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ABSTRACT

Many ranking-and-selection (R&S) procedures have been invented for choosing the best simulated system; in

this paper we consider indifference-zone procedures that attempt to provide a probability of correct selection

(PCS) guarantee. To obtain the PCS guarantee, existing procedures nearly always exploit knowledge about

the particular combination of system performance measure (e.g., mean, probability, quantile) and assumed

output distribution (e.g., normal, exponential, Poisson). In this paper we take a step toward general-purpose

R&S procedures that work for many types of performance measures and output distributions, including

situations in which different simulated alternatives have entirely different output distributions. There are

only two versions of our procedure: with and without the use of common random numbers, and they can

be applied to performance measures that can be expressed as expected values or quantiles. To obtain the

desired PCS we exploit intense computation via bootstrapping, and establish the asymptotic PCS under

very mild conditions. We also report results of an empirical study to assess the procedures’ small-sample

properties.

1 INTRODUCTION

The statistical methods of ranking and selection (R&S) have been widely accepted in the stochastic simulation

community, so much so that R&S procedures are included in a number of commercial simulation products.

In this paper we focus on procedures that attempt to identify the best simulated alternative. A common

characteristic of selection-of-the-best procedures that have been used extensively in simulation is that

“best” is defined to be smallest or largest mean performance. Further, whether Bayesian or frequentist

in philosophy, these procedures typically assume that the simulation output data are normally distributed;

even procedures that are shown to be asymptotically valid under more general assumptions are derived

based on normality.

There is, however, a vast literature on R&S problems that differ from the normal-mean case. For

instance, there are procedures that define “best” to be the largest or smallest probability, variance or

qth quantile (Bechhofer et al. (1995); Gupta and Panchapakesan (1979)). And there are also procedures

designed for output data that are known to be non-normal, including Poisson, Bernoulli and exponential.

Procedures for these situations are customized for the particular performance measure or type of data,

exploiting mathematical-statistical properties of the relevant estimator or distribution.

In this paper we take a step toward general-purpose R&S, by which we mean procedures that work for

many types of performance measures (e.g., means, probabilities or quantiles) and types of data (discrete-

or continuous-valued and almost arbitrary distributions); in fact, not all systems even need to have the

same output distribution family. We exploit intense computation—via bootstrapping—instead of clever

mathematical analysis. To do this we employ a connection between fixed-width confidence intervals (CIs)

and probability of correct selection (PCS). Our approach is frequentist in philosophy and incorporates an

indifference zone.
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Because we substitute computation for analysis, our generic procedure will not be competitive when

simulation output data are so computationally cheap that we can simulate each alternative system “to death”

(effectively zero variance estimator). We also will not beat procedures that directly exploit distributional

information; for instance, if you know your output data really are Poisson, then we expect that a procedure

based on that knowledge should be more efficient than ours (e.g., Mulekar and Matejcik (2000)). On the

other hand, we make only very mild assumptions about the output data, and there are only two versions

of our procedure: with or without common random numbers. We prove the asymptotic validity of our

procedure, but because it bootstraps the actual simulation output data it works well in finite samples across

a variety of situations.

The seed of the idea for this paper is in Bekki et al. (2010), which outlined the basic framework and

noted its asymptotic validity for the special case of k = 2 systems. We extend the mathematical support

to any number of systems and many types of estimators here. We also provide a more extensive empirical

study.

2 PCS AND FIXED-WIDTH CONFIDENCE INTERVALS

Let Xi j represent the jth observed output of system i, for i = 1,2, . . .,k, so that X j = (X1 j,X2 j, . . .,Xk j)
T is a

k×1 vector representing the jth observed output across all systems. Throughout the paper, we assume that

Xi1,Xi2, . . . are independent and identically distributed (i.i.d.) with marginal distribution Fi(x) = Pr{Xi j ≤ x}.

When we employ common random numbers (CRN), then it will be useful to think of X1,X2, . . . as i.i.d.

with common joint distribution function F(x) = Pr{X1 j 6 x1, . . .,Xk j 6 xk}, x = (x1, . . . ,xk)
T ∈ R

k. We

neither assume nor fit any specific distribution to the simulation output.

Let Θ = (θ1,θ2, . . . ,θk)
T be a vector whose ith element is a statistical property of the marginal distribution

Fi, such as its mean, a quantile, or a probability. We are interested in finding the sample size that allows us

to select the system with the largest value of θi with a specified PCS by choosing the one with the largest

empirical estimate θ̂i of it.

