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ABSTRACT

Based on model-based methods, a recent class of stochastic search methods for nonlinear deterministic
optimization, we propose a new algorithm for simulation optimization over continuous space. The idea
is to reformulate the original simulation optimization problem into another optimization problem over the
parameter space of the sampling distribution in model-based methods, and then use a direct gradient search
on the parameter space to update the sampling distribution. To improve the computational efficiency,
we further develop a two-timescale updating scheme that updates the parameter on a slow timescale and
estimates the quantities involved in the parameter updating on a fast timescale. We provide numerical
experiments to illustrate the performance of our algorithms.

1 INTRODUCTION

We consider simulation optimization over continuous space, where the objective function cannot by evaluated
exactly but by a simulation approximation. As characterized by Fu, Chen, and Shi (2008), there are four main
classes of approaches to simulation optimization over continuous space: (i) sample average approximation,
e.g. de Mello, Shapiro, and Spearman (1999); (ii) stochastic gradient methods or stochastic approximation,
e.g. Kiefer and Wolfowitz (1952), Kushner and Yin (2004); (iii) sequential response surface methodology,
e.g. Barton and Meckesheimer (2006), Chang, Hong, and Wan (2013); and (iv) deterministic metaheuristics,
a broad category of methods that generalize deterministic metaheuristics to the simulation optimization
setting, e.g. Olafsson (2006), Andradóttir (2006).

Among deterministic metahuristics, a recent class of algorithms under the name of “model-based
methods” have shown good performance in a wide range of applications. These methods include ant colony
optimization (Dorigo and Gambardella 1997), annealing adaptive search (AAS) (Romeijn and Smith 1994),
probability collectives (PCs) (Wolpert 2004), the estimation of distribution algorithms (EDAs) (Larranaga
et al. 1999), the cross-entropy (CE) method (DeBoer et al. 2005), model reference adaptive search (MRAS)
(Hu, Fu, and Marcus 2007), the interacting-particle algorithm (Molvalioglu, Zabinsky, and Kohn 2009), and
the gradient-based adaptive stochastic search (GASS) (Zhou and Hu 2012, Zhou and Hu 2014). Model-based
methods typically assume a sampling distribution (i.e., a probabilistic model), often within a parameterized
family of distributions, over the solution space, and iteratively carry out the two interrelated steps: (1) draw
candidate solutions from the sampling distribution; (2) use the evaluations of these candidate solutions to
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update the sampling distribution. The hope is that at every iteration the sampling distribution is biased
towards the more promising regions of the solution space, and will eventually concentrate on one or more
of the optimal solutions.

A straightforward idea for extending model-based methods to simulation optimization is to simulate
each candidate solution at a given iteration for an equal number of times to obtain their performance
estimates and then use these estimates to update the probability distribution over the solution space. To
improve computational efficiency, better simulation allocation rules have been proposed to replace the equal
allocation rule. Hu, Fu, and Marcus (2008) studied the sufficient conditions on the simulation allocation
rule in MRAS to guarantee convergence of the algorithm. Chepuri and de Mello (2005) proposed a simple
heuristic sampling scheme to determine the number of simulation replications in each iteration for the CE
method. More recently, He et al. (2010) developed the algorithm under the name of cross-entropy with
optimal computing budget allocation (CEOCBA), which nicely incorporates the idea of optimal computing
budget allocation (OCBA) (Chen et al. 2000) into each individual iteration of the CE method.

Unlike the aforementioned approaches, we propose a different idea of adapting model-based methods
to simulation optimization: we reformulate the original problem as a new optimization problem over the
parameter space of the sampling distribution, and then use a direct gradient search to update the parameter.
This idea is an extension of the gradient-based adaptive stochastic search (GASS) algorithm that we
developed earlier for deterministic non-differentiable optimization (cf. Zhou and Hu (2012), Zhou and Hu
(2014) for details on GASS). In the current simulation optimization setting, the gradient and Hessian terms
involved in the gradient search need to be estimated jointly by candidate solutions and their performance
evaluations. Aiming at reducing the sample size to further improve the efficiency, we also develop a two-
timescale scheme that updates the parameter on a slow timescale and estimates the gradient and Hessian
terms using the samples on a fast timescale. The resultant algorithm is essentially a two-timescale stochastic
approximation scheme (cf. Borkar (2008), Bhatnagar and Borkar (1998), Bhatnagar, Prasad, and Prashanth
(2013) for details of multi-timescale stochastic approximation).

