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ABSTRACT

Recently the stochastic kriging (SK) methodology proposed by Ankenman et al. (2010) has emerged as an
effective metamodeling tool for approximating a mean response surface implied by a stochastic simulation.
Although fruitful results have been achieved through bridging applications and theoretical investigations
of SK, there lacks a unified account of efficient simulation experimental design strategies for applying
SK metamodeling techniques. In this paper, we propose a sequential experimental design framework
for applying SK to predicting performance measures of complex stochastic systems. This framework
is flexible; i.e., it can incorporate a variety of design criteria. We propose several novel design criteria
under the proposed framework, and compare the performance with that of classic non-sequential designs.
The evaluation uses illustrative test functions and the well-known M/M/1 and the (s,S) inventory system
simulation models.

1 INTRODUCTION

To build a high-quality metamodel with a given computational budget to expend, a carefully designed simu-
lation experiment is critical. The literature on experimental designs for deterministic computer experiments
abounds and various design schemes have been proposed, for instance, Latin hypercube designs (LHDs)
(McKay et al. 1979), orthogonal array based LHDs (Tang 1993), uniform designs (Fang et al. 2000), and
maximum entropy designs (Shewry and Wynn 1987), to name a few. Despite earlier efforts made by some
researchers (e.g., Ng and Yin 2012, van Beers and Kleijnen 2008), there has been no systematic account
of experimental designs for stochastic simulation. In particular, very little work has been done on devising
efficient experimental designs for building efficient SK metamodels.

As compared to designs for deterministic computer experiments (in such experiments the same output
is produced if the simulation is run twice at the same design point), an efficient simulation design for SK
or for stochastic simulation at large is much more challenging to construct, as one needs to determine not
only the design-point locations to conduct simulation runs but also the amount of computational effort to
be expended at each point. While non-sequential designs that choose all design points up front (e.g., most
space-filling designs) may be considered sufficient for deterministic computer experiments, a sequential
design strategy is arguably more efficient for stochastic simulation. Sequential designs offer a huge advantage
over non-sequential ones in that they improve budget allocation efficiency and reduce waste of computing
resources—they permit learning information from previous simulation runs and consequently allocate the
remaining simulation budget more wisely. In this paper, we aim to provide the first step toward establishing
a general sequential design framework for implementing SK techniques for stochastic simulation and show
the benefit of using sequential designs over non-sequential ones.

The remainder of this paper is organized as follows. Section 2 provides a review on SK. In Section 3, a
general sequential design framework and some design criteria are proposed for implementing SK techniques
in the context of stochastic simulation. The predictive performances of SK using different sequential design
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criteria under the proposed framework are compared through some illustrative examples in Section 5.
Section 6 concludes the paper.

2 A REVIEW ON STOCHASTIC KRIGING

The theoretical aspects of stochastic kriging (SK) prediction are briefly introduced in this subsection before
it is applied to the research questions to follow. Standard SK models the simulation response estimate
obtained at a design point x ∈X ⊂ Rd on the jth simulation replication as

Y j(x) = Y(x)+ ε j(x) = f(x)>β +M(x)+ ε j(x) , (1)

where Y(x) represents the unknown true response that we intend to estimate at point x ∈X , and the term
ε j(x) represents the mean-zero simulation error realized on the jth replication.

The terms f(·) and β in (1) are, respectively, a p×1 vector of known functions of x and a p×1 vector
of unknown parameters. The term M(·) represents a second-order stationary mean-zero Gaussian random
field (Santner et al. 2003; Kleijnen 2008). That is, the spatial covariance between any two points in the
random field is typically modeled as

Cov(M(x),M(y)) = τ
2R(x−y;θ) , (2)

where τ2 can be interpreted as the spatial variance of the random process M(·) at all x. The spatial
correlation function R(·;θ) is assumed to be anisotropic; it determines the smoothness properties of M(·)
and it depends on x and y only through their difference. The parameter vector θ = (θ1,θ2, . . . ,θd)

> controls
how quickly the spatial correlation diminishes as the two points become farther apart, and it measures
the roughness of the underlying response surface in each direction. Ankenman et al. (2010) refer to the
stochastic nature of M as extrinsic uncertainty, in contrast to the intrinsic uncertainty represented by ε that
is inherent in a stochastic simulation output, and they assume that M and ε are independent.

The simulation errors ε1(x),ε2(x), . . . are assumed to be independent and identically distributed across
replications at a given design point, and the variance of ε j(x) may depend on x. Notice that the simulation
output Y j(x) could be composed of a large number of more basic random variables obtained on the jth
simulation replication. For instance, Y j(x) represents the average of hundreds of individual simulated
waiting times of incoming calls to a call center on the jth replication when the service rate is x calls per
hour. Hence, the normality of ε j(x) could be anticipated.

