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ABSTRACT

The Greeks measure the rate of change of (financial) derivative prices with respect to underlying market
parameters, which is essential in financial risk management. This paper focuses on a modified pathwise
method that overcomes the difficulty of estimating Greeks with discontinuous payoffs as well as second-
order Greeks and involves a kernel estimator whose accuracy/performance relies on a smoothing parameter
(bandwidth). We explore the accuracy of the Greek delta, vega, and theta estimators of Asian digital options
and up-and-out barrier call options with varying bandwidths. In addition, we investigate the sensitivity of a
proposed iterative scheme that generates the “optimal” bandwidth. Our numerical experiments indicate that
the Greek estimators are quite sensitive to the bandwidth choice, and the “optimal” bandwidth generated
is sensitive to input parameters.

1 INTRODUCTION

Financial derivatives have been in existence for over 300 years and have become an integral part of risk
management. Therefore, accessing and quantifying the risk of these assets have sparked great interest in the
finance industry. The Greeks are derivatives of (financial) derivative prices with respect to an underlying
market parameter. Each Greek measures a different dimension of market risk. For instance, “delta,” “vega,”
and “theta” are first-order derivatives of the expected payoff with respect to price, volatility, and time,
respectively, and “gamma” is the second-order derivative with respect to price.

One type of financial derivative used for hedging is an option, which gives the security holder the
right to exercise the option once certain conditions are satisfied, which is dependent on the option type.
For example, the exercise condition for an Asian digital option depends on depends on the average price
over a pre-specified period, and it pays a lump sum if the option is “in the money” and zero otherwise.
Up-and-out barrier call options can be exercised once the price reaches the strike price but does not cross
the upper barrier. Both of these options have discontinuous payoff functions, and the option price can be
written as

E[g(S) · I{h(S)≥0}], (1)

where the expectation is taken under the risk-neutral measure, S is the price modeled by a stochastic process,
I{·} is the indicator function, and g(S) is the discounted payoff when the exercise condition, h(S)≥ 0, is
satisfied. The price S depends on the market parameters θ ∈ Θ, where Θ is an open set. For simplicity,
assume θ is one-dimensional, since we can focus on one market parameter and hold all else constant.
The derivative of the payoff function (1) with respect to θ is a first-order Greek, and the derivative of the
first-order Greek with respect to θ is a second-order Greek, both of which we wish to estimate. Some
well-known derivative estimation methods include finite difference approximation, perturbation analysis
(also known as the pathwise method), the score function or likelihood ratio (SF/LR) method, and the weak
derivative (WD) method. Each method has its advantages and drawbacks.
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The most straightforward approach to estimate Greeks is the finite difference method. Although this
method is easy to implement, the resulting estimators are biased and generally have a high mean-squared
error (MSE) (Glasserman 2004). In addition, a perturbation sequence {∆θ} must be selected, which affects
the bias/variance tradeoff, although symmetric differences can be used to reduce the order of bias (Fu 2008).
In addition, smaller perturbations could lead to more noise because of the stochasticity. The pathwise
method, generally known as infinitesimal perturbation analysis (IPA) in the simulation community, is easy
to implement and often performs well in comparison with other methods, but unfortunately, it is not always
applicable. For instance, it is not suitable for discontinuous functions nor second-order Greeks (Liu and
Hong 2011). Smoothed perturbation analysis (SPA) is able to overcome the discontinuity issue, and Fu
and Hu (1997) suggest using SPA to smooth out the discontinuity by conditioning on appropriate random
variables, e.g., Wang, Fu, and Marcus (2009). The key, which is the most difficult part of this method, is
choosing the random variable on which to condition. On the contrary, the weak derivative (WD) method
is applicable to discontinuous functions, but may require a high number of simulations (Fu 2008). The
likelihood ratio method can also approximate the gradient of discontinuous functions, but usually leads to
high variance. For a comprehensive review of gradient estimation methods, refer to Glasserman (2004),
Fu (2006), and Asmussen and Glynn (2007).

