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ABSTRACT

We consider a one-dimensional bisection method for finding the zero of a function, where function evaluations
can be performed asynchronously in a parallel computing environment. Using dynamic programming, we
characterize the Bayes-optimal policy for sequentially choosing points at which to query the function. In
choosing these points, we face a trade-off between aggressively reducing the search space in the short
term, and maintaining a desirable spread of queries in the long-term. Our results provide insight on how
this trade-off is affected by function evaluation times, risk preferences, and computational budget.

1 INTRODUCTION

Parallel computing platforms are now ubiquitous, no longer being restricted to the high-performance
computing environments used for massive-scale computation. Platforms that are broadly accessible include
cloud computing, local computer clusters, and personal computers containing multicore processors. These
platforms have the potential to allow us to more rapidly solve existing formulations of optimization problems,
or to solve much larger, in the sense of computational requirements, formulations, provided that we can
devise algorithms that appropriately exploit parallelism.

Perhaps the simplest optimization problem is to find the zero (assumed to exist and be unique) of a
continuous function f that is positive to the right of the root and negative to the left of the root on the
interval (0,1), where f is known only through a computational procedure that returns f (x) when queried
at x ∈ (0,1). This problem can be viewed as an optimization problem since f can be interpreted as the
derivative of a smooth unimodal function that attains its minimum in (0,1). We minimize that unimodal
function by seeking a zero of its derivative. Even for this problem it is not clear how to exploit parallel
computing, and thus this problem is our starting point and the subject of this paper.

A natural sequential approach for solving root-finding problems of such functions is bisection, in which
an interval containing the root is successively reduced through evaluations of the function at the midpoint
of the interval. When multiple cores are available to compute f , we might generalize bisection in such a
way that we evaluate the function at multiple points simultaneously. At which points should we evaluate
the function in order to rapidly reduce the interval in which we know the root lies? Throughout this paper
we assume an idealized model of communication, whereby all information is available to all processors.

We use dynamic programming, in which the state of the dynamic program encapsulates the interval
in which the root is known to lie and the points that are still being evaluated by cores, to attempt to
identify optimal policies. The dynamic program uses a reward function that is a function of the width
of the smallest interval we are certain contains the root. The dynamic program only uses the sign of the
function values, rather than the values themselves, which keeps the calculations tractable. While using the
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function values themselves makes sense from an intuitive standpoint, we do not know how to formulate
and solve a tractable dynamic program in that setting.

First suppose that the time required to perform a function evaluation f (x) is deterministic and does
not depend on x. This abstraction seems reasonable if the time to complete a function evaluation is not
too variable, and leads one to consider algorithms that are, in some sense, synchronous, in that the cores
operate iteratively, where the next iteration is not initiated until all cores complete processing from the
current iteration. In this setting, with n cores, it is perhaps natural to evaluate the function at n equally
spaced x values in the interior of the interval. Since all cores complete processing simultaneously, the
interval is reduced at each stage by a factor of (n+1)−1. This indeed turns out to be optimal when the
root is initially assumed to be equally likely to be anywhere in the interval, as we assume throughout this
paper.

In general, function evaluation times may depend on x and may be random. We do not address the former
issue in this paper, which admittedly limits the scope of our analysis, but with good reason; identifying
the optimal locations at which to evaluate a function would likely be very difficult if the time to compute
f (x) varies in some complicated manner with x. However, we do address the latter issue.

When processing times are random, cores do not necessarily complete processing at the same time,
and one is naturally drawn to algorithms that are asynchronous, in that they do not proceed in lockstep as
with synchronous algorithms. When one core reports a function value, it enables us to reduce the interval
in which the root is contained, and this will render function evaluations proceeding at some of the other
cores redundant. This makes the question of where to evaluate the function so as to rapidly reduce the
interval a highly nontrivial one. We make the additional assumption that processing times are independent
and identically exponentially distributed, which makes the analysis tractable.

The “memoryless” property of the exponential distribution ensures that the residual processing-time
distribution is unchanged if we re-assign cores to different x values before they complete processing, so that
nothing is lost in doing so. Furthermore, the minimum of independent exponential random variables is also
exponential with a reduced mean, so one can obtain solutions more rapidly by “stacking” cores on a single x
value. These properties are very special, and so while we do briefly consider them as being approximations
of reality when processing times are extremely variable, as might arise in a cloud-computing environment
where cores are shared by other users that are not visible to us, the main part of our analysis does not
exploit them.

Our main findings in the random-processing-time context are two-fold. If stacking is not allowed, and
one has only two cores available, then a policy that is similar to golden-section search is optimal under a
specific risk-neutral reward function, and is close to optimal for others. When stacking is allowed, then
for all risk preferences and computational budgets, it is always optimal to stack queries at the midpoint of
the interval.

When we parallelize bisection, as in the present paper, multiple points are simultaneously evaluated.
Accordingly, the term “multisection” seems appropriate as a descriptor of algorithms like those considered
here, hence the title of the paper. We henceforth refer to parallelized bisection algorithms as “multisection
algorithms” and the associated problem in deciding where to query the function as the “multisection
problem.”