An experimental design for SK consists a set of design points to run independent simulations and the
corresponding numbers of replications to apply, i.e., D = {(xi,ni)

k
i=1}. Denote the k× 1 vector of the

sample averages of simulation responses by Ȳ =
(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk)

)>, in which

Ȳ (xi) =
1
ni

ni

∑
j=1

Y j(xi) = Y(xi)+ ε̄(xi), and ε̄(xi) =
1
ni

ni

∑
j=1

ε j(xi) i = 1,2, . . . ,k . (3)

That is, Ȳ (xi) is the resulting point estimate of the performance measure of interest obtained at design
point xi and ε̄(xi) is the simulation error associated with it. We write ε̄ as a shorthand for the vector
(ε̄(x1), ε̄(x2), . . . , ε̄(xk))

>.
To do global prediction, standard SK prescribes using the the best linear unbiased predictor of Y(x0)

that has the minimum mean squared error (MSE) among all linear unbiased predictors (see Appendix A.1
of Chen et al. 2012),

Ŷ(x0) = f(x0)
>

β̂ +ΣM(x0, ·)>Σ
−1
(
Ȳ −Fβ̂

)
, (4)

where β̂ =
(
F>Σ−1F

)−1 F>Σ−1Ȳ is the generalized least squares estimator of β , Σ = ΣM + Σε , and

F =
(
f(x1)

>, f(x2)
>, . . . , f(xk)

>)>. The corresponding MSE follows as

MSE(Ŷ(x0)) = ΣM(x0,x0)−ΣM(x0, ·)>Σ
−1

ΣM(x0, ·)+ζ
>(F>Σ

−1F)−1
ζ , (5)
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with ζ = f(x0)−F>Σ−1ΣM(x0, ·). MSE is a widely used predictive accuracy measure, and the sequential
design criteria to be introduced in Section 4 are developed on it. We now elaborate on ΣM, ΣM(x0, ·)
and Σε in (4) and (5). The k× k matrix ΣM records spatial covariances across the design points, i.e., its
(i,h)th entry ΣM(xi,xh) gives Cov(M(xi),M(xh)) as specified in (2). The k×1 vector ΣM(x0, ·) contains
the spatial covariances between the k design points and a given prediction point x0. The k× k matrix Σε

is the variance-covariance matrix of the vector of simulation errors associated with the vector of point
estimates Ȳ , ε̄ . Common random numbers, CRN, is a widely used variance reduction technique that tends
to introduce positive correlation between simulation outputs obtained at a pair of distinctive design points
on the same replication. As the use of CRN does not necessarily improve the predictive performance of
SK (?), we consider only independent simulations at distinct design points in the proposed research. If a
common number of simulation replications n is used at all k design points, then Σε is reduced to a k× k
diagonal matrix n−1diag{σ2

10,σ
2
20, . . . ,σ

2
k0} with σ2

i0 := Var(ε j(xi)).
To implement SK for prediction, the standard practice is to first substitute Σ̂ε into Σ = ΣM+Σε , with the

ith diagonal entry of Σ̂ε specified by the simulation output sample variances for i = 1,2, . . . ,k. Prediction
then follows (4) and (5) upon obtaining estimates of β , θ and τ2 through maximizing the log-likelihood
function formed under the standard assumption stipulated by SK that (Y(x0), Ȳ >)> follows a multivariate
normal distribution (see, e.g., Ankenman et al. 2010 and Chen and Kim 2014).

3 A SEQUENTIAL DESIGN FRAMEWORK FOR STOCHASTIC KRIGING

With a given total computational budget of, say N, simulation replications to allocate, the ultimate goal of
a sequential experimental design for SK is to find a design consists of not only the design-point locations
but also the amount of simulation effort to be expended at each of them, i.e., {(xi,ni), i = 1,2, . . .}, where ni
represents the number of simulation runs to be made at design point xi. To simplify our analysis, suppose
that there is a relatively dense candidate design-point set, Xk, consisting of k distinct points in X , from
which we consider selecting design points to run simulations. Notice that the value of k should not be small
so that the k design points in Xk can cover the design space X adequately. The sequential design will
begin with a pilot experiment. The pilot experiment is conducted at k0 points chosen from Xk following
a space-filling design such as maximin LHD (Morris and Mitchell 1995) with the ith point receiving ni