Liu and Hong (2011) introduce a modified pathwise method to estimate first- and second-order Greeks
for options with discontinuous payoffs. It is a generalization of the classical pathwise method, which
extends to options with discontinuous payoffs (1) by rewriting the Greek as a sum of an expectation and
a derivative(s) with respect to an auxiliary parameter. The general pathwise method and kernel method
are applied to the expectation and derivative terms, respectively. The accuracy of the kernel estimator
depends/hinges on the chosen kernel function, which relies on a bandwidth/smoothing parameter, described
in more detail in Section 3.3. A pilot simulation proposed in Liu and Hong (2011) generates an “optimal”
bandwidth parameter prior to applying the modified pathwise method. The pilot simulation involves various
input parameters, which affect the bandwidth output. The modified pathwise method has been applied to
estimate delta, vega, theta and gamma of the Asian digital option and up-and-out barrier call option.

In this paper, we examine the accuracy of the Greeks estimated using a modified pathwise method for
an Asian digital option and up-and-out barrier call option by conducting two sets of numerical experiments.
The first set investigates the sensitivity of the Greek estimators to the bandwidth parameter(s), and the
second explores the sensitivity of a proposed method used to generate “optimal” bandwidths for the modified
pathwise method to various input parameters. Our numerical results show that the Greek estimators are
quite sensitive to the bandwidth, so the performance of the pilot simulation is critical.

The paper is organized as follows. Section 2 provides a brief overview of the generalized pathwise
method for the first- and second-order Greeks from Liu and Hong (2011) and kernels. Section 3 details
the implementation of the Greeks for the Asian digital option and the up-and-out barrier option. Section 4
derives the the optimal bandwidth parameter and summarizes the pilot simulation given in the e-companion
of Liu and Hong (2011) for the first-order Greek estimators. In Section 5, we describe our two sets
of numerical experiments and corresponding results of 1) the sensitivity of Greek kernel estimators to
bandwidth and 2) the sensitivity of the bandwidth to various input parameters in the pilot simulation.
Finally, we conclude in Section 6.

2 PROBLEM SETTING

We focus on options with a discontinuous payoff function that can be written in the form in (1), where
g(·) and h(·) are differentiable functions, and S is a vector of discretized prices. Let Sti denote the price
of the security at time ti ≥ 0, where ti = iT/k for i = 0,1,2, . . . ,k, which are evenly spaced time points
between 0 and T. For simplicity, denote Sti by Si, and S = (S0,S1, . . . ,Sk)

′
. Let p(θ) = E[g(S) · I{h(S)≥0}],

where p
′
(θ) = ∂ p(θ)/∂θ is the first-order Greek with respect to θ and p

′′
(θ) = ∂ 2 p(θ)/∂θ 2 is the
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Table 1: Parameters.

r σ b µ S0 K T U k
Asian digital option 0.05 0.30 0.2 98 100 100 1 - 10, 20, 50

up-and-out barrier call option 0.05 0.20 - - 100 100 1 120 20, 50

second-order Greek with respect to θ . If θ = S0, θ = σ , and θ = τ , then p
′
(θ) is called delta, vega, and

theta, respectively, and if θ = S0, then p
′′
(θ) is called gamma.

We explore Asian digital options and up-and-out barrier call options, both of which have discontinuous
payoffs. For the Asian digital option, the discounted payoff function g(S) = e−rT , where r is the risk-free
rate and T is the duration of time considered, and the exercise criterion is based on an average of k
discretized prices S = 1

k ∑
k
i=1 Si exceeding a pre-specified threshold K over a predetermined period of time,

i.e., whether or not h(S) = S−K ≥ 0. The up-and-out barrier call option can be exercised if the final price
Sk is greater than or equal to a threshold K, but the maximum price Smax = max{S1, . . . ,Sk} never exceeds
an upper barrier U , i.e., whether or not h(S) = min{Sk−K,U − Smax} ≥ 0. The payoff function is the
amount by which the final price Sk exceeds the strike price K discounted by e−rT , i.e., g(S) = e−rT (Sk−K).

In the numerical experiments, the prices considered for the Asian digital option and the up-and-out
barrier call option follow an Ornstein-Uhlenbeck process and a geometric Brownian motion generated,
respectively, using

Si = Si−1e−bτ +µ(1− e−bτ)+σ

√
(1− e−2bτ)/(2b)Zi for i = 1,2, ...,k,

St = S0e(r−σ2/2)t+σBt for t = T/k,2T/k, ...,T,

where b, σ , µ , r, k, and τ are the mean reversion rate, volatility, mean return, risk-free interest rate, number
of discretized intervals, and incremental time step (T/k), respectively. The variables Zi and Bt are the
independent standard normal random variables and standard Brownian motion, respectively. The values
considered are listed in Table 1.