The remainder of this paper is organized as follows. In Section 2 we define a stochastic process that
tracks the progress of multisection. In Section 3 we introduce a dynamic-programming recursion that allows
us to characterize some important properties of an optimal policy. Section 4 computes the optimal policy
when processing times are deterministic and equal on all cores. Section 5 develops our primary results for
random processing times in both the “no-stacking” case and the case where stacking is permitted.

2 PROBLEM SPECIFICATION

We model the allocation problem using dynamic programming and Bayesian statistics. A priori, we take
the root X∗ ∼Unif(0,1). Observing the value of the function f at points within (0,1) allows us to localize
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X∗ more precisely. We keep track of the smallest interval in which X∗ is known to reside, and those
m ≤ n points within this interval currently being evaluated, through an ordered tuple of real numbers
S = (S(0),S(1), . . . ,S(m),S(m+1)). (See Section 5.2 for an example.) In this tuple, the first and last values,
S(0) and S(m+1), describe the smallest interval [S(0),S(m+1)] in which X∗ is currently known to reside, and
S(1), . . . ,S(m) are points at which we are currently evaluating f . Without loss of generality, we assume
S(k) ≤ S(k+1). We construct a dynamic program, and a tuple of this form will be our state variable. When
m, the number of points currently being evaluated, is strictly less than n, the number of available cores,
this tuple or state indicates that we may assign idle cores to evaluate f at new points. We call such states
“incomplete states.” The set of incomplete states is contained in the set

S= {(s0,s1, . . . ,sm,sm+1) : 0≤ m≤ n, sk ≤ sk+1 for 0≤ k ≤ m} .

We track the state variable over time. While our problem is a continuous-time problem, the state
variable only changes at moments in time when a core finishes a function evaluation. These are also the
moments in time when we make decisions about how to allocate newly idle cores to new points. We index
this discrete set of decision epochs by j, and indicate the (pre-decision) state variable at the beginning of
the jth epoch, before any idle cores are re-allocated, by S j = (S(0)j , . . . ,S(m j+1)

j ), where m j is the number of
active cores at the beginning of the jth decision epoch. We respectively denote the left and right endpoints
of the search interval S j as A j = min(S j) and B j = max(S j).

Let the time at which the jth decision epoch occurs be σ( j)≥ 0. The first decision epoch is indexed by
j = 0, and starts at time σ(0) = 0. The state variable at this moment in time is S0. Typically we consider
the case S0 = (0,1), but we also consider other values for S0 in a dynamic program constructed below. At
each decision epoch j, we make a decision about how to allocate our idle cores according to some decision
rule or policy.

Mathematically, we define a policy π to be a function π : S→ X(S) that maps states to actions,
where the action is an ordered tuple X = (x0,x1, · · · ,xn,xn+1) ∈ S of the same form as the state variable,
which assigns all n cores to evaluate f (x1), . . . , f (xn). We require that this action assign all n cores, leave
unchanged those cores that are still actively performing function evaluations, and not alter the interval in
which X∗ is known to reside. To achieve this, we define the space of allowed actions for a given state
variable (also called the “action space”) as

X(S) = {(x0,x1, . . . ,xn,xn+1) : X ⊇ S, x0 = min(S), xn+1 = max(S), xk ≤ xk+1 for 0≤ k ≤ n} . (1)

The set of allowed actions at the first decision epoch is X(S0). The constraint X ⊇ S ensures that we do
not disturb active function evaluations. The constraints x0 = min(S) and xn+1 = max(S) ensure that we
leave unchanged the smallest known interval containing X∗. Changing this interval requires observing the
results from function evaluations.

At this first decision epoch, we also draw, for each newly assigned core i = 1, . . . ,n, an independent
random variable δ

(i)
0 ∼ F , where F is some known probability distribution with support on (0,∞). The

random variable δ
(i)
0 is the wall-clock time at which the job just started on core i will complete. We let

δ0 = (δ
(1)
0 , . . . ,δ

(n)
0 ). Our model allows early termination when the point being evaluated is eliminated

from the interval containing the root by another newly completed function evaluation, and so function
evaluations do not always run for the full time period δ

(i)
0 . In this paper, we consider two possibilities:

either F takes a single value with probability one, or F is an exponential distribution.
Given these times, the first time at which a function evaluation will complete is σ(1) = mini δ

(i)
0 . Over

the time period (0,σ(1)), the state of the cores is described by π(S0). Let Q1 = argmini=1,...,n δ
(i)
1 be the

jobs that complete at time σ(1). More than one job may finish at a time. We observe function values for
all points (S(i)0 : i ∈ Q1). These cores become momentarily idle, and the new observations of f reduce the
interval in which X∗ is known to reside, and may also eliminate some points not in Q1 that are actively
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being evaluated. This then produces a new incomplete state variable, which we call S1. Below we describe
the conditional distribution of S1 given π(S0) and Q1. We then choose the next action using our policy,
evaluating the points implied by π(S1).