For example, suppose there are k = 2 systems and we want PCS ≥ 1−α . Suppose further that we are

willing to assume that θ1 −θ2 > d (> 0), where without loss of generality system 1 is the best. Then we

want the sample size n such that

Pr{ θ̂1 > θ̂2 | θ1 −θ2 > d } > 1−α (1)

where θ̂i is an estimator of θi based on n outputs from system i, i = 1,2.

Consider now the related problem of choosing n to obtain a fixed-width d CI for θ1−θ2 with specified

coverage probability 1−α . Now we want n such that the unconditional

Pr{θ1−θ2 ∈ [θ̂1− θ̂2 −d, θ̂1 − θ̂2 +d]} > 1−α . (2)

Suppose we can form such an interval, and after having done so we select M = arg maxi θ̂i as the best

system. Then if in fact θ1 −θ2 ≥ d, we have

Pr{M = 1} = Pr{θ̂1 > θ̂2}
= Pr{ θ̂1 − θ̂2 − (θ1 −θ2) > −(θ1 −θ2) }
> Pr{θ̂1− θ̂2 − (θ1 −θ2) > −d }
> 1−α . (3)

The fixed-width confidence interval approach guarantees that the selected system is the best with probability

at least 1−α when θ1 −θ2 ≥ d if we select the system with the largest sample statistic. Therefore, a

fixed-width d confidence interval procedure implies an indifference-zone R&S procedure when we have

k = 2 systems, where the half width d corresponds to the indifference-zone parameter.
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To extend to k > 2 systems, we consider CIs on all pairs of differences simultaneously. That is, we

build fixed-width d CIs for all θi −θ j, i 6= j with simultaneous coverage 1−α . As shown in Hsu (1996),

if we have

Pr{θ̂i − θ̂ j − (θi −θ j) ≤ d, ∀i 6= j} > 1−α (4)

then with probability greater than or equal to 1−α

θi −max
j 6=i

θ j ∈
[

θ̂i −max
j 6=i

θ̂ j −d, θ̂i −max
j 6=i

θ̂ j +d

]
(5)

for i = 1,2, . . .,k. If M is the index of the system with the largest performance estimate, i.e., θ̂M > θ̂i for

all i 6= M, then it follows from (5) that with probability at least 1−α

θM −max
j 6=M

θ j > θ̂M −max
j 6=M

θ̂ j −d > −d

as θ̂M − max j 6=M θ̂ j > 0. This result implies that if we select the system with the largest performance

estimate θ̂M as the best system, the selected system will be the best system or a system within d of the

best system with probability at least 1−α . Moreover, if the difference between the largest and the second

largest parameter value is strictly greater than d, then the procedure guarantees that the selected system is

the best system with probability at least 1−α . Thus, if we have a procedure to create fixed-width d CIs

for θi −θ j with overall coverage > 1−α , then we also have a selection-of-the-best procedure.

3 BOOTSTRAP FIXED-WIDTH CONFIDENCE INTERVALS

Having established a connection between CIs and R&S, we next present a method for constructing fixed-

width d CIs for all pairwise comparisons that depends only weakly on the performance measure or output

distributions.

Swanepoel et al. (1983) describe a sequential bootstrapping procedure for generating a single fixed-

width CI with a specified coverage probability when θ is either a mean or quantile. Given an i.i.d. sample of

size n, denoted Xn = {X1,X2, . . .,Xn}, from a population with marginal distribution F having a distribution

property θ , let F̂n denote the empirical cumulative distribution function (ecdf) of Xn defined as

F̂n(x) =
1

n

n

∑
j=1

I{Xj 6 x}.

Let θ̂n be the corresponding distributional property of F̂n. Further, let X∗
n = {X∗

1 ,X∗
2 , . . . ,X∗

n} denote a

random sample of size n from F̂n, F̂∗
n the implied ecdf, and θ̂ (X∗

n) (also denoted by θ̂ ∗
n ) the corresponding

distributional property of F̂∗
n . The bootstrap estimator of the probability that θ is contained within the

interval [θ̂n −d, θ̂n +d] is

P∗
n = Pr

{
θ̂n ∈

[
θ̂ ∗

n −d, θ̂ ∗
n +d

]}
. (6)

Exact computation of P∗
n is often difficult, but (6) can be estimated given B random samples of size n from

F̂n, say X∗
nb = {X∗

1b,X∗
2b, . . .,X∗

nb}, b = 1,2, . . .,B, by using

P∗
nB =

1

B

B

∑
b=1

I
{

θ̂n ∈
[
θ̂ ∗

nb −d, θ̂ ∗
nb +d

]}
(7)
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where θ̂ ∗
nb, b = 1,2, . . .,B, is the estimate of the distributional property of interest from the bth bootstrap

sample.