3 GENERALIZED PATHWISE METHOD

The pathwise method is in general not applicable to second-order Greeks nor discontinuous functions, but
the modified kernel version is one method that circumvents this issue.

3.1 First-Order Greeks

The first-order Greek estimator based on the modified pathwise method is based on the following theoretical
result from Liu and Hong (2011).
Assumption 1 For any θ ∈Θ, g(S) and h(S) are differentiable with respect to θ with probability 1 (w.p.1),
and there exist random variables Kg and Kh with finite second moments that may depend on θ , such that
|g(S(θ +∆θ))−g(S(θ))| ≤Kg|∆θ | and |h(S(θ +∆θ))−h(S(θ))| ≤Kh|∆θ | when |∆θ | is sufficiently small.
Assumption 2 For any θ ∈Θ, ∂θ φ(θ ,y) exists and is continuous at (θ ,y) with φ(θ ,y) = E[g(S) ·1{h(S)≥y}].

Theorem 1 Suppose g(·) and h(·) satisfy Assumptions 1 and 2, and E[|g(S)|2]<+∞ and E[|h(S)|2]<+∞,
then

p
′
(θ) = E[∂θ g(S) ·1{h(S)≥0}]−∂yE[g(S)∂θ h(S) ·1{h(S)≥y}]|y=0 (2)

The two terms on the right hand side of (2) can be estimated easily, because the first term is an ordinary
expectation, where g(S) is differentiable with respect to θ , and the second term is a derivative with respect
to y, which is independent of g(S) and h(S). Thus, the first term can be estimated using the law of large
numbers, and finite differences can be used to estimate the second term based on

3847



Chau and Fu

−∂yE
[
g(S)∂θ h(S) ·1{h(S)≥y}

]
|y=0 = − lim

δ→0

1
δ
{E
[
g(S)∂θ h(S) ·1{h(S)≥δ/2}

]
−E

[
g(S)∂θ h(S) ·1{h(S)≥−δ/2}

]
}

= lim
δ→0

1
δ

E[g(S)∂θ h(S) ·1{−δ/2≤h(S)≤δ/2}]

= lim
δ→0

1
δ

E
[

g(S)∂θ h(S) ·Z
(

h(S)
δ

)]
, (3)

where Z(u) = 1{−1/2≤u≤1/2}, which is known as the uniform or naive kernel because u∼U(−1/2,1/2). It
can be replaced with any other kernel, which we elaborate on in Section 3.3. In practice, Assumptions 1 and
2 are typically satisfied. Refer to Liu and Hong (2011) for the proof and a discussion of the assumptions.

3.2 Second-Order Greeks

The second-order Greeks are estimated using a theorem from Liu and Hong (2011) based on the following
two assumptions:
Assumption 3 For any (θ1,θ2) ∈ Θ, g(S) and h(S) are differentiable with respect to θ1 with probability
1 (w.p.1), and ∂θ1g(S) and ∂θ1h(S) are differentiable with respect to θ2 with probability 1 (w.p.1), and
there exists variables Kg,Kh,Lg, and Lc with finite fourth moments, which may depend on (θ1,θ2), such
that |g(S(θ1+∆θ1,θ2))−g(S(θ1,θ2))| ≤Kg|∆θ1|, |g(S(θ1,θ2+∆θ2,))−g(S(θ1,θ2))| ≤Kg|∆θ2|, |h(S(θ1+
∆θ1,θ2))−h(S(θ1,θ2))| ≤Kh|∆θ1|, |h(S(θ1,θ2+∆θ2,))−h(S(θ1,θ2))| ≤Kh|∆θ2|, |∂θ1g(S(θ1+∆θ1,θ2))−
∂θ1g(S(θ1,θ2))| ≤ Lg|∆θ2|, and |g(S(θ1,θ2+∆θ2,))∂θ1h(S(θ1,θ2+∆θ2,))−g(S(θ1,θ2))∂θ1h(S(θ1,θ2))| ≤
Lc|∆θ2|, when |∆θ1| and |∆θ2| are sufficiently small.
Assumption 4 For any θ ∈Θ, ∂θ1∂θ2φ(θ1,θ2,y) exists and is continuous at (θ1,θ2,0), where φ(θ1,θ2,y) =
E[g(S) ·1{h(S)≥y}].

