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ABSTRACT

We construct a discrete optimization via simulation (DOvS) procedure using discrete Gaussian Markov
random fields (GMRFs). Gaussian random fields (GRFs) are used in DOvS to balance exploration and
exploitation. They enable computation of the expected improvement (EI) due to running the simulation
to evaluate a feasible point of the optimization problem. Existing methods use GRFs with a continuous
domain, which leads to dense covariance matrices, and therefore can be ill-suited for large-scale problems
due to slow and ill-conditioned numerical computations. The use of GMRFs leads to sparse precision
matrices, on which several sparse matrix techniques can be applied. To allocate the simulation effort
throughout the procedure, we introduce a new EI criterion that incorporates the uncertainty in stochastic
simulation by treating the value at the current optimal point as a random variable.

1 INTRODUCTION

Optimization plays a central role in the fields of industrial engineering and operations research. For many
interesting optimization problems that occur in practice, the objective function cannot be evaluated explicitly
and requires estimation using stochastic simulation. For example, suppose we are interested in minimizing
the expected waiting time for an arbitrary customer calling into a call center with constraints on the service
levels and number of servers in the call center. When the structure of the call center is too complicated
to analyze analytically, this leads to a constrained optimization problem with an objective function that
can only be estimated using stochastic simulation. Problems such as these are commonly referred to as
optimization via simulation (OvS) problems. Furthermore, OvS problems in which the decision variables
can only assume discrete values, such as those constrained to be integer valued or binary, are called
discrete optimzation via simulation (DOvS) problems. In this paper, we focus on DOvS problems with
integer-ordered decision variables.

DOvS has been an active area of research for many years, and the literature on DOvS is plentiful.
The majority of DOvS methods fall into the category of adaptive random search (ARS) algorithms. These
ARS algorithms contain a mixture of both local and global searching in an effort to explore favorable areas
of the feasible regions in depth (local searching), while continuing to explore other areas of the feasible
region to avoid getting trapped at a local optimum (global searching). Examples of ARS algorithms include
the stochastic ruler method, simulated annealing, industrial-strength COMPASS, model reference adaptive
search, and nested partitions (see, for example, Nelson (2010)).

We are interested in a procedure that automatically regulates exploration and exploitation. Furthermore,
we want a procedure that utilizes a stopping criterion that considers the uncertainty at feasible points not
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yet simulated. Several DOvS methods model the simulation output at the feasible points as a realization
of a Gaussian random field (GRF). By imposing this uncertainty on the DOvS problem, concepts such
as expected improvement (EI) and value of information can be used to determine which feasible point to
simulate next. Furthermore, we can use this uncertainty to decide when we have sufficiently searched the
feasible region and stop the procedure. Initially, GRF-based optimization methods were introduced for
deterministic computer experiments in Jones, Schonlau, and Welch (1998), followed by Huang, Allen, Notz,
and Zeng (2006) which considered computer experiments with noisy output. Recently, Frazier, Xie, and
Chick (2011) and Quan, Yin, Ng, and Lee (2013) introduced GRF-based optimization methods into DOvS.
Other GRF-based methods include Xu (2012), which combines an ARS method with stochastic kriging
(Ankenman, Nelson, and Staum 2010) to help increase the efficiency of the ARS method, and Gaussian
process-based search (Sun, Hong, and Hu 2011), which uses the GRF to create a sampling distribution
that favors feasible points most likely to be optimal. All of these GRF-based methods use a GRF with a
continuous domain and then project the problem into the discrete setting by only considering points that
fall on the integer lattice. The use of a GRF with a continuous domain leads to a dense covariance matrix,
which can be ill-suited for large-scale problems with many feasible solutions due to slow and ill-conditioned
numerical computations.

We approach the DOvS problem by modeling the objective function values at the feasible points as
a realization of a discrete Gaussian Markov random field (GMRF) (Rue and Held 2005). The Markov
structure of GMRFs is intuitive for problems in industrial engineering and operations research (Salemi,
Staum, and Nelson 2013). For example, if we were interested in predicting the value of the objective
function at a feasible prediction point, then the values of the objective function at the feasible points in
its neighborhood would typically be sufficient; others would provide very little information. GMRFs are
typically defined on lattices, so the use of GMRFs in DOvS problems is more natural than using a GRF with
a continuous domain. Most importantly, the Markov structure lends itself to more efficient and numerically
stable calculations. A GMRF is defined by its precision matrix, which is the inverse of the covariance
matrix. Using the Markov structure of GMRFs, the precision matrix of a GMRF can be constructed to
be sparse. Thus, we can use several sparse matrix techniques to calculate expressions which involve the
precision matrix. The size of the feasible region we are able to handle with the procedure presented in this
paper depends on the structure of the feasible region of the DOvS problem, but should not be too large so
that even sparse matrix techniques cannot handle them.