In their procedure, Swanepoel et al. (1983) sequentially increase the number of observations of X until

the stopping time N∗ = inf{n > n0 : P∗
n > 1−α}, when the desired coverage probability is 1−α . The

asymptotic properties of N∗ were shown when θ is the mean or median of X , as stated in the following

theorem:

Theorem 1 (Swanepoel et al. (1983)) Under some mild assumptions, as d ↓ 0,

(a) d2N∗ → c a.s.

(b) Pr
{
|θ̂N∗ −θ | ≤ d

}
→ 1−α .

The limit c depends on the distributional property of interest: c = E(X −θ )2
z2

1−α/2
when θ is the mean

and c = z2
1−α/2/(4 f (θ )2) when θ is the median, where f is the density function of X and z1−α/2 is the

1−α/2 quantile of the standard normal random distribution.

As discussed earlier, the fixed-width confidence interval approach can be used for R&S for two

systems by building a confidence interval around the difference θ = θ1 − θ2. Therefore, the results of

Swanepoel et al. (1983) can be interpreted as providing R&S on two systems. Bekki et al. (2010) presented

empirical results for using just such a procedure for two or three systems, which gave empirical evidence

in support of the approach for R&S based on both means and quantiles. This paper presents asymptotic

support for bootstrap fixed-width d CIs that parallel those in Swanepoel et al. (1983), but for any number

of pairwise differences, thereby providing indifference-zone R&S for k ≥ 2 systems. First, however, we

describe our generic procedure for bootstrap R&S on k > 2 systems in the next section.

4 THE GENERIC PROCEDURE

In this section we describe algorithms for performing R&S for k > 2 systems using the bootstrap-based

fixed-width confidence interval approach. We present two versions of the algorithm, one that exploits

common random numbers (CRN) and one without CRN. The algorithm without using CRN has been

presented in Bekki et al. (2010) when the sample size is incremented one at a time. We generalize the

algorithm here to allow ∆n ≥ 1 additional observations on each iteration; this has the effect of speeding

up the algorithm at the possible cost of taking more observations than necessary to guarantee a correct

selection. We do not yet have a method for adaptively choosing an optimal value for ∆n, but empirically

we found ∆n = 10 to provide a substantial computational speed-up without noticable loss of statistical

efficiency.

First we describe the procedure without using CRN. Let Xin = {Xi1,Xi2, . . .,Xin} be a sample of

size n from a system with output distribution Fi having distribution property θi, and F̂in the ecdf based

on Xin for system i = 1,2, . . .,k. Let θ̂ (Xin) be an estimate of θi based on Xin for i = 1,2, . . .,k and

θ̂i j(Xn) = θ̂ (Xin)− θ̂(X jn) for all i 6= j. We want to build simultaneous fixed-width d confidence intervals

for all pairs of differences θi −θ j for i 6= j by finding n such that

Pr
{

θi j ∈
[
θ̂i j(Xn)−d, θ̂i j(Xn)+d

]
, ∀i 6= j

}
> 1−α

where θi j = θi −θ j. The value of n will be the smallest one for which the estimated coverage probability

using bootstrapping is at least 1−α . Specifically, given B random samples of size N from F̂iN , X∗
iNb =

{X∗
i1b,X∗

i2b, . . .,X∗
iNb}, b = 1,2, . . .,B, the bootstrap coverage probability is estimated by

P∗
NB =

1

B

B

∑
b=1

∏
(i, j|i6= j)

I
{

θ̂i j(XN) ∈
[
θ̂i j(X∗

Nb)−d, θ̂i j(X∗
Nb)+d

]}
(8)
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where θ̂ (X∗
iNb) is an estimate of θ̂ (XiN) based on X∗

iNb, and θ̂i j(X∗
Nb) = θ̂ (X∗

iNb)− θ̂(X∗
jNb) for all i 6= j. The

procedure without CRN described below starts with a sample of size N = n0 from each system i = 1,2, . . .,k,

a desired PCS 1−α , a half width (indifference-zone parameter) d for the CI, and a sample-size increment

∆n.