0
simulation replications (k0 ·maxni

0 < N). Denote this pilot design as D0 = {(xi,ni
0), i = 1,2, . . . ,k0}. The

purpose of this pilot experiment is to collect some information about the underlying response surface and
to have an initial assessment of the sampling variability across X . The resulting data can be used to fit
an initial SK metamodel and an intrinsic variance metamodel across X . Define ∆n as a decision unit. In
the subsequent iterations of the sequential design, each time we choose a design point (either an untried
or an existing one from Xk) according to a prespecified criterion and assign ∆n replications to it. In fact,
the pilot experiment determines the number of remaining iterations to go as (N−∑

k0
i=1 ni

0)/∆n. Call the
design generated after the jth iteration D j. Although the total number of distinct design points selected
is unpredictable, the total simulation budget allocated by the end of the jth iteration is guaranteed to be
∑

k0
i=1 ni

0 + j ·∆n.
Suppose that our goal of the sequential design is to minimize a performance measure C(·). Then for

the jth iteration we set up the following myopic optimization problem seeking the optimal design point x∗
to assign the ∆n simulation runs:

maximizex∗∈Xk ∆C({D j−1,(x∗,∆n)}) (6)
subject to
k0

∑
i=1

ni
0 + j ·∆n≤ N

ni
0,∆n nonnegative integers
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where ∆C({D j−1,(x∗,∆n)}) = C({D j−1})−C({D j−1,(x∗,∆n)}) is the incremental gain in terms of the
chosen performance measure by assigning ∆n runs to x∗. Since upon finishing the ( j− 1)st iteration
C({D j−1}) becomes fixed, the optimization program (6) can be regarded as equivalent to the alternative
optimization program whose objective function is changed to minimizex∗∈Xk C({D j−1,(x∗,∆n)}), and the
latter is subject to the same set of constraints as defined in (6). We will work with this version instead.

4 SEQUENTIAL DESIGN CRITERIA

In this section we propose several ad hoc design criteria as candidates for C(·) in (6) and provide the
rationale for them. All these criteria are to some extent built on the integrated mean squared error (IMSE),
which directly quantifies the predictive accuracy achieved by the fitted metamodel built on a given design
D , IMSE(D) :=

∫
X MSE(Ŷ(x0);D)dx0. Below we introduce the standard design criterion IMSE first and

develop the other criteria as its more sophisticated extensions. In contrast to IMSE, the common feature
shared by the other criteria is to create different measures to evaluate the need of allocating more simulation
budget at simulated versus unsimulated points, in the hope of striking a better balance of exploration and
exploitation.

• The IMSE based criterion (IMSE). This criterion chooses the next point from the candidate design-
point set Xk that leads to the minimum approximated integrated mean squared error of prediction,
i.e., x∗ := argminxi∈Xk ÎMSE({D j−1,(xi,∆n)}).

• The Comparison index based criterion (Comp). This criterion chooses the next point that gives the
minimum comparison index, x∗ := argminxi∈Xk Comp({D j−1,(xi,∆n)}). The comparison index for
each point xi ∈ Xk is defined by

Comp({D j−1,(xi,∆n)}) =


ÎMSE({D j−1,(xi,∆n)})

∑
k
i=1 ÎMSE({D j−1,(xi,∆n)})

if xi /∈D j−1

|Ŷ(xi)|/max{γ|Ŷ(xi)|,
√

σ̂2
i /ni}

∑
k
i=1 |Ŷ(xi)|/max{γ|Ŷ(xi)|,

√
σ̂2

i /ni}
if xi ∈D j−1

(7)

where Ŷ(xi) and σ̂2
i represent the predicted response and intrinsic variance given by respective SK

metamodels at point xi ∈Xk. Notice that the value of Comp(·) lies in (0,1). A nutshell interpretation
can be given as follows. If the point is yet to be simulated (i.e., xi /∈D j−1), then we focus on evaluating
its potential in bringing down the IMSE if ∆n replications are assigned there. Its comparison index
is calculated based on ÎMSE({D j−1,(xi,∆n)}) as given for the IMSE based criteria. If the point
has already been simulated (i.e., xi ∈D j−1), then this criterion focuses on the estimated impact of
the sampling variability as compared to the magnitude of the response at that point. The parameter
γ ∈ (0,1) is a user defined quantity that reflects the relative magnitude of sampling error that the
user considers tolerable. Notice that if either the estimated sampling variability σ̂2

i is large or the

number of runs already assigned to xi, ni, is small, the ratio |Ŷ(xi)|/max{γ|Ŷ(xi)|,
√

σ̂2
i /ni} tends

to be small. In this case, xi is more likely to be chosen as the next point among all simulated design
points to run simulations. When ni is sufficiently large, the ratio will take a constant value 1/γ ,
hence xi is considered to have been exploited sufficiently, and it is less likely to be selected. In
summary, Comp({D j−1,(xi,∆n)}) is calculated as an exploration and exploitation index depending
on whether the xi has been simulated or not. We note that γ = 0.005 is used for all the numerical
examples presented in Section 5.