To allocate the simulation effort throughout the procedure, we utilize an EI criterion. Jones, Schonlau,
and Welch (1998) first introduced an EI criterion for optimization problems in the field of deterministic
computer experiments. In their case, the objective function could be observed without noise, so their
EI criterion would not incorporate the uncertainty in the simulation output from a stochastic simulation.
Huang, Allen, Notz, and Zeng (2006) and Quan, Yin, Ng, and Lee (2013) introduced other EI criteria
for the case of noisy output; however, both criteria treat the value at the current optimal point as fixed
instead of as a random variable. We introduce an EI criterion similar to that of Williams, Santner, and
Notz (2000), which we call complete expected improvement (CEI). CEI incorporates the uncertainty in
stochastic simulation by treating the value at the current optimal point as a random variable, as well as the
feasible point being considered. The main difference between the EI criterion of Williams, Santner, and
Notz (2000) and our CEI is the origin of the uncertainty. Williams, Santner, and Notz (2000) dealt with
deterministic computer experiments with the uncertainty being introduced by inputs that contain noise,
whereas our uncertainty is introduced by the stochastic noise in the simulation output. We use the CEI in
our stopping criterion to determine when we have sufficiently searched the feasible region, by stopping
when the CEI is too small to warrant more searching. Similar to EI criteria, the Knowledge Gradient (KG)
policy (Frazier, Powell, and Dayanik 2009) is also used to guide the allocation of simulation effort and
automatically regulate the exploration vs. exploitation trade-off. However, the KG policy determines the
benefit of running another replication at a feasible point, whereas EI criteria estimate how much better the
unknown objective function value at another feasible point is as compared to the current optimal.
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Figure 1: Example of a graph G = (V ,E ) corresponding to a subset of the integer lattice Z2.

In the next section, we discuss GMRFs along with some of the methodology we will need for our
procedure. In Section 3, we present an outline of our DOvS procedure and discuss several aspects of it
in more detail, including parameter estimation and CEI. We present results of numerical experiments in
Section 4.

2 DOvS USING GMRFs

A GMRF is a non-degenerate multivariate Gaussian random vectorY=(Y1,Y2, . . . ,Yn)
>which is associated

with an undirected and labelled graph G = (V ,E ), where V denotes the set of nodes and E denotes the set
of edges. Each node in V is associated with a unique element of Y, i.e., there is a one-to-one correspondence
between the nodes of V and the elements of Y. Two nodes in the graph are called neighbors if they are
connected by an edge. If we denote the mean vector and precision matrix of Y by µ and Q, respectively,
then we can write the probability density function of the GMRF as

(2π)−n/2|Q|1/2 exp
(
−1

2
(y−µ)>Q(y−µ)

)
,

where the positive-definite precision matrix Q is the inverse of the covariance matrix. The entries of the
precision matrix can be interpreted in terms of conditional precisions

Prec(Yi|YV \{i}) = Qii, (1)

where YV \{i} is the set of nodes in V \{i}, and partial correlations

Corr(Yi,Y j|YV \{i, j}) =−
Qi j√
QiiQ j j

, (2)

where YV \{i, j} is the set of nodes in V \{i, j}. The graph G determines the non-zero pattern of the precision
matrix Q, and vice versa, since for a GMRF Qi j 6= 0 if and only if {i, j} ∈ E . Thus, the precision matrix
will be sparse if the set of edges is small in size, and vice versa. GMRFs get the name “Markov” because
they possess the local Markov property:

Yi ⊥ YV \{i,Ni}|YNi for every i ∈ V ,

where Ni is the set of neighbors of node i in V . To better understand the local Markov property, consider
the graph G in Figure 1. If we observe the value of the GMRF at (1,0), (3,0), and (2,1), then our prediction
of the value of the GMRF at (2,0) is not affected by information about the GMRF at any other lattice point
in the graph. The Markov property does not imply that nodes far away from one another are independent,
but rather if we know the value of the GMRF at nodes close by, then we can ignore nodes further away.
To completely specify a GMRF, we only need to specify the mean µ and the precision matrix Q, whose
non-zero pattern is associated with the structure of the graph G .
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Figure 2: (a) and (b) are two possible neighborhood structures for a lattice point x in a two-dimensional
integer lattice; (c) shows parameter values assigned to each edge in (a) using the function p.