We proceed iteratively in this fashion, constructing a sequence of random variables (S j,δ j,σ( j) : j =
0,1, . . .). At each decision epoch j = 1,2, . . ., let Q j = argmini=1,...,n δ

(i)
j−1 be the jobs that complete at

the beginning of this decision epoch, and let σ( j) = mini=1,...,n δ
(i)
j−1 be the wall-clock time at which this

decision epoch occurs. At the beginning of this decision epoch, we draw S j from its conditional distribution
given S j−1 and Q j, as described below. We then choose an action π(S j) that allocates all newly idle cores.
For those cores that are still performing a previous function evaluation, we set δ

(i)
j to the previous value,

which is δ
(i′)
j−1 for some i′. However, if a core is newly allocated, then we generate a new iid processing

time for the new function evaluation, drawing δ
(i)
j such that δ

(i)
j −σ( j)∼ F .

In this way, each policy implies a probability distribution Pπ over the sequence of random variables
(S j,δ j,σ( j) : j = 0,1,2, . . .). LetEπ be the expectation operator corresponding to this probability distribution.
Define the policy space Π to contain all policies π : S 7→ X(S) satisfying π(S) ∈ X(S) for all S ∈ S. We
show later that it suffices to define a policy on a much smaller domain.

The state variable does not change between decision epochs, taking the value Xj = π(S j) in the time
interval (σ( j),σ( j+1)).

We now describe the conditional distribution of S j under Pπ given S j−1 and Q j. For each core i ∈ Q j

that finishes at the beginning of the jth epoch, we observe f
(

X (i)
j−1

)
. From the sign of this function value,

we infer whether X∗ ≤ X (i)
j−1 or X∗ > X (i)

j−1. We use this information to update the search interval and make
it as small as possible. Accordingly, let

L j =
{

i ∈ Q j : X∗ ≥ X (i)
j−1

}
and Uj =

{
i ∈ Q j : X∗ ≤ X (i)

j−1

}
. (2)

For each core i ∈ L j, the results from the most recent function evaluations tell us that X∗ ≥ X (i)
j−1. Let ` j

be largest such index, i.e., let ` j = maxL j if L j is nonempty, and otherwise set ` j = 0. Likewise, set
u j = minUj if Uj is nonempty, and otherwise set u j = n+1. Thus, these most recent function evaluations

allow us to localize X∗ to the interval [X (` j)
j−1,X

(u j)
j−1 ].

We terminate a function evaluation at a point X (i)
j−1 that has not finished before decision epoch j if the

point is cut off by some point in Q j, i.e., if i< ` j or i> u j. Any other jobs that have not yet completed will be
allowed to run until at least the next epoch. The state S j is then a tuple describing the new interval in which
X∗ is known to reside, and the jobs that are still running at time σ( j). Formally, S j = (X (i)

j−1 : i = ` j, . . . ,u j).
The updated search interval is [A j,B j] = [minS j,maxS j].

Conditioning on which jobs complete at decision epoch j, we can find the probability of certain outcomes
for (A j,B j) using the uniform prior on X∗. Given Q j and Xj−1, (A j,B j) is conditionally independent of Sk
and δk for all k < j, and

P
(
(A j,B j) =

(
Q(i−1)

j ,Q(i)
j

)∣∣∣ Q j, Xj−1

)
=

Q(i)
j −Q(i−1)

j

B j−1−A j−1
.

We now define a reward function R : S→ R that measures progress in reducing the interval. For any
state S j, let ‖S j‖= B j−A j be the length of the search interval. We choose the reward function R(S) = ‖S‖−r,
where r ∈ (0,1]. The parameter r controls our risk preference. As r→ 0 we become more risk averse,
because there is less gain for making the interval smaller. Choosing r = 1 minimizes risk aversion.

We choose a time horizon T , and seek to make decisions so that the reward function applied to the state
at time T is large. Conceptually, one could use a fixed value for T , or allow T to be a random variable,
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modeling the situation in which one is uncertain when starting a computation about how long we will run
it before asking it to produce an answer. For tractability, we assume that T is exponentially distributed
with rate parameter α , independent of all else.

Let τ = sup{ j : T ≥ σ( j)} so that the random time T falls in the interval [σ(τ),σ(τ +1)). Then the
interval to which X∗ has been localized at time T is [Aτ ,Bτ ], which has associated reward R(Sτ).

The value, i.e., expected reward, attained by policy π ∈Π is V π = Eπ R(Sτ). We want to find a policy
that maximizes the expected reward. Let

V = sup
π∈Π

V π . (3)

An optimal policy is any policy π that attains the supremum in (3). An ε-optimal policy is any policy π

such that V π ≥V − ε for some given ε > 0.