• The modified IMSE criteria (MIMSE). These criteria emerge by combining the strengths of the
aforementioned two criteria, IMSE and Comp. Three versions are considered here, namely,
MIMSE-1, MIMSE-2, and MIMSE-3. All of them reweight the approximated IMSEs calculated
at the simulated design points to balance the resource allocation among the simulated design points
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and those unsimulated ones. Specifically, at each potential design point xi ∈Xk define its MIMSE
index as MIMSE({D j−1,(xi,∆n)}) = fi× ÎMSE({D j−1,(xi,∆n)}). Then the next point to run
simulations is chosen as x∗ := argminxi∈Xk MIMSE({D j−1,(xi,∆n)}). Here fi specifies the weight
assigned to xi: If the point is yet to be simulated (i.e., xi /∈D j−1), fi = 1. Otherwise, fi is defined
as a monotonically decreasing function of u(xi,ni)− γ , where u(xi;ni) represents a measure of
remaining uncertainty at xi given that ni simulation runs having already been assigned there; the
pre-specified parameter γ ∈ (0,1) reflects the amount of uncertainty at a simulated design point
that the user considers tolerable. If u(xi;ni)− γ � 0, then fi takes a value much smaller than 1.
In this case, the MIMSE index calculated will be depreciated significantly by the weight fi from
ÎMSE({D j−1,(xi,∆n)}) such that a greater chance is presented for xi to be the point chosen next.
On the other hand, if u(xi;ni)− γ < 0, then fi tends to take a value greater than 1 so that the
MIMSE index calculated will be inflated by fi as compared to ÎMSE({D j−1,(xi,∆n)}) to prevent
xi from getting even more runs. When the amount of uncertainty at xi hits the threshold level, i.e.,
u(xi;ni)− γ = 0, the value of fi is set to a value slightly greater than 1 to penalize the simulated
points slightly from getting more simulation budget. Mathematically speaking, the weight fi for
the modified IMSE criteria is given by

fi =

{
1 if xi /∈D j−1 ,

p · [1+η (u(xi;ni)− γ)]−1 if xi ∈D j−1
(8)

where p > 1 is a constant slightly greater than 1 which specifies the penalty given to xi when
u(xi;ni) = γ; the value of η is set as η = (p−1)/(4γ) such that fi = 1 (hence no penalization is
given to xi) when the uncertainty measure u(xi;ni) = 5γ . We note that p = 1.1 and γ = 0.01 are
used for all the numerical examples presented in Section 5. MIMSE-1, MIMSE-2, and MIMSE-3
are different in their ways of defining the uncertainty measure, u(xi;ni) at xi ∈D j−1. Specifically,
MIMSE-1: u(xi;ni) =

√
σ̂2/ni/|Ŷ(xi)|; the uncertainty measure is specified as the estimated

relative error at xi ∈D j−1.

MIMSE-2: u(xi;ni) =
√

σ̂2/ni/|Ŷ|; the uncertainty measure is defined in a similar fashion as that

for MIMSE-1, but |Ŷ(xi)| is replaced by |Ŷ|, the average magnitude of the predicted responses
at all the simulated design points in D j−1.

MIMSE-3: u(xi;ni) = |Ȳ (xi)− Ŷ(xi)|/|Ŷ(xi)|, where Ȳ (xi) represents the average simulated
response at xi. In this case, the uncertainty measure is defined as the relative discrepancy
between the averaged simulation response and the predicted value at xi.

5 NUMERICAL EXAMPLES

In this section, we compare the predictive performances of SK with the design criteria proposed in Section 4
through four illustrative examples. The first two are stylized one-dimensional problems that show different
features of each design criterion under consideration. The last two examples, namely, an M/M/1 queue
and a simple (s,S) inventory system, further demonstrate the advantages of applying SK with sequential
design schemes over commonly used non-sequential designs.