2.1 Parameterization

In our DOvS problem with integer-ordered decision variables, the feasible region X is a finite subset of
the d-dimensional integer lattice Zd . Thus, the straightforward construction of the graph G starts with
defining the nodes of the graph to be the lattice points in the feasible region. To finish the construction
of G , we must specify when two nodes will be connected with an edge, which we do by specifying
the neighborhood structure for any given node. Examples of two-dimensional neighborhood structures
are given by Figure 2a and Figure 2b. The neighborhood represented in Figure 2a, given by the set of
nodes {x′ ∈ X : ||x−x′||2 = 1}, has an upper bound of 2d neighbors in d dimensions. The neighborhood
represented in Figure 2b, given by the set of nodes {x′ ∈ X : ||x−x′||∞ = 1}, has an upper bound of 2d+1

neighbors in d dimensions. Two nodes are connected by an edge if they are neighbors as determined by
the neighborhood structure.

Since we are particularly focused on DOvS problems with large feasible regions, we will use the
neighborhood structure represented by Figure 2a. Although we assume a specific neighborhood structure for
efficient computations, our method can be used with any neighborhood structure. From the neighborhood
structure represented by Figure 2a, the neighbors of a feasible point x are the set of feasible points
{x′ ∈ X : ||x−x′||2 = 1}. This neighborhood structure leads to at most 2d|X| edges in the set E , and thus
the fraction of non-zero entries in the precision matrix Q is bounded from above by 2d/|X|. Although we
have defined the graph G , and thus the non-zero pattern of the precision matrix, we have not yet specified
the non-zero entries of the precision matrix. The non-zero entries of Q are determined by the function
p(x,x′;θ), where θ = (θ0,θ1,θ2, . . . ,θd)

> is a vector of parameters, i.e., the i jth entry of Q is given by
Qi j , p(xi,x j;θ). We use the function

p(x,x′;θ) =


θ0 if x = x′
−θ0θ j if |x−x′|= e j

0 otherwise
(3)

for x,x′ ∈ Zd , where e j is the jth standard basis vector. Since the conditional precisions in Equation
(1) must be positive, it follows that θ0 must be positive. We also want neighbors to have non-negative
partial correlations, given by Equation (2), so we restrict the values of θ1,θ2, . . . ,θd to be non-negative.
Furthermore, we need θi ≤ 1 for i = 1,2, . . . ,d, since the partial correlations must be less than one. Lastly,
we need Q to be positive-definite. We will use these restrictions later in Section 3.2 when we calculate the
maximum likelihood estimates (MLEs) of the parameters. With this parameterization and these restrictions,
Q is a non-singular M-matrix so its inverse is nonnegative, i.e., [Q−1]i j ≥ 0 for all i and j. In other words,
there are no negative correlations among nodes in the GMRF, which is a property that we want. The
function p, illustrated in Figure 2c, leads to a nonstationary GMRF; the variances at feasible points with
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more neighbors are larger than the variances at feasible points with fewer neighbors. We are not concerned
with the nonstationarity of the GMRF, since we only use the conditional variance, given the observed
simulation output, in our procedure. We will write Q(θ) to explicitly show the dependence of the precision
matrix on the parameters.

2.2 Methodology

Consider the DOvS problem

minimize y(x), E[Y(x)]
subject to x ∈ X,

where X is a finite subset of the d-dimensional integer lattice Zd with n, |X|. The distribution of the random
variable Y(x), as a function of the feasible point x, is unknown. However, the expectation y(x), E[Y(x)]
can be estimated using stochastic simulation.