Bootstrap R&S procedure without CRN

1. Specify N = n0, set 1/k < 1−α < 1, d > 0, and ∆n ≥ 1.

2. Obtain XiN = {Xi1,Xi2, . . . ,XiN} a sample of size N from the distribution Fi for i = 1,2, . . .,k.

3. Compute θ̂i j(XN) = θ̂ (XiN)− θ̂(X jN) for all i 6= j where θi is a distributional property of Fi and

θ̂ (XiN) is an estimate of θi based on XiN ; and form the ecdf F̂iN of Fi for system i = 1,2, . . .,k.

4. Obtain B bootstrap samples of size N from F̂iN : X∗
iN1, . . . ,X∗

iNB, i = 1, . . .,k.

5. Compute θ̂i j(X∗
Nb) = θ̂ (X∗

iNb)− θ̂ (X∗
jNb), b = 1,2, . . .,B for all i 6= j.

6. Estimate the PCS as

P∗
NB =

1

B

B

∑
b=1

∏
(i, j|i6= j)

I
{
|θ̂i j(X∗

Nb)− θ̂i j(XN)| 6 d

}
.

7. If P∗
NB > 1−α , report argmaxi=1,...,k θ̂ (XiN)

Else

Obtain Xi∆n a sample of size ∆n from the distribution Fi for i = 1,2, . . .,k.
Set XiN = XiN ∪Xi∆n for i = 1,2, . . .,k and N = N +∆n.

Go to Step 3.

End If

We next present the bootstrap R&S procedure that exploits the use of CRN. The sample size required

to attain the desired PCS is expected to be reduced relative to independent sampling. In the algorithm

with CRN, a sample will be taken from each of the k systems using CRN across systems to induce a

joint distribution on {F1,F2, . . .,Fk}; we denote that distribution by F. Correspondingly, we draw bootstrap

samples from the empirical joint cdf F̂N , rather than from each marginal ecdf F̂iN . Below we list only the

steps that change from the Bootstrap R&S procedure without CRN:

Bootstrap R&S procedure with CRN

2. Obtain a sample X j = (X1 j,X2 j, . . . ,Xk j)
T

j = 1,2, . . .,N from the joint distribution F.

3. Compute θ̂i j(XN) = θ̂ (XiN)− θ̂ (X jN) for all i 6= j where θi is a distributional property of Fi, and

θ̂ (XiN) is an estimate of θi based on XiN ; and form the ecdf F̂N based on XN = {X1,X2, . . .,XN} as

F̂N(x) =
1

N

N

∑
j=1

I{X1 j 6 x1, X2 j 6 x2, . . . , Xk j 6 xk}.

4. Obtain B bootstrap samples of size N from F̂N : {X∗
1b,X∗

2b, . . .,X∗
Nb} for b = 1,2, . . .,B, where

X∗
jb = (X∗

1 jb,X∗
2 jb, . . . ,X∗

k jb)
T

for j = 1,2, . . .,N.

7. If P∗
NB > 1−α , report argmaxi=1,...,k θ̂ (XiN)

Else

Obtain X∆n = {X j, j = 1,2, . . .,∆n} a sample of size ∆n from the distribution F .

Set XN = XN ∪X∆n and N = N +∆n.

Go to Step 3.

End If
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Later we report the results from experiments with and without CRN to illustrate the impact of CRN

on the sample size required to attain the desired PCS.

5 ASYMPTOTIC RESULTS

The theorems stated below extend Swanepoel et al. (1983) from a single CI to simultaneous CIs for multiple

means and quantiles; proofs can be found in Lee and Nelson (2014). These asymptotic results support our

use of bootstrap R&S for k > 2 systems and either mean or quantile performance measures, as shown in

the corollaries. We first review the key notation.

Let Xn = {X1,X2, . . . ,Xn} be a random sample of size n from distribution F (in R
k) with a k×1 vector

of marginal distribution properties Θ, where X j = (X1 j,X2 j, . . .,Xk j)
T , j = 1,2, . . .,n . Further, let F̂n(x)

be the ecdf based on Xn defined in two different ways for use in the procedure without CRN, as in (9),

and with CRN, as in (10):

F̂n(x) =
k

∏
i=1

(
1

n

n

∑
j=1

I
{

Xi j 6 xi

}
)

(9)

F̂n(x) =
1

n

n

∑
j=1

I
{

X1 j 6 x1, X2 j 6 x2, . . . , Xk j 6 xk

}
(10)

where x = (x1,x2, . . .,xk)
T ∈ R

k.