5.1 Example 1

Consider the following one-dimensional problem in which we try to approximate a simple non-increasing
function Y(x) given by

Y(x) = 2+3/x, x ∈X = [0.5,7] . (9)

Specifically, the simulation output at design point x on the jth replication is generated according to

Y j(x) = Y(x)+ ε j(x) . (10)
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That is, the simulation error ε j(x) on the jth replication is sampled from a normal distribution with mean
zero and standard deviation as a function of x, g(x), i.e., ε j(x)∼N (0, [g(x)]2). Hence the sampling errors
are heterogeneous across the design space X . The following two scenarios of sampling variability are
taken into account:

E.g. (1.1) g(x) = x−1.5, i.e., the intrinsic variance decreases as x increases;
E.g. (1.2) g(x) = x/3, i.e., the intrinsic variance increases as x increases.

Experimental setup. Given a total budget of N simulation replications, we start with a pilot design D0
consisting of 4 equally spaced design points with 20 simulation runs assigned to each one of them. In
each subsequent iteration ∆n = 20 runs are allocated to a design point selected from the set of potential
design points, Xk, which consists of k = 193 equally spaced points in X . A check-point set XK with K
(typically K ≥ k) points densely located in X is constructed to evaluate the predictive performances of
SK. Notice that typically Xk ⊆ XK ; here for simplicity we set them equal to each other. We use a total
simulation budget of N = 500 and 5000 runs to investigate the finite-sample and large-sample performances
of SK using different design criteria. Since a grid design of sufficient number of design points are typically
adequate for one-dimensional problems, we also consider a grid design of equally spaced 25 (resp. 193)
design points in X when N = 500 (resp. N = 5000) and use its corresponding predictive performance
of SK as a benchmark. The two grid designs used when N = 500 and 5000 are denoted by Grid25 and
Grid193, respectively. The entire experiment is repeated for 100 independent macro-replications, and the
corresponding performance measure, the empirical root mean squared errors (ERMSE), is calculated as
follows,

ERMSE` =

√
1
K

K

∑
i=1

(
Ŷ(xi)−Y(xi)

)2
, `= 1,2, . . . ,100, (11)

where Ŷ(·) represents the prediction given by SK in a given macro-replication.

Results. Table 1 summarizes the ERMSEs obtained using different designs with a total budget of N = 500
and 5000 simulation replications. We observe that all the sequential designs lead to better predictive
performances as compared to the corresponding grid designs. For E.g. (1.1), it is interesting to see that
among all sequential design criteria IMSE is the least efficient in terms of the ERMSEs achieved at the
end of sequential iterations. Nevertheless, Figures 1 (a) and (b) show that IMSE tends to lead to relatively
faster decreasing ERMSEs than those other criteria do in the early iterations. This finite-sample property
is especially desirable when the total budget N is not large. In comparison, some of the better performing
criteria such as Comp, MIMSE-1 and MIMSE-2 lead to slowly decreasing ERMSEs initially but tend to
produce more aggressive reduction in ERMSEs as the iterations proceed even further.

Unlike E.g. (1.1), E.g. (1.2) is more difficult to handle as the intrinsic variance is increasing while
the true response is decreasing as x increases. The ratio of the sampling variability relative to the mean
response becomes particularly large when x is large. For instance, the true function Y(x) at x = 7 is about
2.43 but the sampling error at that point has a standard deviation of about 2.33. In this case, the sequential
designs try to reconcile the competing interests of reducing spatial uncertainty in the region where x is small
versus diminishing the intrinsic variability at simulated design points with large x values. On the other
hand, Grid25 with evenly allocated simulation budget seem to help SK achieve quite robust predictive
performance for E.g. (1.2) with a moderate sample size. As we observe from Table 1, the predictive
performances of SK using the sequential design criteria are very close to those corresponding to Grid25
with a budget of N = 500. However, as the total budget grows even further to N = 5000, the advantage of
using sequential designs starts to emerge.
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Table 1: A summary of the ERMSEs for Example 1 obtained by different criteria with a total budget of
N = 500 and 5000 simulation replications.

N
E.g. (1.1) E.g. (1.2)

Percentiles 25th 50th 75th 97.5th 25th 50th 75th 97.5th

500

IMSE 0.106 0.140 0.184 0.316 0.180 0.208 0.244 0.304
Comp 0.074 0.083 0.103 0.142 0.177 0.200 0.233 0.328
MIMSE-1 0.092 0.110 0.129 0.186 0.193 0.229 0.266 0.343
MIMSE-2 0.076 0.087 0.103 0.136 0.166 0.190 0.224 0.340
MIMSE-3 0.076 0.087 0.098 0.132 0.194 0.221 0.252 0.339
Grid25 0.162 0.221 0.260 0.359 0.168 0.198 0.252 0.346