Let y denote the vector of objective function values (y(x1),y(x2), . . . ,y(xn))
>. We model y as a

realization of the GMRF

Y, (Y(x1),Y(x2), . . . ,Y(xn))
> ∼N (µ,Q(θ)−1) (4)

with mean vector µ and precision matrix Q(θ), as defined above. Assume that we have run the simulation
at the feasible points in the set Ξ2 ⊆ X, which we call the design points. We partition X into the two
disjoint sets Ξ2 and Ξ1 =X\Ξ2. Thus, Ξ2 is the set of design points at which we have run the simulation,
and Ξ1 is the set of feasible points at which we have not run the simulation. For simplicity, we use 1 as a
subscript to denote quantities associated with the set Ξ1 and 2 as a subscript to denote quantities associated
with the set Ξ2. Using these disjoint sets, we can partition the vectors y,Y,µ , and the precision matrix
Q(θ) and rewrite expression (4) as(

Y1

Y2

)
∼N

((
µ1

µ2

)
,

(
Q11(θ) Q12(θ)

Q12(θ)
> Q22(θ)

)−1
)
.

Let Ȳ2 be the vector of simulation output at the design points. We model the simulation output Ȳ2 as a
realization of the GMRF Yε

2, which we define by the conditional distribution

(Yε
2−Y2)|(Y2 = y2)∼N (~0n2×1,Q−1

ε ), (5)

where the matrix Qε , called the intrinsic precision matrix, is the precision matrix of the intrinsic noise
inherent to the stochastic simulation. When we sample independently, Qε is a diagonal matrix, whereas
when we sample with common random numbers (CRN), Qε is a dense matrix. Let n1 , |Ξ1| and n2 , |Ξ2|.
The conditional distribution Y|Yε

2 = Ȳ2 is given by(
Y1

Y2

)∣∣(Yε
2 = Ȳ2) ∼N

((
µ1

µ2

)
+ Q̄(θ)−1

( ~0n1×1

Qε(Ȳ2−µ2)

)
,Q̄(θ)−1

)
, (6)

where~0n1×1 is the n1×1 vector of zeros and

Q̄(θ),

(
Q11(θ) Q12(θ)

Q12(θ)
> Q22(θ)

)
+

(
0n1×n1 0n1×n2

0>n1×n2
Qε

)
is the conditional precision matrix, where 0ni×n j is the ni× n j matrix of zeros. The sparsity of Q̄(θ) is
inherited directly from the sparsity of Q(θ) and Qε . Furthermore, when a direct method, such as the sparse
Cholesky factorization, cannot be used to directly invert Q̄(θ), we can avoid direct inversion of Q̄(θ) by
solving a sparse linear system whose coefficient matrix is the sparse matrix Q̄(θ).
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3 GMRF-DOvS PROCEDURE

In this section, we provide an outline of our GMRF-DOvS procedure and give details for several aspects
of the procedure. The outline is given in Section 3.1, followed by estimation of the parameters using
the simulation output in Section 3.2. Afterwards, we define the CEI in Section 3.3 and discuss candidate
feasible points, which are feasible points for which we calculate the CEI, in Section 3.4.

3.1 GMRF-DOvS Procedure Outline

Here we give a brief outline of the procedure, with details for each step discussed in later sections. Our
procedure utilizes the CEI in the stopping criterion, by stopping when the CEI has been below a specified
threshold δ for v times in a row. This stopping criterion has been suggested in other EI methods, such as
the method in Huang, Allen, Notz, and Zeng (2006).

1. Set u = 0. Generate a set of k design points. Simulate r replications at each design point, and use
the simulation output to calculate the MLEs for the GMRF parameters using the method in Section
3.2.

2. Calculate the vector of conditional means in the conditional distribution (6) and let x̃ be the feasible
point with the smallest conditional mean value.

3. Select c candidate feasible points, defined in Section 3.4. If the feasible region is not too large,
and the CEI can be calculated for each feasible point, then all feasible points are candidates, i.e.,
c = n. If the feasible region is too large, and the CEI cannot be calculated for each feasible point,
then select c < n candidate feasible points.

4. Calculate the CEI, defined in Section 3.3, for each candidate feasible point. If the CEI at each
candidate feasible point is less than δ , then set u← u+1. Otherwise, set u = 0. If u < v, go to
Step 5. Otherwise, go to Step 7.

5. Simulate r replications at the candidate feasible point x∗CEI that maximizes the CEI over the set of
all candidate feasible points. Note that a feasible point can be selected more than once throughout
the procedure, so the cumulative number of replications allocated to a feasible point can be more
than r.

6. If x∗CEI is a design point: update the simulation output at x∗CEI with the r new replications and go
to Step 2. If x∗CEI is not a design point: add x∗CEI to the set of design points, add the simulation
output obtained at x∗CEI to the entire collection of simulation output, and go to Step 2. Optional at
each iteration: re-calculate the MLEs using the entire collection of simulation output.