2.1 Deterministic and Equal Waiting Times for Queries

We first assume that it takes a deterministic and constant time to evaluate the function at any point in [0,1].
That is, F represents a point mass at some C > 0. This assumption is reasonable when the variability of
computation times is small. The wait time is independent of where the function is being evaluated, which
may not reflect reality, but makes the model more tractable. Because every task takes the same amount of
time to complete, Q j = {1, . . . ,n} for all j, and hence all n cores are reallocated at each decision point and
σ( j)−σ( j−1) =C for all j. This predictability makes the state space smaller and the optimal allocation
easier to identify. The deterministic case will serve as a benchmark for the exponential case.

2.2 Exponential Waiting Times for Queries

What is the effect of variability of function evalution times on the optimal allocation of points? We
model this variability by assuming the evalution-time distribution F is exponential with rate λ . The
choice of exponential evaluation times is a computational convenience that admits evaluation uncertainty
while retaining tractability. Since there is probability zero of any two independent exponential random
variables taking the same value, Q j is a singleton with probability one. The memoryless property of the
exponential distribution ensures that for every j and for every i = 1, . . . ,n, the residual processing time
δ
(i)
j −σ( j)∼ exponential(λ ), independent of all past history. Therefore, it is equally likely for any job to

finish first, so that P(Q j = {i}) = n−1 for every i. In addition, σ( j+1)−σ( j) is exponentially distributed
with rate nλ .

3 DESIRABLE PROPERTIES OF THE VALUE FUNCTION

3.1 Value Function Recursion

The problem (3) is a stochastic control problem, and we study it using dynamic programming. We first
show that under the assumptions of Section 2.1 or 2.2, the problem is an infinite-horizon discrete-time
Markov decision process. Under either assumption the stopping index τ has a geometric distribution with
P(τ = j) = (1− γ)γ j for j ≥ 0, where γ can be easily computed. Indeed, when processing times are
deterministically equal to C > 0, γ = e−αC, and when they are exponentially distributed, γ = nλ/(α +nλ ).
Using the fact that τ is independent of S j,S0, it can be shown that for any policy π ,

V π(S) = (1− γ)Eπ

[
∞

∑
j=0

γ
jR(S j) | S0 = S

]
.

Thus, except for a constant factor of 1−γ , solving (3) is equivalent to solving the infinite-horizon discrete-
time discounted-cost Markov decision process supπ Eπ

[
∑

∞
j=0 γ jR(S j) | S0 = S

]
. This Markov decision
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process is over the time-homogeneous controlled Markov process (S j : j = 0,1,2, . . .), which evolves
independently of (δ j : j = 0,1,2, . . .) under the assumptions of either Section 2.1 or Section 2.2.

Define the value function V (S) = supπ V π(S). Under the conditions of Theorem 1 below, standard
results in dynamic programming, e.g., p. 46 of Hernández-Lerma and Lasserre (1996), show that

V (S) = (1− γ)R(S)+ γ

(
max

X∈X(S)
E [V (S1) | X0 = X ,S0 = S]

)
. (4)

3.2 Scaling and Shifting Made Easy

Intuition tells us that there should be a relationship between states that are either scaled or shifted.
This would greatly reduce the size of the state space. For notational convenience, for any h,c ∈ R, let
(hS+ c)(i) = hS(i) + c for every i. Recall that R(S) = ‖S‖−r for r ∈ (0,1]. Then one can verify that
R(aS+b) = a−rR(S). This property extends to the value function, as follows.
Theorem 1 Suppose that R(S) = ‖S‖−r for r ∈ (0,1]. For c,h ∈ R with h > 0, the value function V has
the following properties:

1. Shift Invariance: V (S+ c) =V (S)
2. Inverse Scaling: V (hS) = h−r V (S)

Proof. We show the result by induction. For a function f : S→ R, the Bellman operator T is given by

T f (·) = (1− γ)R(·)+ γ

(
max

X∈X(·)
E [ f (S j+1) | S j = · , Xj = X ]

)
.

We claim that the result holds for T (k) R for all k ∈N. As a base-case, consider k = 0. We let T (0) R(·) = R,
so the result holds trivially. Now assume T (k) R has the above properties, and let S̄ = hS+ c, X̄ = hX + c.

T (T (k) R(S̄)) = (1− γ)R(S̄)+ γ

(
max

X̄∈X(S̄)
E
[
T (k)R(S j+1) | S j = S̄ , Xj = X̄

])
.

The transition kernel itself is shift and scale invariant. That is, P(S j+1 = S′ |S j = S, X) = P(S j+1 =
hS′+ c |S j = hS+ c, hX + c). Therefore, for any measurable function g, we have E[g(S j+1) |S j = S, Xj =
X ] = E[g(hS j+1+c) |S j = S̄, Xj = X̄ ]. We can rewrite the expectation using the process (S j : j ∈N). Using
the induction hypothesis, we see

T (T (k) R(S̄)) = (1− γ)R(hS+ c)+ γ

(
max

X∈X(S)
E
[

T (k)R(hS j+1 + c) | S j = S , Xj = X
])

T (k+1) R(S̄) = h−r (1− γ)R(S)+h−r
γ

(
max

X∈X(S)
E
[
T (k)R(S j+1) | S j = S , Xj = X

])
,

i.e., that T (k+1)R(S̄) = h−r T (k+1)R(S). Therefore, we have proved that the result holds for T (k)R, for all
k. We now wish to assert limk→∞ T (k)R(S) = V (S) for all S ∈ S. According to the result on p.46 of
Hernández-Lerma and Lasserre (1996) this holds under the following three conditions listed on p.28.