5000

IMSE 0.031 0.038 0.053 0.078 0.055 0.060 0.072 0.094
Comp 0.030 0.036 0.041 0.052 0.056 0.064 0.072 0.090
MIMSE-1 0.039 0.048 0.054 0.071 0.055 0.063 0.071 0.094
MIMSE-2 0.033 0.038 0.044 0.056 0.055 0.061 0.068 0.088
MIMSE-3 0.032 0.037 0.046 0.060 0.055 0.065 0.074 0.093
Grid193 0.074 0.095 0.109 0.145 0.059 0.073 0.089 0.125

5.2 Example 2

Following Subsection 5.1, we consider using SK to approximate a function that is not monotonic in its
domain. Specifically,

Y(x) = 10+ x · sin(3x), x ∈ [0.5,7] . (12)

The simulation output at design point x on the jth replication is generated according to (10), where the
simulation error ε j(x)∼N (0, [g(x)]2). We consider the following three sampling variability scenarios:

E.g. (2.1) g(x) = x1/2, i.e., the intrinsic variance increases as x increases;
E.g. (2.2) g(x) = |x · sin(3x)|1/2, i.e., the intrinsic variance changes together with the true function value,

and its magnitude depends on the deviation of the true response Y(x) from the constant 10;
E.g. (2.3) g(x) = x−1/2, i.e., the intrinsic variance decreases as x increases.

Table 2: A summary of the ERMSEs for Example 2 obtained using different designs with a total budget
of N = 500 and 5000 simulation replications.

N
E.g. (2.1) E.g. (2.2) E.g. (2.3)

Percentiles 25th 50th 75th 97.5th 25th 50th 75th 97.5th 25th 50th 75th 97.5th

500

IMSE 0.259 0.307 0.364 0.440 0.202 0.233 0.279 0.365 0.090 0.105 0.118 0.156
Comp 0.263 0.301 0.346 0.434 0.212 0.244 0.285 0.356 0.094 0.105 0.119 0.148
MIMSE-1 0.270 0.311 0.369 0.458 0.203 0.248 0.275 0.369 0.095 0.106 0.120 0.156
MIMSE-2 0.261 0.300 0.352 0.452 0.202 0.234 0.265 0.366 0.094 0.105 0.119 0.148
MIMSE-3 0.269 0.317 0.362 0.438 0.200 0.237 0.274 0.357 0.094 0.105 0.119 0.148
Grid25 0.257 0.302 0.350 0.436 0.199 0.234 0.283 0.361 0.091 0.102 0.120 0.151

5000

IMSE 0.087 0.099 0.111 0.135 0.061 0.070 0.082 0.112 0.029 0.033 0.036 0.045
Comp 0.089 0.105 0.120 0.149 0.060 0.072 0.083 0.106 0.029 0.032 0.037 0.046
MIMSE-1 0.092 0.109 0.128 0.155 0.071 0.080 0.093 0.124 0.028 0.033 0.038 0.047
MIMSE-2 0.088 0.098 0.114 0.146 0.059 0.068 0.079 0.109 0.028 0.032 0.038 0.047
MIMSE-3 0.092 0.101 0.124 0.156 0.068 0.075 0.088 0.116 0.029 0.033 0.037 0.056
Grid193 0.093 0.109 0.128 0.161 0.062 0.075 0.094 0.128 0.030 0.036 0.043 0.055

Results. The experimental setup is as described in Subsection 5.1. The ERMSEs obtained using different
criteria with a total budget of N = 500 and 5000 simulation replications are given in Table 2. Since the
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Figure 1: Stepwise median ERMSEs across 100 macro-replications obtained by different designs
with a total budget of N = 500 runs. The sequential designs all start with a pilot design D0 =
{(0.5,20),(2.67,20),(4.83,20),(7,20)} and adopt the step size ∆n = 20 runs.

modeling difficulty decreases from E.g. (2.1) to E.g. (2.3), the corresponding ERMSEs obtained using all
criteria are observed to decrease correspondingly, as expected. Performances due to all the designs are very
close to each other for E.g. (2.1) to (2.3), including the grid designs. Table 3 shows the number of design
points used by each criterion given a fixed budget N. We observe that for all three scenarios of Example
2, all sequential design criteria end up choosing to simulate at relatively large numbers of design points
scattered in X ; this behavior is very similar to that of a grid design, which helps explain the resemblance
in the predictive performances of SK using different designs.

Table 3: Example 2. A summary of the total numbers of design points used by different sequential criteria
under the proposed sequential framework given a total budget of N = 500 and 5000 simulation runs.