Theorem 2 Suppose g(·) and h(·) satisfy Assumptions 3 and 4, and E[|g(S)|4]<+∞ and E[|h(S)|4]<+∞,
then

∂θ1∂θ2 p(θ1,θ2) = E[∂θ1∂θ2g(S) ·1{h(S)≥0}]

−∂yE[(g(S)∂θ1∂θ2h(S)+∂θ1g(S)∂θ2h(S)+∂θ2g(S)∂θ1h(S)) ·1{h(S)≥y}]|y=0

+∂
2
y E[g(S)∂θ1h(S)∂θ2h(S)1{h(S)≥y}]|y=0.

For the purposes of this paper, we focus on the second-order Greek gamma, where θ = S0; therefore,

∂
2
θ p(θ) = E[∂ 2

θ g(S) ·1{h(S)≥0}]

−∂yE[(g(S)∂ 2
θ h(S)+2 ·∂θ g(S)∂θ h(S)) ·1{h(S)≥y}]|y=0

+∂
2
y E[g(S)∂θ h(S)∂θ h(S)1{h(S)≥y}]|y=0.

Again, the first term on the right hand side can be estimated using using a sample mean. The finite
differences derivation for the second term is similar to (3), and for the finite difference representation of
the third term, observe that

−∂yE[g(S)(∂θ h(S))2 ·1{h(S)≥y}]|y=0 = lim
δ→0

1
δ

E
[

g(S)(∂θ h(S))2 ·Z
(

h(S)− y
δ

)]∣∣∣
y=0

,

so
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∂
2
y E
[
g(S)(∂θ h(S))2 ·1{h(S)≥y}

]
|y=0 = lim

δ→0

1
δ 2 E

[
g(S)(∂θ h(S))2 ·Z′

(
h(S)

δ

)]
, (4)

where Z(·) is the kernel function. The approximation of the second-order auxiliary term (4) along with
the first-order term (3) can be seen in the estimator (6).

3.3 Kernel

A d-dimensional kernel, K : Rd → R, is a bounded symmetric density with respect to the the Lebesgue
measure with lim‖u‖d→∞ ‖ u ‖ K(u) = 0 and

∫
Rd ‖ u ‖2 K(u)du < ∞ where ‖ · ‖ is any norm on Rd (Bosq

1998). A kernel K has the form

K(u) =
1
h

K
(u

h

)
, u ∈Rd ,

where h is the bandwidth also known as the smoothing parameter (Bosq 1998). For this paper, we focus
on the case for d = 1. According to Bosq (1998), a reasonable kernel does not affect the asymptotic
behavior of the estimator; however, the bandwidth significantly influences the accuracy of the estimator.
Large bandwidths decrease the variance but increase the bias, whereas small bandwidths lead to the exact
opposite; hence, there is a tradeoff between variance and bias. Therefore, careful attention should be given
to the selection process. Although there are other methods to quantify the accuracy of the kernel estimator,
Liu and Hong (2011) measure it based on the MSE. Consequently, they attempt to select the bandwidth
that maximizes the accuracy using an iterative pilot simulation.

3.4 First- and Second-Order Greek Estimators

Based on Theorem 1 and 2, the following estimators are used to approximate the first- and second-order
Greeks, respectively:

Gn =
1
n

n

∑
l=1

g
′
l ·1[hl≥0] +

1
nδn

n

∑
l=1

gl ·h
′
l ·Z

(
hl

δn

)
, (5)

Hn =
1
n

n

∑
l=1

g
′′
l ·1[hl≤0] +

1
nδn

n

∑
l=1
{gl ·h

′′
l +2 ·g′l ·h

′
l} ·Z

(
hl

δn

)
+

1
nγ2

n

n

∑
l=1

gl · (h
′
l)

2 ·Z ′
(

hl

γn

)
,

where (gl,hl,g′l,h
′
l,g
′′
l ,h
′′
l ) is the lth observation of (g(S),h(S),∂θ g(S),∂θ h(S),∂ 2

θ
g(S),∂ 2

θ
h(S), Z(·) is a

kernel, and δn and γn are constant bandwidth parameters generated using a pilot simulation. The second-order
estimator (6) is a special case when both derivatives are taken with respect to the same parameter.