Let X∗
n = {X∗

1,X∗
2, . . . ,X∗

n} denote a random sample of size n from F̂n. The bootstrap stopping variable

N∗ is given by

N∗ = inf
{

n > n0 : Pr
{
|Θ̂(X∗

n)− Θ̂(Xn)|6 d ·1
}

> 1−α
}

(11)

where 1 is the k-dimensional column vector of ones. When Θ = E[X], then Θ̂(Xn) and Θ̂(X∗
n) are

the sample mean vectors based on Xn and X∗
n, respectively. That is Θ̂(Xn) = X̄n = ∑n

j=1 X j/n and

Θ̂(X∗
n) = X̄

∗
n = ∑n

j=1 X∗
j/n. Notice that the “mean” case includes probabilities as they are expected values

of indicator functions.

Theorem 2 Let Θ = EF [X]. Suppose that EF [|X−Θ|3] < ∞ and Σ = EF

[
(X−Θ)(X−Θ)T

]
is a positive

definite matrix. Consider N∗ as defined in (11).

(a) As d ↓ 0, we have

d2N∗ → a2 a.s.

where a solves the k-dimensional integral equation
∫

[−a,a]k
(2π)−k/2|Σ|−1/2e−yT Σ−1y/2 dy = 1−α . (12)

(b) As d ↓ 0, we have

Pr
{
|X̄N∗ −Θ| ≤ d ·1

}
→ 1−α .

Next let Θ be a set of specific quantiles of the k marginal distributions where the ith element is defined

as

θi = F−1
i (q) = inf{x : Fi(x) > q}, 0 < q < 1 i = 1,2, . . .,k.

Then Θ̂(Xn) and Θ̂(X∗
n) are the sample qth quantiles based on Xn and X∗

n, respectively, where the ith

element of Θ̂(Xn) is the sample qth quantile of Xi1,Xi2, . . .,Xin and the ith element of Θ̂(X∗
n) is the sample

qth quantile of X∗
i1,X∗

i2, . . .,X∗
in.
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Theorem 3 Let Fi be twice continuously differentiable in a neighborhood of θi and δi = fi(θi) > 0, for

i = 1,2, . . .,k, where fi is the density associated with Fi. Further, let Fi j be (i, j)th bivariate marginal

distribution function. Consider N∗ as defined in (11).

(a) As d ↓ 0, we have

d2N∗ → a2 a.s.

where a solves Equation (12) with covariance matrix

Σ =





q(1−q)

δ 2
1

σ12

δ1δ2

· · · σ1k

δ1δk

...
... · · · ...

σk1

δkδ1

σk2

δkδ2

· · · q(1−q)

δ 2
k





where

σi j = Fi j(θi,θ j)−q2.

(b) As d ↓ 0, we have

Pr
{
|Θ̂(XN∗)−Θ| ≤ d ·1

}
→ 1−α .

The theorems stated above provide the basis for the asymptotic validity of our generic procedure for

R&S on any number of systems by extending them to all pairs of difference estimates using the linear

transformation A defined as

A = [ai j], i = 1,2, . . .,m; j = 1,2, . . .,k; m =

(
k

2

)
(13)

where

ai j =






1, ( j−1)

(
k− j

2

)
+1 6 i 6 j

(
k− j +1

2

)
; j = 1,2, . . .,k−1

−1, i = hk− h(h+1)

2
− (k− j); j = 2,3, . . .,k; 1 6 h 6 j−1

0, otherwise.

We are now prepared to state the asymptotic validity of our generic R&S procedures in Corollaries 4

and 5. The stopping time used in our procedures can be defined as

N∗
A = inf

{
n > n0 : Pr{|(AΘ̂(X∗

n)−AΘ̂(Xn)|6 d ·1} > 1−α
}

. (14)

Corollary 4 Under the same assumptions as in Theorem 2, consider N∗
A as defined in (14).

(a) As d ↓ 0, we have

d2N∗
A → a2 a.s.

where a solves Equation (12) with covariance matrix AΣAT , where Σ is defined as in Theorem 2.

(b) As d ↓ 0, we have

Pr
{
|AΘ̂(XN∗

A
)−AΘ| ≤ d ·1

}
→ 1−α .