• The action space is compact: As we defined it, the action space X(S) for every S is a bounded
subset of Rn+2 that is the intersection of a finite number of closed halfspaces; see (1).

• The reward R is lower semi-continuous and non-negative: We have R(S j) = [B j−A j]
−r, and if we

define R(S j) = ∞ for states where A j = B j, then the inverse image of every open set of rewards is
an open set of states, which is exactly the definition of lower semi-continuity. Hence, R is lower
semi-continuous on a compact set.
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• The transition kernel is continuous: The construction in Section 2 ensures this, although a full
verification is cumbersome and thus omitted.

Therefore, T (k)R→V pointwise as k→∞. Moreover, for any state S and parameters h,c, there exists K1 and K2
such that for all k≥K1, we have |V (S)−T kR(S)| ≤ ε , and for all k≥K2, we have |V (hS+c)−T kR(hS+c)| ≤
ε . So for all k ≥max{K1,K2},

ε ≥ |V (hS+ c)−T (k)R(hS+ c)|
= |V (hS+ c)−h−r V (S)+h−rV (S)−h−r T (k)R(S)| ≥ |V (hS+ c)−h−r V (S)|−h−r

ε,

which shows that the value function also has the desired properties.

3.3 Normalized Scaling and State Space Reduction

Corollary 2 For some state S ∈ S, let S̄ = S−S(0)

S(n+1)−S(0)
so that S̄(0) = 0 and S̄(n+1) = 1. Then from the previous

theorem, we have

V (S) =V
(
(S(n+1)−S(0))S̄+S(0)

)
=
(

S(n+1)−S(0)
)−r

V (S̄) = R(S)V (S̄)

The corollary demonstrates the structure embedded in the bisection algorithm. From a theoretical
standpoint, we can reduce our attention to all states within the interval [0,1]. This will help us identify the
structure of optimal policies.

4 OPTIMAL POLICY STRUCTURE FOR DETERMINISTIC AND EQUAL PROCESSING TIMES

Suppose that the evaluations take a deterministic amount of time to compute. If we start the first batch
of function evaluations simultaneously, then the jobs finish all at once, and all n points can be allocated.
Using the recursion, we can prove that an optimal allocation at every step is for the points to be equally
spaced in the interval.
Theorem 3 Suppose the function evaluations require a deterministic and equal amount of time to compute.
Let R(·) be defined as before, with r ∈ (0,1). If X̃ j = (X̃ (0)

j , X̃ (1)
j , . . . , X̃ (n)

j , X̃ (n+1)
j ) is defined by

X̃ (i)
j = A j +

i
n+1

(B j−A j) ,

then X̃ is an optimal allocation for S = (A j,B j), and this defines an optimal policy.

Proof. At decision epoch j we must allocate all n points because Q j = {1, . . . ,n} for all j ≥ 0 with
probability 1. Thus, it is only necessary for the state to keep track of the endpoints of the interval because
there are no jobs that are left to continue. For an allocation X to be optimal for incomplete state S, it must
attain the maximum in

max
X∈X(S)

EV (S) = max
X∈X(S)

n

∑
i=0

(
X (i+1)−X (i)

X (n+1)−X (0)

)
V
(
(X (i),X (i+1))

)
Using the inverse scaling property,

max
X∈X(S)

EV (S) = max
X∈X(S)

n

∑
i=0

X (i+1)−X (i)

‖S‖

(
X (i+1)−X (i)

)−r
V ((0,1))

= ‖S‖−1V ((0,1)) max
X∈X(S)

n

∑
i=0

(X (i+1)−X (i))1−r.
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In this maximization, X ∈ X(S) implies we can choose S(0) = X (0) ≤ X (1) ≤ ·· ·X (n) ≤ X (n+1) = S(n+1)

arbitrarily, since no jobs are ongoing. Changing variables to ui = X (i+1)−X (i) for i = 0,1, . . . ,n, the
problem becomes that of maximizing ∑

n
i=0 u1−r

i , subject to the constraints that ∑
n
i=0 ui = ‖S‖ and ui ≥ 0

for every i. This is a concave maximization problem with local, and therefore global, minimum when
u0 = u1 = · · ·= un = ‖S‖(n+1)−1, which corresponds to X̃ . The maximum is unique when r ∈ (0,1) since
the objective function is strictly concave. When r = 1, X̃ is still optimal, but it is not the uniquely optimal
solution. Lastly, from p.46 of Hernández-Lerma and Lasserre (1996), iteratively choosing the optimal
allocation X̃ for every S yields an optimal policy.