4 PILOT SIMULATION

Ideally, the optimal bandwidth parameter would minimize the error between the Greek estimator and its
true value, and the pilot simulation proposed in Liu and Hong (2011) employs an iterative method that
generates an “optimal” bandwidth that minimize the asymptotic mean-squared error (MSE). The MSE of
the first-order estimator can be expressed as

MSE(Gn) = [E(Gn)−∂θ E[g(S) ·1{h(S)≥0}]]
2 +Var(Gn)

= δ
4
n

[
ψ
′′
(0)
2

∫
∞

−∞

u2Z(u)du+ εn

]2

+
1

nδn
(σ2

1 +ξn),
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where ψ(u) = fh(u) ·E[g(S) · ∂θ h(S)|h(S) = u], ψβ (u) = fh(u) ·E[|g(S) · ∂θ h(S)|β |h(S) = u], and σ2
1 =

ψ2(0)
∫

∞

−∞
Z2(u)du. Since εn→ 0 and ξn→ 0 as n→ ∞, then the optimal bandwidth choice is c · n−1/5,

where

c =
[

σ2
1

(ψ
′′
(0)
∫

∞

−∞
u2Z(u)du)2

]1/5

.

This constant c is estimated by

ĉ =
[

V n

(ψ̂
′′
(0)
∫

∞

−∞
u2Z(u)du)2

]1/5

,

where V n is the sample variance of Gn and ψ̂
′′
(0) is the finite difference approximation of ψ

′′
(0).

ψ̂
′′
(0) =

Gn(s)+Gn(−s)−2Gn(0)
s2 ,

where s is a sufficiently small step size and

Gn(u) =
1

nδn

n

∑
l=1

gl ·h
′
l ·Z
(

h(S)−u
δn

)
.

Therefore, the optimal bandwidth is approximated by δ ?
n = ĉ · n−1/5. The pilot simulation begins with

ĉ = 1, and is updated after each iteration using the same sample. More specifically, at each iteration, V n
and ψ̂

′′
(0) are simulated using the updated δ ?

n with n = 500. This process continues for a pre-specified
number of iterations, and the bandwidth selected is the one generated after 30 pilot iterations, as in Liu
and Hong (2011). The pilot simulation algorithm does not specify the variance sample size nv to generate
V n, step size s to estimate ψ ′′(0), and the number of iterations for the pilot simulation np, which are all
predetermined. Refer to the e-companion of Liu and Hong (2011) for the algorithm details and the pilot
simulation for the second-order Greeks.

5 NUMERICAL EXPERIMENTS

We conduct two sets of numerical experiments to test the robustness of a modified pathwise method and
a pilot simulation used to generate an input parameter for the modified method. The first is a sensitivity
analysis of Greek estimators for both the Asian digital option and up-and-out barrier call option to bandwidth
parameters, and the second explores the effect of the input parameters to the bandwidth generated from the
pilot simulation. We considered identical settings as in Liu and Hong (2011), which are shown in Table 1
and described in Section 2. However, the sample size considered here is 100 as opposed to 1000 in Liu
and Hong (2011). From our preliminary results, the increase in sample size only tightens the confidence
band and smooths out the curves, but the overall behavior is similar across estimators, so we opt to use a
smaller sample size. Furthermore, we also consider the standard normal density as the kernel to increase
the robustness of the resulting estimator.

5.1 Sensitivity of Greeks to Bandwidth

In our experiment for each Greek, we generate 100 estimators for incrementally increasing bandwidths and
observe the effect on the relative root mean-squared error (RRMSE) and the 95% confidence band (CB).
Figures 1, 2, 3, and 4 plot the 95% confidence band for the Greek estimator generated using 1000 sample
paths for Asian Greeks, 10000 sample paths for barrier Greeks, and sample size of 100 for incrementally
increasing ĉ. The black curve in between is the mean, and the horizontal dashed line represents the exact
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Table 2: Asian delta.

δn for s
n k c∗ RRMSE lower upper range δ ∗n 0.1 0.01 0.001

500 10 0.64 0.028 0.915 1.021 0.106 0.185 0.14 0.06 0.06
20 0.46 0.038 0.975 1.132 0.156 0.133 0.15 0.05 0.05
50 0.54 0.033 0.998 1.130 0.132 0.156 0.14 0.06 0.06

1000 10 0.74 0.020 0.931 1.005 0.074 0.186 0.14 0.05 0.04
20 0.54 0.028 0.996 1.104 0.108 0.136 0.13 0.05 0.05
50 0.60 0.024 1.019 1.117 0.099 0.151 0.13 0.05 0.05