The rest of the paper is organized as follows. Section 2 introduces the main idea. Section 3 presents our
proposed algorithm and the two-timescale variant. Section 4 illustrates the performance of our algorithms
by comparing with the CEOCBA method on several benchmark problems. Finally we conclude the paper
in Section 5.

2 MAIN IDEA

Consider the simulation optimization problem

max
x∈X

H(x) = Eξ [h(x,ξ )], (1)

where X ⊆Rx, and ξ represents the randomness in the system and follows a distribution p(ξ ) that is not
dependent on x. Assume that H is bounded on X , i.e., ∃Hlb >−∞, Hub < ∞ s.t. Hlb ≤ H(x)≤ Hub. Due
to the complexity of system, the analytical form of H is often not available. Hence, we assume for a given
x, its performance can only be evaluated by simulation or experimentation, which returns a noisy function
evaluation of H(x) or in other words, a sample of h(x,ξ ). We also assume the following condition on the
objective function:
Assumption 1 For an arbitrary and fixed value z, h(x1,z)≥ h(x2,z) if H(x1)≥ H(x2).
This assumption is satisfied by many objective functions, such as those with an additive noise, i.e.
h(x,ξ ) = h̃(x)+ξ .

As in many model-based methods, we introduce a parameterized family of densities { f (x;θ),θ ∈Θ⊂
Rθ} as the sampling distribution, where θ is the parameter that will be updated over iterations. We will
illustrate our idea by first considering a simple reformulation

L(θ),
∫

H(x) f (x;θ)dx =
∫ ∫

h(x,ξ )p(ξ ) f (x;θ)dxdξ .
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It is easy to see that L(θ)≤ H(x∗) and the equality is achieved if and only if all the probability mass of
f (x;θ) concentrates on a subset of the set of global optima. Given the existence of such a θ , we can solve
the new optimization problem maxθ∈Θ L(θ) instead of the original problem, since the optimal parameter
will recover the optimal solution and the optimal function value.

For a full-blown development of our proposed algorithm, we introduce a shape function Sθ : R→R+,
where the subscript θ signifies the possible dependence of the shape function on the parameter θ . The
function Sθ satisfies the following conditions:

(a) For every θ , Sθ (y) is increasing in y and bounded from above and below for finite y. Moreover,
for every fixed y, Sθ (y) is continuous in θ .

The purpose of the shape function is to make the objective function value positive, and the choice of the
shape function also helps to adjust the balance between exploitation around the current promising solutions
and exploration over the entire solution space. Then for an arbitrary but fixed θ ′ ∈Θ, define

L(θ ;θ
′) =

∫ ∫
Sθ ′(h(x,ξ ))p(ξ ) f (x;θ)dxdξ .

Proposition 1 Under Assumption 1, for all x ∈X

L(θ ;θ
′)≤ Eξ [Sθ ′(h(x∗,ξ ))] ,

and the equality is achieved if and only if all the probability mass of f (x;θ) is concentrated on a subset
of the set of global optima.

Proof. From Assumption 1 and the monotonicity of the function S, it is easy to see that for any fixed
value of ξ ,

Sθ ′(h(x,ξ ))≤ Sθ ′(h(x∗,ξ )).

By taking the expectation with respect to ξ and x on both sides, the inequality is proved. This ends the
proof.

Thus, in order to find the optimal sampling parameter we can consider

max
θ∈Θ

l(θ ;θ
′), lnL(θ ;θ

′).

Since ln(·) is a strictly increasing function, l(θ ;θ ′) has the same set of optimal solutions as L(θ ;θ ′).
Motivated by this reformulation, we propose a stochastic search algorithm that carries out the following
two steps at each iteration: let θk be the parameter obtained at the kth iteration,

1. Generate candidate solutions from f (x;θk).
2. Update the parameter to θk+1 using a Newton-like iteration for maxθ l(θ ;θk).