Hence equally-spaced allocation provides the optimal solution to the dynamic program for deterministic
function evaluations. It is encouraging to see a result that is consistent with the classical bisection method.

5 OPTIMAL POLICY STRUCTURE FOR IID EXPONENTIAL PROCESSING TIMES

We now characterize optimal policies in the presence of exponentially distributed processing times. Function
evaluations no longer finish simultaneously, so we must reallocate points without the information from
jobs that are still running.

5.1 A Simplified Recursion

Recall that each core i = 1,2, . . . ,n is equally likely to return a function value at every decision point.
If Core i returns with the information that X∗ > X (i), then the resulting incomplete state is X (i)

+ =

(X (i),X (i+1), . . . ,X (n),X (n+1)). Otherwise, if the process returns with X∗ < X (i), then the resulting in-
complete state is X (i)

− = (X (0),X (1), . . . ,X (i−1),X (i)). Therefore

P
(

S j+1 = X (i)
+

∣∣∣ S j, Xj

)
=

(
1
n

)(B j−X (i)
j

B j−A j

)
and P

(
S j+1 = X (i)

−

∣∣∣ S j, Xj

)
=

(
1
n

)(X (i)
j −A j

B j−A j

)
.

We can now analyze the dynamic-programming recursion. Conditioning on the action Xj,

V (S j) = (1− γ)R(S j)+ γ max
X∈X(S j)

E[V (S j+1) |S j,Xj = X ]

= (1− γ)R(S j)+ γ max
X∈X(S j)

1
n

n

∑
i=1

[(
X (i)−A j

B j−A j

)
V (X (i)

− )+

(
B j−X (i)

B j−A j

)
V (X (i)

+ )

]
.

Now assume S j is normalized, i.e., ‖S j‖ = 1. We want to express V (S j) in terms of the value of other
normalized states. Scaling and shifting, we find that

V (S j) = (1− γ)(1)+ γ max
X∈X(S j)

1
n

n

∑
i=1

[
X (i)V (X (i)

− )+(1−X (i))V (X (i)
+ )
]

= (1− γ)+ γ max
X∈X(St)

1
n

n

∑
i=1

[
(X (i))1−r V (X̄ (i)

− )+(1−X (i))1−r V (X̄ (i)
+ )
]
,

where X̄ (i)
+ and X̄ (i)

− are the respective normalized states for X (i)
+ = (X (i), . . . ,X (n+1)) and X (i)

− =(X (0), . . . ,X (i)).
Now we can restrict the state space to {S ∈ S : min(S) = 0, max(S) = 1}. In fact, for the rest of the paper,
we consider only normalized states and allocations.

In addition to expressing the value function in terms of the current state, we can also express it in
terms of the action X . One can view X as the post-decision state, and W (X), the expected downstream
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reward resulting from action X , as a so-called Q-factor or post-decision value function; see Powell (2011).
Formally, we define W (X) as

W (X) =
1
n

n

∑
i=1

(X (i))1−r V (X̄ (i)
− )+(1−X (i))1−r V (X̄ (i)

+ ). (5)

For z ∈ [0,1], let β (z) = z1−r +(1− z)1−r, with r ∈ (0,1] defined as in the reward function R. In an abuse
of notation, for an allocation X , we define β (X) = n−1

∑
n
i=1 β (X (i)), and β ((0,1)) = 1. Using the original

definition V , we can write W as a recursion, yielding

W (X) = (1− γ)β (X)+
γ

n

n

∑
i=1

(X (i))1−r

[
max

Y∈X(X̄ (i)
− )

W (Y )

]
+(1−X (i))1−r

[
max

Z∈X(X̄ (i)
+ )

W (Z)

]
. (6)

5.2 Golden Section Policy

The above recursions and shifting/scaling properties reveal the structure inherent in the Multisection
Algorithm. We now want to leverage this structure in deriving an optimal policy. When we have two
cores, i.e., n = 2, we can describe a policy that reduces the interval size by a constant factor in every step,
and guarentees that the (normalized) allocation at every step is identical.

Let X = X0 = π((0,1)). When n = 2, we have X = (0,a,b,1), with X (1) = a and X (2) = b. By
normalizing, we have X̄ (1)

+ =
(
0, b−a

1−a ,1
)

and X̄ (2)
− = (0, a

b ,1). We only need to consider these states because

X̄ (1)
− = X̄ (2)

+ = (0,1), meaning that both cores need to be reallocated. If we want π(X̄ (i)
+ ) = π(X̄ (i)

− ) = X
for i = 1,2 and some allocation X , i.e., that the allocation is the same for both states, then we require that
(0, b−a

1−a ,1) ⊂ (0,a,b,1) and (0, a
b ,1) ⊂ (0,a,b,1). One way to satisfy this is for a = (b− a)/(1− a) and

b = a/b. This system of equations has the unique solution

X (1) = a =
1
2

(
3−
√

5
)