2000 10 0.84 0.014 0.943 0.996 0.053 0.184 0.13 0.03 0.03
20 0.56 0.021 1.012 1.097 0.084 0.122 0.13 0.03 0.02
50 0.68 0.017 1.034 1.105 0.071 0.149 0.13 0.03 0.02

5000 10 1.00 0.009 0.954 0.988 0.035 0.182 0.15 0.06 0.06
20 0.66 0.014 1.027 1.083 0.055 0.120 0.16 0.07 0.07
50 0.80 0.011 1.050 1.094 0.044 0.146 0.16 0.06 0.06

10000 10 1.14 0.007 0.960 0.985 0.020 0.181 0.15 0.03 0.02
20 0.72 0.011 1.036 1.076 0.040 0.114 0.12 0.03 0.02
50 0.92 0.008 1.056 1.088 0.032 0.146 0.13 0.03 0.02

Greek value. The three vertical lines in Figures 1, 2, and 3 represent the 95% confidence interval for
the ĉ generated using the pilot simulation with np = 30,nv = 100, which we will elaborate on in the next
section. In the same figures, the second row of graphs plots the RRMSE of the 100 generated Greeks
for incrementally increasing ĉ, where the additional vertical dashed line denotes the c∗ that minimizes the
RRMSE. The only difference when n = 1000 increases to n = 10000 for the Asian Greek estimators is the
increased in smoothness of the curves and tighter confidence bands, but again, the overall behavior is the
same. Liu and Hong (2011) report results for n = 103,104,105 for the Asian Greeks, but we only test the
case for n = 103.

Not surprisingly, the bandwidth affects the accuracy and precision of the Greek estimator. Generally, as
the bandwidth decreases, the variance increases, which can be seen in the widening of the 95% confidence
band as ĉ→ 0 and is observable in all of the estimators. Similarly, the 95% confidence band decreases
as the bandwidth increases, but eventually the confidence band no longer contains the exact Greek value.
Figures 2, 3, and 4 for the Asian vega, Asian gamma, and barrier theta estimators illustrate this behavior,
respectively. In addition, the minimum RRMSE of these estimates occur in one particular region for all
discretization levels. Figure 2 shows that the Asian vega estimator is rather close to the exact value for
a range of ĉ values less than 0.1. The barrier theta estimator behaves similarly but for a different range
of ĉ values as seen in Figure 4. In contrast, the Asian gamma estimator is extremely sensitive to ĉ, and
the RRMSE increases significantly with even slight deviations from the optimal bandwidth. Moreover, the
95% confidence interval (CI) for the bandwidth parameter is very narrow and does not contain the exact
Asian gamma value.

The numerical results for the Asian delta are quite different as illustrated in Figure 1. The mean of
the delta estimator intersects with the exact/analytical value at least twice for k = 10 and k = 50. For the
case k = 10, the RRMSE has a minimum and a nearly flat region. The minimum of the RRMSE for each
discretization case occurs at different points for a given number of sample paths n, unlike the Asian vega,
Asian gamma, and barrier theta. The exact ĉ values at which the minimums occurs, the resulting RRMSE,
and 95% confidence interval of the Asian delta estimators generated using the ĉ are listed in Table 2.

Another interesting case is the gamma estimator for the up-and-out barrier call option, which relies on
two bandwidth parameters δn and γn. The Asian gamma is also a second-order Greek, but the second term
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Figure 1: 95% confidence band for Asian delta (solid curves) for n = 1000 with w/95% confidence interval
for bandwidth (vertical dashed lines) generated using s = 0.1 and RRMSE for 100 sample paths.
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ĉ

R
R
M
S
E

0.0 0.1 0.2 0.3 0.4

0.
00

0.
15

0.
30

ĉ
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Figure 2: 95% confidence band for Asian vega (solid curves) for n = 1000 w/95% confidence interval for
bandwidth (vertical dashed lines) generated using s = 0.001 and RRMSE for 100 sample paths.
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ĉ