N

E.g. (2.1) E.g. (2.2) E.g. (2.3)
min median max min median max min median max

500

IMSE 23 25 25 22 25 25 22 24 25
Comp 24 25 25 16 21 25 24 25 25
MIMSE-1 17 20 23 20 20 22 25 25 25
MIMSE-2 19 23 25 22 24 25 25 25 25
MIMSE-3 18 23 25 20 23 25 24 25 25
Grid25 25

5000

IMSE 131 141 152 118 139 154 122 133 149
Comp 143 147 151 114 128 147 129 133 136
MIMSE-1 170 176 182 180 187 189 193 193 193
MIMSE-2 182 193 193 193 193 193 193 193 193
MIMSE-3 147 169 191 168 185 193 193 193 193
Grid193 193
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5.3 Example 3: M/M/1 Queue

In this subsection, we are interested in estimating the steady-state mean number in an M/M/1 queue with
service rate 1 and arrival rate x varying in X = [0.3,0.9] via SK metamodeling. It is known that the
underlying true response surface to model is Y(x) = x/(1− x). The goal is to efficiently allocate a total
budget N = 500 replications to a set of design points for minimizing IMSE over X . This example has
been considered by Ankenman et al. (2010) who propose to use a two-stage design. Their design starts
with simulating 20 replications of length T = 1000 time units at each of the initial set of 4 design points
{0.3,0.5,0.7,0.9}, and in the second stage it allocates the remaining budget to a set of 7 preselected design
points {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The second stage allocation is made according to the approximately
optimal allocation rule derived from minimizing the approximated IMSE based on the initial stage design.
The two-stage design is intended for bringing down the IMSE and hence it performs well. However, we
note that calculating their two-stage budget allocation rule is a nontrivial exercise even for 7 pre-selected
design points. Thanks to the proposed sequential design framework, we can automate the budget allocation
under the proposed framework by using the criteria considered. We choose to set the step size to ∆n = 20
runs. To make a fair comparison, the pilot design is made the same as the initial stage of the two-stage
design given by Ankenman et al. (2010). For convenience, the design space X is discretized into a dense
grid of k = 193 equally spaced points Xk = {xi}193

i=1, which is used as both the candidate design-point set and
the check-point set. A grid design of equally spaced 25 design points in X = [0.3,0.9] is also considered
to provide the benchmark performance. We repeat the entire experiment for 100 macro-replications, and
obtain 100 ERMSEs as defined in (11) for each design.

Results. The resulting ERMSEs due to different criteria are shown in boxplots in Figure 2(a). As we can
see from Figure 2(a), MIMSE-1 and MIMSE-3 achieve the best predictive accuracy, outperforming the
two-stage allocation scheme proposed by Ankenman et al. (2010). As is known that the variance explodes
in the “heavy traffic” region, so intuitively many replications are then needed to achieve good predictive
performance. In particular, we found that MIMSE-1 and MIMSE-3 choose to use a moderate number of
design points (between 10 to 15) and dedicated sufficient runs to the region of x that corresponds to the
M/M/1 queue in “heavy traffic,” whereas in comparison the two-stage design scheme tends to undersample
that region. For the purpose of clarity, this feature is illustrated by the results obtained using MIMSE-3
only in Figure 2(b). It is worth noting that despite the fact that grid designs seem rather efficient in Example
2, here Grid25 leads to the worst performance among all designs. Similar to Grid25, we note that IMSE
leads to uncompetitive performance; this is largely due to its resulting allocation of simulation runs to a
relatively scattered set of design points, leaving the “heavy traffic” region undersampled.

5.4 Example 4: A Periodic Review (s,S) Inventory System

In this section, we consider a two-dimensional problem, which is based on a simple periodic review single-
commodity (s,S) inventory system that supplies external demands and receives stock from a production
facility. The system is assumed to have i.i.d. continuous demands, zero lead times, full backlogging, and
linear ordering, holding and shortage costs. The scenario considered here is similar to that discussed in
Fu and Healy (1997), upon which much of this example is constructed. Let Xi be the inventory position
(inventory level plus outstanding orders in period i) and Wi be the inventory level (on-hand minus on
backorder). The assumption of zero lead times gives Xi =Wi. The (s,S) inventory system works as follows.
If Xi is below s units, an order of amount (S−Xi) will be made and a fixed ordering cost Ko and a purchase
cost c(S−Xi) will be incurred. The inventory holding cost and shortage cost are also taken into account.
The demand in period i, Di, has distribution function FD(·), which is absolutely continuous with density
function fD(·); denote the mean demand by E[D]. The one-period cost is the sum of ordering, holding and
backorder costs as follows

Ji = 1
¯
{Xi < s}(Ko + c(S−Xi))+hmax{0,Wi}+ pmax{0,−Wi},
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Figure 2: Estimating M/M/1 queue steady-state mean number in the system with a total budget of N = 500
replications: (a) provides a summary of 100 ERMSEs achieved using different designs; (b) shows the true
response surface of the steady-state mean number in an M/M/1 queue Y(x), the simulated responses at
design points chosen by MIMSE-3, and the resulting fitted response surface by SK.