7. Return the simulated feasible point with the smallest conditional mean value.

The inputs to the procedure that must be specified are k,r,c,δ , and v. Although the parameters of the GMRF
must be fit during initialization, they do not need to be updated afterwards. We recommend updating the
parameters more often during the beginning of the procedure and only sparingly later to reduce computation
time.

3.2 Parameter Estimation

To implement GMRFs for DOvS, the mean vector µ needs more structure. We assume that µ =
(β0,β0, . . . ,β0)

>, i.e., we assume a constant trend, which is appropriate when we have no prior infor-
mation about the objective function values at the feasible points.

The parameters β0 and θ will be estimated from the simulation output using maximum likelihood
estimation. Following Ankenman, Nelson, and Staum (2010), we use a plug-in estimator Q̂ε for the intrinsic
precision matrix Qε . We assume independent sampling, i.e., a diagonal intrinsic precision matrix, since
sampling with CRN leads to a dense intrinsic precision matrix and therefore Q̄(θ) will not be sparse.
Denote the design points by x1,x2, . . . ,xn2 , and let s2(x) = (1/r(x))∑

r(x)
i=1

(
Yi(x)− Ȳ(x)

)2, where r(x) is
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the cumulative number of replications that have been allocated to design point x, Yi(x) is the simulation
output at x on the ith replication, and Ȳ(x) is the sample average of the simulation output across the r(x)
replications at design point x. The plug-in estimator for the intrinsic precision matrix is

Q̂ε = diag
(

r(x1)

s2(x1)
,

r(x2)

s2(x2)
, . . . ,

r(xn2)

s2(xn2)

)
.

After substituting Q̂ε for Qε , we integrate the conditional distribution (5) over y2 to obtain the
unconditional distribution

Yε
2 ∼N (β01n2×1,Σ22(θ)+ Q̂−1

ε ),

where Σ22(θ), (Q22(θ)−Q12(θ)
>Q11(θ)

−1Q12(θ))
−1, and 1n2×1 is the n2×1 vector of ones. Disregarding

terms that do not depend on β0 or θ , the log-likelihood function given the simulation output is

L (β0,θ |Ȳ2),
1
2

log |(Σ22(θ)+ Q̂−1
ε )−1|

− 1
2
(Ȳ2−β01n2×1)

>(Σ22(θ)+ Q̂−1
ε )−1(Ȳ2−β01n2×1),

where Ȳ2 is the vector of simulation output at the design points. Miller (1981) provides a method for
efficiently calculating (Σ22(θ)+ Q̂−1

ε )−1 using only Σ22(θ)
−1 and matrix-vector products with the columns

of Q̂−1
ε . Furthermore, we can calculate Σ22(θ)

−1 = Q22(θ)−Q12(θ)
>Q11(θ)

−1Q12(θ) by solving the
sparse linear system Q11(θ)W = Q12(θ) and substituting W for Q11(θ)

−1Q12(θ). Fixing the parameters
in θ , the MLE for β0 is

β̂0(θ) = (1>n2×1(Σ22(θ)+ Q̂−1
ε )−11n2×1)

−11>n2×1(Σ22(θ)+ Q̂−1
ε )−1Ȳ2,

where we have written β̂0 as a function of θ to explicitly show dependence. Substituting the MLE β̂0(θ)
into L (β0,θ |Ȳ2), we get the profile log-likelihood function

L (θ |Ȳ2),
1
2

log |(Σ22(θ)+ Q̂−1
ε )−1|

− 1
2
(Ȳ2− β̂0(θ)1n2×1)

>(Σ22(θ)+ Q̂−1
ε )−1(Ȳ2− β̂0(θ)1n2×1),

which only depends on θ . The MLE θ̂ for θ is the maximizer of the profile log-likelihood function
L (θ |Ȳ2) over the possible values of θ , i.e.,

θ̂ , argmax
θ∈Θ

{
L (θ |Ȳ2) | 0≤ θi ≤ 1 for 1≤ i≤ d,θ0 > 0

}
,

where Θ is the set of values of θ ∈ Rd+1 for which Q(θ) is positive-definite.