R
R
M
S
E

95% CI for ĉ
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Figure 3: 95% confidence band for Asian gamma (solid curves) for n = 1000 w/95% confidence interval
for bandwidth (vertical dashed lines) generated using s = 0.01 and RRMSE for 100 sample paths.
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in (5) containing δn disappears with the given settings. Figure 5 plots the barrier gamma as a function
of the bandwidth parameters δn (visible horizontal axis) and γn (not visible), where the vertical planes
represent the approximately exact gamma for k = 20,50, respectively. It is clear that gamma is insensitive
to γn, but extremely sensitive to δn, especially when δn < .03. Unfortunately, this is the region in which
the estimator attains the value closest to the true value. Since the analytical expression is not available for
comparison, the true values are approximated using finite differences with a large sample of 109. In this
case, the steepness of the gamma estimator near the “exact” value prompts the need for a very accurate
and precise δn; otherwise, the estimate could be drastically different from its true value. As expected, the
margin of error decreases as the number of sample paths n increases. For each discretization level k, ĉ
increases with n, but the resulting δn values are similar for each k regardless of n.
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Figure 4: 95% confidence band for barrier theta for n = 10000 and RRMSE for 100 sample paths.

Figure 5: Barrier gamma estimator for n = 10000, k = 20 (left), k = 50 (right) for 100 sample paths.
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The conclusions in this section are representative of all of the estimators tested. For instance, the Asian
delta is the only estimator whose mean matches the exact Greek value for two different bandwidth values
and the barrier gamma is the only estimator that requires the input of two bandwidth parameters. The Asian
vega, in general, has a decreasing 95% confidence band whose mean also decreases with ĉ and matches
the exact Greek value for one particular ĉ, and there is one global minimum RRMSE, which represents
the results of the remaining Greek estimators.

5.2 Sensitivity of Bandwidth to Pilot Simulation

Our sensitivity analysis of the modified pathwise method applied to Greeks concludes that it is, in general,
very sensitive to the bandwidth parameter(s), so the key to a good estimator is in the bandwidth selection
process. Therefore, we investigate the sensitivity of the pilot simulation to the various input parameters
such as variance sample size nv, perturbation size s, number of sample paths n, and number of pilot
iterations np, as described in Section 4. We considered the following settings: nv ∈ {50,100,500,1000},
s ∈ {0.001,0.01,0.1}, n ∈ {500,1000,2000,5000}, and np ∈ {1, . . . ,100}. For each setting, we compute
the 95% confidence interval for the bandwidth output and compare it against the optimal bandwidth that
minimizes the RRMSE in Table 2. The pilot simulation experiments consider a variance sample size of
100 (i.e., nv = 100) and 30 pilot iterations (i.e, np = 30), unless stated otherwise. Over an extensive set of
parameter settings, the results are quite similar, so we limit our discussion to representative cases.

First, we discuss the results of the pilot simulation for the Asian delta. For any fixed perturbation size,
the average ĉ under the Asian delta estimator is quite similar across sample paths and discretization level
k, with a maximum range of 0.04. As n increases, the average ĉ decreases ever so slightly. One would
think that variance of ĉ decreases with n, i.e., the confidence band would decrease with the n; however, the
perturbation size s appears to be the determining factor from Figure 6. In this case, the smaller perturbation
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ĉ

0 10 20 30 40 50

0.
0

0.
2

0.
4

0 10 20 30 40 50

0.
0

0.
2

0.
4

0 10 20 30 40 50

0.
0

0.
2

0.
4

n=1000, s=0.01

Number of Pilot Iterations

ĉ
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Figure 6: Asian delta pilot 95% confidence interval for ĉ for k = 10.
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Figure 7: Asian delta pilot, n = 500, sample size = 100.

size s = 0.1 leads to wider confidence intervals, which is interesting, because smaller perturbations tend
to generate noisier estimates. Therefore, it could be advantageous to consider an average or a window
average, as opposed to selecting the ĉ generated after a certain number of iterations. For instance, the
average ĉ fluctuates, especially in the case of s = 0.1, so taking a further average of multiple pilot iterations
at the later stage, could generate a parameter that is more stable.

Another input parameter that was not specified is the sample size nv used to generate the sample variance
V n. So we investigate the sensitivity of the bandwidth parameter to nv for each of the perturbation sizes
s. Again, we focus on the Asian delta case for the discretization case k = 10, sample path n = 1000, vary
nv ∈ {50,100,500,1000}, and s ∈ {0.001,0.01,0.1}. Figure 7 plots the generated ĉ against the number of
pilot simulations np for a sample size of 100. The results of the sensitivity to nv are inconclusive, since
the behavior is inconsistent across different parameter settings. For this particular example, the larger
perturbation size s = 0.1 leads to a higher bandwidth parameter, which can also be seen in Figure 6.