Next let Θ̂ be the sample quantiles defined in Theorem 3.
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Corollary 5 Under the same assumptions as in Theorem 3, consider N∗
A as defined in (14).

(a) As d ↓ 0, we have

d2N∗
A → a2 a.s.

where a solves Equation (12) with covariance matrix AΣAT , where Σ is defined as in Theorem 3.

(b) As d ↓ 0, we have

Pr
{
|AΘ̂(XN∗

A
)−AΘ| ≤ d ·1

}
→ 1−α .

6 EXPERIMENT RESULTS

Section 4 described the generic procedure for R&S using bootstrap-based fixed-width CIs for various types

of output distributions and for any number of systems. In this section we present empirical results from

applying the procedure with k = 10 systems having normal or Poisson output distributions when θ is the

mean. We also present preliminary results for R&S based on the 0.5 or 0.8 quantiles when the output is

normally distributed. Finally, we revisit the Poisson case to compare the efficiency of our procedure to

procedures designed specifically for Poisson output data.

6.1 Bootstrap R&S for the Mean

All results presented here are averaged over 100 macro-replications of the entire experiment, and in all

cases a sample-size increment of ∆n = 10 was used.

Tables 1–4 contain results for selecting the system with the largest mean with or without CRN when

varying the initial sample size n0, the half width (indifference-zone parameter) d, and the number of

bootstrap resamples B; the desired confidence level is 1−α = 0.95 for all experiments.

For the case of normally distributed output, the empirical results in Table 1 are without using CRN.

The true mean vector is µ = (1,1.5,2,2.1,3,3.2,4,5,5.2,5.5) and the covariance matrix is Σ = I10, where

Ik denotes the k×k identity matrix. The PCS was calculated as the fraction of the 100 macroreplications in

which a system whose mean is within d of the true best mean (which is 5.5) was selected. The estimated

coverage probability is P∗
NB from Step 6 of the algorithm, and the true coverage probability is computed

as the percentage of the time that the 45 CIs simultaneously cover all pairwise differences θi −θ j for all

i 6= j.

Table 1 shows that the required sample size N∗ increases as the half width (indifference zone parameter)

d decreases, as expected. The PCS values are greater than or equal to 0.95 in all cases, and in fact are

conservative since achieving simultaneous coverage is more stringent than simply selecting the best.

With the initial sample size n0 fixed, the required sample size increases slightly as B increases, as noted

in Swanepoel et al. (1983), and the true coverage tends to improve. In the experiments with B = 50 the

coverage probabilities are less than the desired coverage probabilities when d = 0.1 and d = 0.3, although

the desired PCS is still achieved.

To implement the algorithm with CRN, we consider a common base random variable Z which is N(0,1)
and set Xi = σzZ +Wi, where Wi’s are N(µi,σ2

Wi
) random variables for i = 1,2, . . .,k. Then the correlation

between Xi and Xj for i 6= j is

Corr(Xi,Xj) =
σ2

z√
σ2

z +σ2
Wi

√
σ2

z +σ2
Wj

.

By letting σ2
Wi

= 1−σ2
z , 0 < σ2

z < 1, we have Var(Xi) = 1 for i = 1,2, . . .,k and Corr(Xi,Xj) = σ2
z . In

Table 2, σz =
√

0.9 and
√

0.5 were used; therefore, Corr(Xi,Xj) = 0.9 and 0.5.

The results in Table 2 show that the required sample size is indeed reduced as the correlation between

systems increases. For instance, with n0 = 50, B = 200 and d = 0.3, the required sample sizes per system

are 114.5 and 50 when the correlation is 0.5 and 0.9, respectively, as compared to 220.8 in Table 1.
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Table 1: Empirical results from 100 macroreplications for normal distributions without CRN.