3.3 Complete Expected Improvement

The EI criterion we introduce in this paper, the CEI, is similar to the EI criterion of Williams, Santner,
and Notz (2000). The CEI takes into account both the uncertainty at a candidate feasible point x and the
uncertainty at the current optimal point x̃, the point with the smallest conditional mean value, by treating
the value at both as random variables. Let Y(x) be the Gaussian random variable from the GMRF Y
corresponding to the feasible point x. Given the simulation output Ȳ2, we have the conditional distribution(Y|Ȳ2

(x̃)
Y|Ȳ2

(x)

)
,

(
Y(x̃)
Y(x)

)∣∣(Yε
2 = Ȳ2) ∼N

((
µ|Ȳ2

(x̃)
µ|Ȳ2

(x)

)
,

(
σ2
|Ȳ2

(x̃) ρσ|Ȳ2
(x̃)σ|Ȳ2

(x)
ρσ|Ȳ2

(x̃)σ|Ȳ2
(x) σ 2

|Ȳ2
(x)

))
, (7)
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where x 6= x̃ is another feasible point, and ρ is the correlation coefficient between the random variables
Y|Ȳ2

(x̃) and Y|Ȳ2
(x), i.e., the conditional correlation coefficient between the random variables Y(x̃) and

Y(x). We use the conditional distribution (6) to calculate the terms in the conditional distribution (7).
Specifically, we calculate the vector of conditional means

β̂0(θ̂)1n×1 + Q̄(θ̂)−1
( ~0n1×1

Q̂ε(Ȳ2− β̂0(θ̂)1n2×1)

)
to obtain µ|Ȳ2

(x̃) and µ|Ȳ2
(x), and the columns of the conditional covariance matrix Q̄(θ̂)−1 corresponding

to x̃ and x to obtain ρ , σ 2
|Ȳ2

(x̃), and σ 2
|Ȳ2

(x). Note that we can calculate the jth column [Q̄(θ̂)−1]· j of

Q̄(θ̂)−1 by solving the sparse linear system Q̄(θ̂)[Q̄(θ̂)−1]· j = e j. Let

σ
2
|Ȳ2

(x̃,x), σ
2
|Ȳ2

(x̃)+σ
2
|Ȳ2

(x)−2ρσ|Ȳ2
(x̃)σ|Ȳ2

(x)

be the variance of the difference Y|Ȳ2
(x̃)−Y|Ȳ2

(x). Then, the CEI at the feasible point x, denoted by
CEI(x), is defined as

CEI(x), E[max(Y|Ȳ2
(x̃)−Y|Ȳ2

(x),0)]

= (µ|Ȳ2
(x̃)−µ|Ȳ2

(x))Φ

(
µ|Ȳ2

(x̃)−µ|Ȳ2
(x)

σ|Ȳ2
(x̃,x)

)
+σ|Ȳ2

(x̃,x)φ

(
µ|Ȳ2

(x̃)−µ|Ȳ2
(x)

σ|Ȳ2
(x̃,x)

)
, (8)

where σ|Ȳ2
(x̃,x) ,

√
σ2
|Ȳ2

(x̃,x), Φ is the cumulative distribution function of a standard normal random

variable, and φ is the density function of a standard normal random variable. We can use the expression
for EI in Jones, Schonlau, and Welch (1998) to derive expression (8), by noting that the difference
Y|Ȳ2

(x̃)−Y|Ȳ2
(x) is a Gaussian random variable with mean µ|Ȳ2

(x̃)− µ|Ȳ2
(x) and variance σ2

|Ȳ2
(x̃,x).

Furthermore, from the analysis in Jones, Schonlau, and Welch (1998), we know that CEI(x) is increasing
in both µ|Ȳ2

(x̃)− µ|Ȳ2
(x) and σ2

|Ȳ2
(x̃,x). The point x̃ is the feasible point with the smallest conditional

mean value given the simulation output, so µ|Ȳ2
(x̃) ≤ µ|Ȳ2

(x) for all x ∈ X. Since CEI(x) is increasing
in µ|Ȳ2

(x̃)− µ|Ȳ2
(x), CEI(x) is decreasing in µ|Ȳ2

(x). Therefore, points with smaller conditional means
will tend to have larger CEIs. As the conditional correlation coefficient ρ decreases, with σ|Ȳ2

(x̃) and
σ|Ȳ2

(x) held constant, σ2
|Ȳ2

(x̃,x) increases. Similarly, as σ|Ȳ2
(x) increases with ρ and σ|Ȳ2

(x̃) held constant,

σ2
|Ȳ2

(x̃,x) increases. Feasible points that are far away from x̃ will tend to have smaller values of ρ , and
feasible points that are far away from the design points will tend to have larger values of σ|Ȳ2

(x). Thus,
feasible points that are far away from x̃ or far away from the design points will tend to have larger CEIs.
We use these tendencies in Section 3.4 to help us choose candidate feasible points that we expect to have
the largest CEIs.