X (2) = b =
1
2

(√
5−1

)
. (7)

Consider a policy π such that π((0,1)) = π((0,a,1)) = π((0,b,1)) = (0,a,b,1) and π(hS+c) = hπ(S)+c.
We call this policy the Golden Section Policy because it uses the same queries as the Golden Section
Search Algorithm (Kiefer 1953) for finding the extremum (either maximum or minimum) of a unimodular
function. In both situations, Golden Section uses symmetry to maintain the same spread of queries. In
the context of multisection, the construction of the Golden Section policy implies that if Xj = X , then
π(X̄ (i)

+ ) = π(X̄ (i)
− ) = X for i = 1,2, implying that Xj+1 = Xj for all j ≥ 0. This property can be used to

show that Golden Section is optimal under a risk-neutral reward function.

5.2.1 On the Fringe: Optimal When Risk-Indifferent

We now show that under risk indifference, i.e., r = 1, Golden Section is optimal.
Theorem 4 Let π be the Golden Section policy as defined above. If r = 1, then π is optimal.

Proof. From the recursion in W (·), we see for any allocation X ∈ argmaxZ∈X((0,1))W (Z),

W (X) = (1− γ)β (X)+
γ

n

n

∑
i=1

(X (i))1−r

[
max

Z1∈X(X̄
(i)
− )

W (Z1)

]
+(1−X (i))1−r

[
max

Z2∈X(X̄
(i)
+ )

W (Z2)

]
.
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If we relax the constraints in the two maxima, we see that

W (X)≤ (1− γ)β (X)+
γ

n

n

∑
i=1

(X (i))1−r
[

max
Z1∈X((0,1))

W (Z1)

]
+(1−X (i))1−r

[
max

Z2∈X((0,1))
W (Z2)

]
= (1− γ)β (X)+ γ W (X)

1
n

n

∑
i=1

[(X (i))1−r +(1−X (i))1−r]

= (1− γ)β (X)+ γ W (X)β (X).

By iteratively substituting the above inequality for W (X), we can express the upper bound as the infinite
geometric series

W (X)≤ (1− γ)β (X)
∞

∑
p=0

γ
p

β (X)p, (8)

which converges when γβ (X)< 1 and diverges to infinity otherwise. But if we consider the value of the
Golden Section policy, with Y being the Golden Section allocation,

W π(Y ) = (1− γ)β (Y )+
γ

n

n

∑
i=1

(Y (i))1−r W π(π(Ȳ (i)
− )))+(1−Y (i))1−r W π(π(Ȳ (i)

+ ))

= (1− γ)β (Y )+
γ

n

n

∑
i=1

(Y (i))1−r W π(Y )+(1−Y (i))1−r W π(Y ),

and we can also write the post-decision value of choosing the Golden Section as

W π(Y ) = (1− γ)β (Y )
∞

∑
p=0

γ
p

β (Y )p. (9)

If r = 1, we have β (X) = 2 for any allocation X , which makes (8) and (9) both equal. If γ < 1/2, then
the upper bound equals 2(1− γ)/(1−2γ). If γ ≥ 1/2, then the series diverges to infinity. In either case,
choosing the Golden Section policy π achieves the upper bound, and is therefore optimal.

When r < 1, the Golden Section Policy still performs very well. In the W (·) recursion, the immediate
reward obtained from assigning queries with allocation X is given by β (X). Since the Golden Section
Policy requires only one allocation, it is sufficent to use this as a metric for the performance of the entire
policy. Now suppose X is the Golden Section Allocation. If we compare β (X) versus maxz β (z) = 2r,
which is achieved by the Bisection Method, there is an extremely small gap. At its smallest, the ratio
β (X)/2r ≥ 0.993, achieved when r = 0.502. And from numerically solving discretized versions of the
dynamic program, there is strong computational evidence that the Golden Section Policy is optimal for
any 0 < r < 1 with γ sufficiently large.

We can also compare the Golden Section Policy to the traditional Bisection Method in terms of W (·).
Let w1 and w2 be the respective post-decision state values for Bisection and Golden Section policies. Using
(9) and the definition of γ in Section 3.1, we can derive closed form expressions for w1 and w2 in terms
of α , λ , and r. In general, Golden Section achieves a higher expected reward because it effectively uses
the additional information, and the loss from cutting off-center is relatively small. There are values of
parameters (eg. α = 0.5, λ = 1.2, r = 0.5) for which Golden Section performs infinitely better under this
metric. However, in cases where λ is small, it is more advantageous to use Bisection.

5.2.2 Larger Numbers of Cores

For a general number of cores n, it is difficult to explicitly find policies similar to Golden Section. Even
when n = 3, one cannot rely on a single allocation to define a policy. (For the case of three dimensions,
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finding such a policy is equivalent to solving a system with three variables and six nonlinear equations,
none of which are redundant.) A fundamental idea behind Golden Section is that reducing the number of
states visited over time is beneficial for the long-run performance of the algorithm. We might then relax
the condition that we only visit a single state, i.e., Xj+1 = Xj for every j, and instead design a policy that
visits a finite number of states. This might be a more achievable goal in higher dimensions, even though
it is not guaranteed to yield an optimal policy.