n0 d B Average N∗ PCS Est. Coverage True Coverage

10 0.1 50 1656.3 1 0.9658 0.89

50 0.1 50 1661.5 1 0.9672 0.89

100 0.1 50 1656.5 1 0.9658 0.87

10 0.1 100 1734 1 0.9562 0.87

50 0.1 100 1743 1 0.9589 0.91

100 0.1 100 1752.6 1 0.9570 0.88

10 0.1 200 1832.1 1 0.9557 0.93

50 0.1 200 1829.2 1 0.9558 0.94

100 0.1 200 1830.2 1 0.9560 0.94

10 0.3 50 213.1 1 0.9718 0.93

50 0.3 50 214.3 0.99 0.9706 0.92

100 0.3 50 210.1 1 0.9722 0.94

10 0.3 100 215.5 0.99 0.9631 0.97

50 0.3 100 213.1 1 0.9601 0.93

100 0.3 100 214.2 1 0.9610 0.92

10 0.3 200 218.2 1 0.9602 0.92

50 0.3 200 220.8 1 0.9594 0.96

100 0.3 200 219.3 1 0.9595 0.95

10 0.5 50 83.8 1 0.9736 0.97

50 0.5 50 82.4 1 0.9756 0.97

100 0.5 50 100.8 1 0.9842 0.99

10 0.5 100 82.2 1 0.9680 0.96

50 0.5 100 82.7 1 0.9669 0.93

100 0.5 100 100 1 0.9852 0.98

10 0.5 200 85.4 1 0.9659 0.98

50 0.5 200 83.9 1 0.9651 0.99

100 0.5 200 100.0 1 0.9855 0.99

Table 2: Empirical results from 100 macroreplications for normal distributions with CRN.

Corr n0 d B Average N∗ PCS Est. Coverage True Coverage

0.5 50 0.3 200 114.5 1 0.9621 0.94

0.9 50 0.3 200 50.0 1 0.9995 1

0.5 50 0.1 200 936.4 1 0.9567 0.90

0.9 50 0.1 200 198.8 1 0.9607 0.96
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Table 3: Empirical results from 100 macroreplications for Poisson distributions without CRN.

n0 d B Mean N∗ PCS Est. Coverage True Coverage

50 0.1 200 6389.8 1 0.9544 0.87

100 0.1 200 6381.7 1 0.9546 0.94

50 0.1 400 6718.3 1 0.9539 0.89

100 0.1 400 6711.8 1 0.9536 0.94

50 0.3 200 761.3 1 0.9569 0.94

100 0.3 200 767.1 0.97 0.9569 0.91

50 0.3 400 779.5 0.99 0.9551 0.91

100 0.3 400 786.8 1 0.9558 0.96

50 0.5 200 288.3 0.99 0.9605 0.91

100 0.5 200 289.1 0.99 0.9595 0.91

50 0.5 400 292.2 1 0.9576 0.96

100 0.5 400 290.3 0.99 0.9568 0.97

Table 4: Empirical results from 100 macroreplications for Poisson distributions with CRN.

λW n0 d B Average N∗ PCS Est. Coverage True Coverage

0.5 50 0.3 200 669.8 1 0.9568 0.97

0.9 50 0.3 200 594.2 1 0.9558 0.95

0.5 50 0.1 200 5600.7 1 0.9539 0.94

0.9 50 0.1 200 5037.4 1 0.9555 0.9

For the Poisson output distribution, the true means are again λ = (1,1.5,2,2.1,3,3.2,4,5,5.2,5.5).

The empirical results in Table 3 are obtained without using CRN. The PCS values are all greater than

0.95, but the CI simultaneous coverage probability can be significantly less that 0.95 when B = 50, again

emphasizing that the number of bootstrap samples cannot be too small. For most cases the required sample

size increases and the coverage probability tends to improve as B increases.

To implement the algorithm with CRN, we consider a common base Poisson random variable W with

parameter λW and set Xi = W +Wi where Wi is a Poisson random variable with parameter λWi
. Then the

correlation between Xi and Xj for i 6= j is

Corr(Xi,Xj) =
λW

√
λW +λWi

√
λW +λWj

.

In the results shown in Table 4, λW = 0.9 and 0.5 are used. Unlike the normal case, the correlations between

the systems are not equal to each other; when λW = 0.9 the Corr(Xi,Xj) ranges from 0.17 to 0.73, and

when λW = 0.5 it ranges from 0.09 to 0.41.

The results in Table 4 show that the required sample size is reduced compared to the results without

CRN. Notice that the required sample sizes for the Poisson case are much larger than the required sample

sizes for the normal case with the same configuration of the means because the variances in the Poisson

case are much higher than the normal case.