By treating the value at the current optimal point x̃ and the value at the candidate feasible point x as
random variables, we take into account their conditional correlation ρ . With the other terms held constant,
increasing ρ decreases the CEI. Thus, using the CEI criterion encourages exploration of the feasible region,
since ρ increases as we move further away from the current optimal point.

3.4 Selecting Candidate Feasible Points

A candidate feasible point is a feasible point for which we calculate the CEI during an iteration of the
procedure. When the number n of feasible points is not too large, we can calculate the CEI for all feasible
points. When this is possible, the candidate feasible points consist of the entire set of feasible points, i.e.,
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there are c = n candidates. However, for DOvS problems with large feasible regions, calculating the CEI
for every feasible point is too computationally expensive since we need to solve a sparse linear system to
calculate each column of the conditional covariance matrix Q̄(θ̂)−1. Instead, we select a subset of c < n
feasible points as candidates, and choose to simulate at the candidate with the largest CEI. We divide the
candidate feasible points into three groups. The first and second groups exploit good areas of the feasible
region, where we might expect to find the feasible point with the largest CEI, by utilizing the tendencies
given at the end of Section 3.3. The first group consists of feasible points that have small conditional
mean values, and the second group consists of feasible points that are far away from the design points.
Since these two groups are based on tendencies, the third group is composed of randomly sampled feasible
points to help ensure the feasible region is sufficiently searched. Let s≤ c denote the number of candidate
feasible points that will be randomly sampled from the feasible region.

1. b c−s
2 c candidates are the feasible points with the b c−s

2 c smallest conditional mean values.
2. d c−s

2 e candidates are selected using the Voronoi tesselation (Preparata and Shamos 1985). We first
select t , d c−s

2 e feasible points s1,s2, . . . ,st from a space-filling point-set. Let N (si) be the set of
d +1 nearest-neighbors to the feasible point si. Calculate the vertex vi of the Voronoi tesselation
for each of the N (si). If necessary, project any vi back into the feasible region. The vertices
v1,v2, . . . ,vt are t candidate feasible points.

3. s candidate points are randomly sampled feasible points, or feasible points from a space-filling point-
set. Fishman (2003) provides a method for sampling approximately uniformly from a polyhedron.

Instead of using the Voronoi tesselation to choose candidates in the second group, when it is not too
burdensome, we can partition the feasible region into blocks and keep track of how many design points
fall into each block. Then we can select feasible points from the blocks that have the lowest numbers of
design points as candidates in the second group.

4 NUMERICAL EXPERIMENTS

For our experiments, we use the (s,S) inventory example from Koenig and Law (1985). The objective
function for this (s,S) inventory system is the expected average cost per period of the inventory system
over 30 periods. We assume the demand for inventory in each period is a sequence of i.i.d. Poisson random
variables with a common mean of 25. The order and unit shipping costs are $32 and $3, repsectively.
Furthermore, the holding cost is $1 per unit, per period, and the back-order cost is $5 per unit, per period.
The decision variables are s and S, and our DOvS problem is to minimize the expected average cost per
period, subject to the obvious constraint s < S. We also assume that the largest inventory we would consider
having is 100 units; this leads to a feasible region with 4950 feasible points. The optimal solution to this
DOvS problem occurs at s = 18 and S = 53 with an optimal expected average cost per period of $106.18.