Clearly, the input parameters have a significant impact on the bandwidth parameter generated from
the pilot simulation, and we investigate further to determine whether or not the confidence interval of
the bandwidth parameter captures the bandwidth that minimizes the RRMSE for parameters n = 1000,
nv = 100, np = 30, sample size 100, s = 0.1 for the delta, s = 0.01 for the gamma, and s = 0.001 for both
vega and theta Asian Greek estimators. Values for the perturbation parameters were not specified in Liu
and Hong (2011), but were obtained from the authors via personal communication. The sizes were chosen
relative to the parameter of interest. Our results vary significantly, from successfully capturing the optimal
bandwidth to completely missing it. Figures 1, 2, and 3 contain vertical dotted lines representing the 95%
confidence interval for the optimal c∗ with the above specified parameters, the dotted line denotes the mean,
and the dashed line is the c∗ that minimizes the RRMSE from our first set of numerical experiments. None
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of the 95% confidence intervals of ĉ capture the minimum RRMSE for the Asian delta Greek estimator.
Instead, the CI contains mean ĉ∗ The confidence interval for the ĉ generated from the pilot simulation for
the Asian vega, covers the minimum RRMSE bandwidth, which can be seen in Figure 2.

6 CONCLUSION

In this paper, we analyzed the sensitivity of the Greek kernel estimators of Liu and Hong (2011) to the
bandwidth parameters and the sensitivity and performance of the pilot simulation in selecting the “optimal”
bandwidth parameters to input parameters. The simulated experiments show that the kernel estimators are
quite sensitive to the bandwidth choice, and the pilot simulation is sensitive to the input parameters. Of
the input parameters, the perturbation step size s significantly impacts the generated bandwidth. If s is too
small relative to the parameter of interest, then the pilot simulation could generate bandwidths that lead to
poor gradient estimates. However, even if the s is chosen proportional to the parameter of interest, the 95%
confidence interval for the ĉ might not capture the c∗ that minimizes the RRMSE. The input parameters
play a vital role in the performance of the estimator, so the input selection process of the pilot simulation
and other bandwidth selection methods are important future research areas.

REFERENCES

Asmussen, S., and P. Glynn. 2007. Stochastic Simulation: Algorithms and Analysis. New York: Springer.
Bosq, D. 1998. Nonparametric Statistics for Stochastic Processes. Second ed. Springer.
Fu, M. 2006. “Gradient Estimation”. In Handbooks in Operations Research and Management Science:

Simulation, edited by S. G. Henderson and B. L. Nelson, Chapter 19, 575–616. Elsevier.
Fu, M., and J.-Q. Hu. 1997. Conditional Monte Carlo, Gradient Estimation and Optimization Applications.

Boston: Kluwer Academic Publishers.
Fu, M. C. 2008. “What You Should Know About Simulation and Derivatives”. Naval Research Logistics 55

(8): 723 – 736.
Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. New York, NY: Springer.
Liu, G., and L. Hong. 2011. “Kernel estimation of the Greeks for options with discontinuous payoffs”.

Operations Research 59 (1): 96–108.
Wang, Y., M. Fu, and S. Marcus. 2009. “Sensitivity analysis for barrier options”. In Proceedings of the

2009 Winter Simulation Conference, edited by M. Rossetti, R. Hill, B. Johansson, and R. Ingalls, 1272
– 1282. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

MARIE CHAU is a Ph.D. candidate in Applied Mathematics, Statistics, and Scientific Computation at
the University of Maryland. She has a M.S. in applied math and degrees in math, finance and economics
from UMCP. Her research interests lie in stochastic approximation, stochastic optimization and financial
engineering. Her email address is mchau@math.umd.edu.

MICHAEL C. FU is Ralph J. Tyser Professor of Management Science in the Robert H. Smith School of
Business, with a joint appointment in the Institute for Systems Research and affiliate faculty appointment
in the Department of Electrical and Computer Engineering, all at the University of Maryland. His re-
search interests include simulation optimization and applied probability, with applications in supply chain
management and financial engineering. He has a Ph.D. in applied math from Harvard and degrees in
math and EECS from MIT. He served as WSC2011 Program Chair, NSF Operations Research Program
Director, Management Science Stochastic Models and Simulation Department Editor, and Operations Re-
search Simulation Area Editor. He is a Fellow of INFORMS and IEEE. His email address is mfu@umd.edu.

3856