For example, consider a policy for the case n = 3 defined by two allocations Y = (0,1/3,1/2,2/3,1)
and Z = (0,1/4,1/2,3/4,1). The potential incomplete states arising from Y or Z, (exploiting the fact that
both Y and Z are symmetric about 1/2 so as to reduce the number of incomplete states), are

Ȳ (1)
+ = (0,1/4,1/2,1) Ȳ (1)

− = (0,1) Ȳ (2)
+ = (0,1/3,1)

Z̄(1)
+ = (0,1/3,2/3,1) Z̄(1)

− = (0,1) Z̄(2)
+ = (0,1/2,1),

(10)

which means that no matter what job finishes first, we will always be able to choose action Y or action Z
to reallocate the idle processors. In other words, starting from Y or Z, for every j ≥ 0 there always exists
some Xj ∈ {Y,Z}∩X(S j). Such a choice of policy yields a Markov Chain on the allocation space X((0,1))
with only two states. This kind of policy is desirable because it easy to describe and easy to analyze.
Even though such a policy is reminiscient of Golden Section, both actions are not equally preferable. The
queries of Y are positioned closer to the midpoint than those of Z, which means Y is likely to reduce the
interval length by a greater amount. Because of this, in cases where we have a choice between Y and Z,
selecting Y is preferable, and one can verify that W (Y )>W (Z). Even so, the existence of a policy with a
small action space is promising. We suspect that similar policies exist for larger n, although finding them
has proven to be difficult.

5.3 To Stack or Not to Stack

The memoryless property of the exponential distribution means that the residual processing time for a
core is always exponentially distributed with the same mean. This observation suggests that each time a
core completes, we might re-assign all cores that are still running as well as those that have been made
redundant. Our formulation in Section 2 did not allow this, because we required that X ⊂ S, i.e., that
the action leaves cores running that are still in process. We continue to require that non-redundant cores
continue to run, but there is a subtlety in our setup that has a substantial impact on the form of the optimal
policy. With exponential processing times, with probability 1 we see a single core, i say, return a value
at each decision point, so that either (` j,u j) = (0, i) or (` j,u j) = (i,n+1) in the discussion immediately
following (2). If, for example, Core i tells us that X∗ > X (i), then just after (2) our formulation allows us
to reassign all cores with indices less than i. In practice, we have the option of doing more. If Core i+1
is also evaluating at X (i), then we can also reassign Core i+1, along with any other cores j > i for which
X ( j) = X (i). In our present formulation this is not allowed.

We made this modeling choice because it seemed, to us, to be realistic to not “stack cores,” i.e., to not
assign them to evaluate the same point. However, in situations such as in cloud-computing environments
where cores can be quite unreliable and the speed of processing can be highly variable from one core to
another, we may have incentive to evaluate very similar points on multiple cores, i.e., to adopt stacking
policies. We now adapt our formulation to allow such policies.

Suppose now that when Core i concludes that X∗ > X (i), we reassign all cores j for which X ( j) ≤ X (i),
including those with indices greater than i. Similarly, when X∗ ≤ X (i), we reassign all cores j for which
X ( j) ≥ X (i). Now the transition kernel is no longer continuous because, for example, there is a large
difference between stacking two adjacent points, and instead evaluating two points that are minutely but
positively separated. Hence, the argument in Theorem 1 no longer applies, and we are no longer assured
that an optimal value function exists and satisfies the Bellman recursion. We conjecture that this is so, and
proceed in this section under this conjecture.
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5.3.1 Optimal Stacking Policy Structure

It turns out that now the optimal policy for any set of parameters is one where all cores stack at the midpoint
of the interval.
Theorem 5 Stacking queries X (i)

j = 1
2 (B j−A j) for every core i is the optimal allocation for independent

exponentially distributed waiting times with common rate.

Proof. Since V (S0) is the optimal allocation when all n cores are assigned, V (X̄ (i)
− ) ≤ V (S0) because

the value function is more constrained. Therefore,

V (S0) = (1− γ)+ γ max
X∈X(S0)

1
n

n

∑
i=1

[
(X (i))1−r V (X̄ (i)

− )+(1−X (i))1−r V (X̄ (i)
+ )
]

V (S0)≤ (1− γ)+ γ max
X∈X(S0)

1
n

n

∑
i=1

[
(X (i))1−r V (S0)+(1−X (i))1−r V (S0)

]
= (1− γ)+V (S0)γ max

X∈X(S0)

1
n

n

∑
i=1

[
(X (i))1−r +(1−X (i))1−r

]
.

V (S0)≤ (1− γ)+V (S0)γ 2r,

with equality if all points X (i) are stacked at 1/2. Hence, stacking at 1/2 is optimal regardless of the value
of γ . Moreover, if γ < 2−r then the optimal value is finite.
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