We ran our procedure 50 times, each time starting with k = 20 randomly chosen feasible points as
initial design points. For each of the 20 initial design points, we simulated r = 20 replications and used
the simulation output to calculate the MLEs for the parameters. We only calculated the MLEs once at the
beginning of each run, and did not recalculate the MLEs throughout the procedure. At each iteration, we
calculated the CEI for every feasible point in the feasible region, i.e., c = 4950, and ran the simulation for 20
replications at the feasible point that maximized the CEI. The procedure stopped when the maximum CEI
over all feasible points was less than one for 10 times in a row, i.e., δ = 1 and v = 10 in our procedure. The
vector of conditional means and the conditional covariance matrix, both of which were needed to calculate
the CEI for every feasible point, were obtained using the Cholesky factorization. Specifically, we calculated
Q(θ)−1 by calculating the Cholesky factorization L(θ) of Q(θ) and then Q(θ)−1 = (L(θ)>)−1(L(θ)−1).
Although our DOvS procedure can handle problems with more than 4950 feasible points, we want to
observe how our procedure performs when we can calculate the CEI for all feasible points, along with the
corresponding runtimes to perform all of the calculations.
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Figure 3: Boxplots of experiment results for 50 runs of our procedure on the (s,S) inventory system. The
whiskers in each boxplot extend to 1.5 times the interquartile range.

Figure 3 displays boxplots of the first 50 iterations of the procedure with three outliers not shown,
although they were used in the calculation of the quartiles, with the x-axis giving the iteration number
and the y-axis giving the actual objective function value at the current optimal point for the corresponding
iteration. The actual objective function value was obtained by simulating 10,000 replications of the (s,S)
inventory system. As can be seen from Figure 3, our procedure is consistently converging to the global
optimal solution within 50 iterations, even when the 20 initial design points are far away from the global
optimal solution. Calculating the Cholesky factorization L(θ) of Q(θ) took 0.04 seconds, on average,
and using the Cholesky factorization to calculate the inverse of the precision matrix took 4.54 seconds, on
average. Furthermore, calculating the vector of conditional means took 0.02 seconds, on average. In total,
each iteration took 4.67 seconds, on average.

Although each run required more than 50 iterations before the stopping criterion was satisfied, the
behavior of the boxplots remained the same after the first 50 iterations. The reason for this behavior may
be that, for the (s,S) inventory problem, the feasible points with the largest CEIs were feasible points
that had not yet been simulated. Thus, a feasible point was never chosen more than once, and at most 20
replications were allocated to it. However, the GMRF procedure still returned a near optimal feasible point
on every run.

Comparison with the KN Ranking and Selection Procedure

Since we calculated the CEI at every feasible point during each iteration of the procedure, we were implicitly
considering all feasible points. In other words, even though we did not simulate at every feasible point,
each feasible point was considered since we calculated the CEI using the simulation output at the design
points. In this section, we compare our procedure to the KN ranking and selection procedure (Kim and
Nelson 2001) which explicitly considers every feasible point by simulating at each of them. The KN
procedure sequentially chooses smaller and smaller subsets of feasible points that are deemed better than
the rest with respect to some criterion. For the KN procedure, we use CRN and set the number of common
first-stage replications at each feasible point to n0 = 10, with α = 0.05 and δ = 1. As with our procedure,
we ran the KN procedure for 50 runs. The role of δ in our procedure can be compared to the role of δ

in the KN procedure. For the KN procedure, the probability of selecting a feasible point whose objective
function value is within δ of the optimal is at least 1−α . Thus, δ specifies the set of feasible points that
are acceptable for the procedure to select as optimal; we are indifferent to which feasible point in this
set is chosen. For our procedure, we stop searching for better feasible points when the improvement we
expect in the objective function value at every feasible point is less than δ for v times in a row. Figures
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(a) GMRF procedure using c = 4950 candidates (b) GMRF procedure using c = 500 candidates

(c) KN procedure (d) Number of replications

Figure 4: (a), (b), (c) Histograms of the difference between actual optimal objective value and actual
objective values returned by each procedure. (d) Boxplots of number of replications required for each
procedure. The whiskers in each boxplot extend to 1.5 times the interquartile range.

4(a)–(c) give the results for our procedure when we calculate the CEI at every feasible point (c = 4950
candidates), our procedure when we calculate the CEI at c = 500 candidate feasible points (with s = 0),
and the KN procedure, respectively. From these figures, we can see that all three procedures locate near
optimal feasible points, if not the optimal feasible point, before stopping. Between the three procedures,
the KN procedure found the better solution on most runs. However, as can be seen in Figure 4(d), the KN
procedure used more than five times as many replications as the GMRF procedure, using both c = 500 and
c = 4950 candidates, before it stopped. The GMRF procedure using c = 4950 candidates and the GMRF
procedure using c = 500 gave similar results, used nearly the same number of replications, and visited
nearly the same number of feasible points on each run. Thus, we can see the benefit of using c < 4950
candidates; we implicitly consider all feasible points even without calculating the CEI at every one.
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