select the system with the highest sample mean X̄i(Ni).

Theorem 1 states the “good-selection” guarantee. Due to space constraints we omit the proof here.
Theorem 1. Let I be the random index of the system selected by GSP. Then P(µk−µI ≤ δ)≥ 1−α0−α1.

The survival of System k in Stage 1 is guaranteed by the choice of switching time tS, which can be
calculated for any set of parameters a and λ . As the triangular continuation region no longer needs to
be designed to bound the error probability, the choice of a and λ is completely flexible and the optimal
construction of a continuation region is an interesting open problem.

ACKNOWLEDGMENTS

This work was partially supported by NSF grant CMMI-1200315, and used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant
number ACI-1053575. The authors would like to thank Nicholas Samson for implementing NSGSp.

REFERENCES

Bechhofer, R. E., T. J. Santner, and D. M. Goldsman. 1995. Design and analysis of experiments for statistical
selection, screening, and multiple comparisons. Wiley New York.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems. New York: Wiley.
Hall, W. J. 1997. “The distribution of Brownian motion on linear stopping boundaries”. Sequential Analysis 16

(4): 345–352.
Hong, L. J. 2006. “Fully sequential indifference-zone selection procedures with variance-dependent sam-

pling”. Naval Research Logistics 53 (5): 464–476.
Hong, L. J., and B. L. Nelson. 2014. “Personal communication”.
Kim, S.-H., and B. L. Nelson. 2001. “A fully sequential procedure for indifference-zone selection in

simulation”. ACM Transactions on Modeling and Computer Simulation 11 (3): 251–273.

3771

Ni, Henderson, and Hunter

Kim, S.-H., and B. L. Nelson. 2006. “Selecting the best system”. In Simulation, edited by S. G. Henderson
and B. L. Nelson, Volume 13 of Handbooks in Operations Research and Management Science, 501–534.
North-Holland Publishing, Amsterdam.

Luo, J., J. L. Hong, B. L. Nelson, and Y. Wu. 2013. “Fully Sequential Procedures for Large-Scale
Ranking-and-Selection Problems in Parallel Computing Environments”. Working Paper.

Luo, J., and L. J. Hong. 2011. “Large-scale ranking and selection using cloud computing”. In Proceedings of
the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach, K. P. White,
and M. Fu, 4051–4061. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Luo, Y.-C., C.-H. Chen, E. Yücesan, and I. Lee. 2000. “Distributed web-based simulation optimization”. In
Proceedings of the 2000 Winter Simulation Conference, edited by J. A. Joines, R. R. Barton, K. Kang, and
P. A. Fishwick, 1785–1793. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Nelson, B. L., and F. J. Matejcik. 1995. “Using Common Random Numbers for Indifference-Zone Selection
and Multiple Comparisons in Simulation”. Management Science 41 (12): 1935–1945.

Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 2001. “Simple Procedures for Selecting the Best
Simulated System When the Number of Alternatives is Large”. Operations Research 49 (6): 950–963.

Ni, E. C. 2014. “mpiRnS: Parallel Ranking and Selection Using MPI”. https://bitbucket.org/ericni/mpirns.
Ni, E. C., S. R. Hunter, and S. G. Henderson. 2013. “Ranking and selection in a high performance computing

environment”. In Proceedings of the 2013 Winter Simulation Conference, edited by R. Pasupathy, S.-H.
Kim, A. Tolk, R. Hill, and M. E. Kuhl, 833–845. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Pasupathy, R., and S. Ghosh. 2013. “Simulation Optimization: A concise overview and implementation
guide”. In TutORials in Operations Research, edited by H. Topaloglu, Chapter 7, 122–150. INFORMS.

R. Pasupathy and S. G. Henderson 2011. “SimOpt”. http://www.simopt.org.
Pichitlamken, J., B. L. Nelson, and L. J. Hong. 2006, 8/16. “A sequential procedure for neighborhood

selection-of-the-best in optimization via simulation”. European Journal of Operational Research 173
(1): 283–298.

Rinott, Y. 1978. “On two-stage selection procedures and related probability-inequalities”. Communications
in Statistics - Theory and Methods 7 (8): 799–811.

Texas Advanced Computing Center 2014. “TACC Stampede User Guide”. Accessed May. 11, 2014.
https://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide.

Yoo, T., H. Cho, and E. Yücesan. 2009. “Web services-based parallel replicated discrete event simulation
for large-scale simulation optimization”. SIMULATION 85 (7): 461–475.

AUTHOR BIOGRAPHIES

ERIC C. NI is a Ph.D. student in the School of Operations Research and Information Engineering at
Cornell University. He received a B.Eng. in Industrial and Systems Engineering and a B.Soc.Sci. in
Economics from the National University of Singapore in 2010. His research interests include simulation
optimization, emergency services and queuing theory. His webpage is http://people.orie.cornell.edu/cn254/.

SHANE G. HENDERSON is a professor in the School of Operations Research and Information Engineering
at Cornell University. His research interests include discrete-event simulation and simulation optimization,
and he has worked for some time with emergency services. He co-edited the Proceedings of the 2007
Winter Simulation Conference. His web page is http://people.orie.cornell.edu/∼shane.

SUSAN R. HUNTER is an assistant professor in the School of Industrial Engineering at Purdue University.
Her research interests include Monte Carlo methods and simulation optimization. Her email address is
susanhunter@purdue.edu, and her webpage is http://web.ics.purdue.edu/∼hunter63/.

3772