6.2 Bootstrap R&S for Quantiles

Here we present some preliminary results for selecting the system with the largest q quantile when we have k =
10 systems, normally distributed output, with means µ = (1,1.5,2,2.1,3,3.2,4,5,5.2,5.5) and all standard

deviations being 1, as before. We consider the q = 0.5 (median) and q = 0.8 quantiles. Of course, the median

is the same as the mean, while the 0.8 quantiles are (1.84,2.34,2.84,2.94,3.84,4.04,4.84,5.84,6.04,6.34).
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Table 5: Empirical results from 100 macroreplications for normal distributionswithout CRN and q = 0.5,0.8.

q n0 d B Average N∗ PCS Est. Coverage True Coverage

0.5 100 0.3 200 390.9 1 0.9585 0.97

0.5 200 0.3 200 388.0 1 0.9593 0.96

0.5 200 0.3 400 400.5 1 0.9574 0.98

0.8 100 0.3 200 508.8 1 0.9580 1

0.8 200 0.3 200 508.7 0.99 0.9581 0.99

0.8 200 0.3 400 523.1 1 0.9581 0.99

Table 6: Empirical results from 100 macroreplications for normal distributions with CRN and q = 0.5,0.8.

q Corr n0 d B Average N∗ PCS Est. Coverage True Coverage

0.5 0.5 100 0.3 200 285.8 1 0.9598 0.98

0.5 0.5 200 0.3 200 286.1 1 0.9600 0.99

0.5 0.5 200 0.3 400 279.2 1 0.9586 0.98

0.5 0.9 100 0.3 200 151.9 1 0.9633 1

0.5 0.9 200 0.3 200 200.7 1 0.9871 1

0.5 0.9 200 0.3 400 200.4 1 0.9857 1

0.8 0.5 100 0.3 200 383.1 1 0.9587 1

0.8 0.5 200 0.3 200 387.2 1 0.9590 0.99

0.8 0.5 200 0.3 400 383.3 1 0.9582 0.97

0.8 0.9 100 0.3 200 211.1 1 0.9620 0.99

0.8 0.9 200 0.3 200 220.3 1 0.9649 1

0.8 0.9 200 0.3 400 219.7 1 0.9653 0.99

Therefore, the difference between the best and the second best is 0.3. We again use ∆n = 10 in all

experiments, and simulate with and without CRN as before.

The results in Tables 5–6 show that both the desired PCS and coverage are attained, although again

somewhat conservatively. CRN again reduces the sample size needed to attain the PCS and coverage.

Notice that we started with larger values of n0 so as to obtain a decent estimate of the 0.8 quantile even

in the first stage.

6.3 Comparison Against a Customized Procedure

We revisit the Poisson case and compare our bootstrap R&S algorithm without CRN with Rinott’s procedure

(which is for normally distributed output data) and R&S procedures specifically designed for Poisson

data from Mulekar and Matejcik (2000). Recall that there are k = 10 systems with mean vector λ =
(1,1.5,2,2.1,3,3.2,4,5,5.2,5.5), and the desired PCS is 1−α = 0.95. We set n0 = 10 to facilitate using

the tables available for these other methods.

Since Rinott’s procedure allows the sample size for each system to be different, we compare the total

sample size required by each method across all ten systems. The total for Rinott’s procedure was 5558.

Mulekar and Matejcik (2000) proposed both an exact method and a normal approximation method; the

total for the exact method and the normal approximation for our example were 7600 and 6910, respectively.

The total sample size for bootstrap R&S, averaged over 100 macroreplications, was 7620, which is close

to the values suggested by the customized Poisson procedures, showing little if any loss in efficiency.
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7 CONCLUSIONS

In this paper we demonstrated empirically, and provided asymptotic support for, general-purpose R&S

procedures based on bootstrapping for performance measures that can be expressed as expected values or

quantiles. By “general purpose” we mean that the procedure need not be tailored to the specific performance

measure of interest or assumed distribution of the simulation output.

At least two challenges remain: Reducing the computational overhead to implement bootstrap R&S,

and deriving procedures that are less conservative (which, by reducing the sample size, will also reduce

computation). In this paper we employed a sample-size increment ∆n > 1 to reduce the number of times that

the bootstrap coverage probability needs to be estimated, but we have not yet provided any guidelines for

choosing ∆n in an optimal way. In addition, our selection of the best is based on simultaneous confidence

intervals for all pairs of differences, which is stronger inference than needed for selecting the best (see,

for instance, Hsu (1996)). Therefore, we believe it might be possible to tighten the procedure by using

bootstrapping to estimate PCS directly. Finally, we simulate all k systems until the best is selected, but

multistage R&S procedures that eliminate inferior systems along the way tend to be more efficient.
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