Table 4: Parameters for the (s,S) inventory system

E[D] c p Ko h
20 0.05 0.5 5 0.05

and the quantity of interest is the long-run average cost per period

J = lim
n→∞

Jn, and Jn =
1
n

n

∑
i=1

Ji.

Define δ = S−s and let λ = 1/E[D]. Consider the two-dimensional problem of estimating the unknown
response J(δ ,s) at a given point (δ ,s). If the demands are i.i.d. exponentially distributed with mean E[D],
then the analytic expression for J(δ ,s) can be given as follows

J(δ ,s) = cE[D]+
Ko +h(s−E[D]+λδ (s+δ/2))+(h+ p)E[D]e−λ s

1+λδ
.

The list of parameters involved are given in Table 4. The goal of this experiment is to compare the
performances of SK in predicting J(δ ,s) over the design space X = Ωδ ×Ωs = [10,40]× [10,50], by
adopting different designs given a total budget of N = 1800 simulation replications to expend. In each
simulation replication the run length of T = 1000 is used to estimate the response J(δ ,s) at a given design
point.

We are interested in comparing the sequential design criteria with commonly used grid and Latin
hypercube sampling designs (LHD). A two-layer nested LHD of k = 36 points (see Qian (2009)) is
constructed as the full candidate design set Xk: The first layer D1 is a LHD with 12 points and the full
set D2 is a LHD with 36 points; and the name of the design follows from the fact that D1 ⊂ D2 = Xk. In
each iteration we consider selecting the next point from D2 according to a given sequential design criterion
to allocate ∆n = 50 simulation runs. The initial design is conveniently chosen as D1, a LHD of 12 points
itself, with n0 = 50 simulation runs allocated at each point. For comparison purposes, we also consider
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using a grid design and a LHD of 36 points, denoted by Grid36 and LHD36, respectively. Grid36 assigns
1800 runs evenly to 36 regularly spaced points in X = [10,40]× [10,50], while LHD36 assigns 1800 runs
evenly to the 36 points in D2. In contrast, although our proposed sequential design criteria choose points
from the full set D2, the resulting design formed by the end of a sequential procedure is very likely to
be an unequal allocation of budget on a subset of points in D2. To evaluate predictive accuracy of SK,
we construct the check-point set XK consisting of K = 2536 check-points, i.e., a grid design of regularly
spaced 2500 points in X plus the 36 design points in D2 for sequential designs and LHD36 or those 36
grid points in Grid36.

The experiment is repeated for 100 independent macro-replications and the resulting ERMSEs are
shown in Figures 3(a) and (b). Notice that for each macro-replication a distinct two-layer nested LHD is
generated; hence we are using 100 independently generated pairs of initial and full design-point sets (D1,D2)
in the 100 macro-replications. From Figure 3(a), we see that all five sequential criteria perform similarly;
in particular, their corresponding ERMSEs are smaller than those due to LHD36. This demonstrates the
advantage of applying SK with a sequential design as opposed to with a non-sequential one. Furthermore,
a striking difference has been identified from Figure 3(b) between the two non-sequential designs: LHD36
and Grid36: With the same number of design points and amount of simulation budget to use, the SK
metamodel built on LHD36 achieved much better predictive accuracy as compared to the one built on
Grid36. This example to some extent reveals the known problem of grid designs in their diminishing
efficiency as the dimension of the problem grows.
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Figure 3: Estimating (s,S) Inventory System long-run average cost with a total budget of N = 1800
simulation replications to expend: (a) provides a summary of respective 100 ERMSEs achieved by using
different sequential design criteria as compared to those obtained by 36-point LHD ; (b) compares the
resulting 100 ERMSEs obtained by using 100 different 36-point LHDs (i.e., 100 D2’s) and those resulted
from a fixed 36-point grid design.

6 CONCLUSION

In this paper we have established a general sequential design framework and proposed several design
criteria to apply SK for stochastic simulation. The advantages of using the proposed sequential designs over
the commonly used non-sequential ones have been demonstrated through some illustrative examples. In
particular, these advantages are observed to become more evident as the problem dimension increases and/or
as the simulation budget increases. Future research topics include exploring the framework structure to
establish in-depth theoretical treatments, and constructing candidate design-point set and devising sequential
design criteria for general higher-dimensional problems, to name a few.
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