The second step above requires one to compute the gradient and Hessian of l(θ ;θk). For this purpose,
we choose { f (x;θ)} to be an exponential family of densities defined as below, and the corresponding
analytical expressions of the gradient and Hessian are provided in Proposition 2 that follows.
Definition 1 A family { f (x;θ) : θ ∈Θ} is an exponential family of densities if it satisfies

f (x;θ) = exp{θ T T (x)−φ(θ)}, φ(θ) = ln
{∫

exp(θ T T (x))dx
}
. (2)

where T (x) = [T1(x),T2(x), . . . ,Td(x)]T is the vector of sufficient statistics, θ = [θ1,θ2, . . . ,θd ]
T is the vector

of natural parameters, and Θ = {θ ∈ Rd : |φ(θ)| < ∞} is the natural parameter space with a nonempty
interior.
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Proposition 2 Assume that f (x;θ) is twice differentiable on Θ and that ∇θ f (x;θ) and ∇2
θ

f (x;θ) are both
bounded on X for any θ ∈Θ. Then

∇θ l(θ ;θ
′)|θ=θ ′ = Eg(·;θ ′)[∇θ ln f (X ;θ

′)]

∇
2
θ l(θ ;θ

′)|θ=θ ′ = Eg(·;θ ′)[∇
2
θ ln f (X ;θ

′)]+Varg(·;θ ′)
[
∇θ ln f (X ;θ

′)
]
,

where Eg(·;θ ′) and Varg(·;θ ′) denote the expectation and variance taken with respect to the probability density
function (p.d.f.) defined as

g(x,ξ ;θ) =
Sθ (h(x,ξ ))p(ξ ) f (x;θ)∫ ∫

Sθ (h(x,ξ ))p(ξ ) f (x;θ)dξ dx
.

Furthermore, if f (x;θ) is in an exponential family of densities, then the above expressions reduce to

∇θ l(θ ;θ
′)|θ=θ ′ = Eg(·;θ ′)[T (X)]−Eθ ′ [T (X)],

∇
2
θ l(θ ;θ

′)|θ=θ ′ = Varg(·;θ ′)[T (X)]−Varθ ′ [T (X)],

where Eθ ′ and Varθ ′ denote the expectation and variance with respect to f (·;θ ′).

Proof. First, consider the gradient of l(θ ;θ ′) with respect to θ . Notice that ∇θ l(θ ;θ ′)|θ=θ ′ =
∇θ L(θ ;θ ′)

L(θ ;θ ′) |θ=θ ′ and

∇θ L(θ ;θ
′) =

∫ ∫
Sθ ′(h(x,ξ ))p(ξ )∇θ f (x;θ)dxdξ =

∫ ∫
Sθ ′(h(x,ξ ))p(ξ ) f (x;θ)∇θ ln f (x;θ)dxdξ ,

where the interchange of integral and derivative in the first equality follows from the boundedness assumptions
on Sθ ′ and ∇θ f (x;θ) and the dominated convergence theorem. Then we have

∇θ l(θ ;θ
′)|θ=θ ′ =

∫ ∫
Sθ ′(h(x,ξ ))p(ξ ) f (x;θ)∇θ ln f (x;θ)dxdξ

L(θ ;θ ′)

∣∣∣∣
θ=θ ′

(3)

= Eg(·;θ ′)[∇θ ln f (X ;θ
′)],

where

g(x,ξ ;θ
′) =

Sθ ′(h(x,ξ ))p(ξ ) f (x;θ ′)∫ ∫
Sθ ′(h(x,ξ ))p(ξ ) f (x;θ ′)dξ dx

.

Differentiating (3) with respect to θ and using the fact ∇θ f (x;θ) = f (x;θ)∇θ ln f (x;θ), we obtain the
Hessian

∇
2
θ l(θ ;θ

′)|θ=θ ′ = Eg(·;θ ′)[∇
2
θ ln f (X ;θ

′)]+Eg(·;θ ′)
[
∇θ ′ ln f (X ;θ

′)(∇θ ′ ln f (X ;θ
′))T ]

− Eg(·;θ ′)
[
∇θ ln f (X ;θ

′)
]

Eg(·;θ ′)
[
∇θ ln f (X ;θ

′)
]T

= Eg(·;θ ′)[∇
2
θ ln f (X ;θ

′)]+Varg(·;θ ′)
[
∇θ ln f (X ;θ

′)
]
. (4)

Furthermore, if f (x;θ) = exp{θ T T (x)−φ(θ)}, we have

∇θ ln f (x;θ) = ∇θ

(
θ

T T (x)− ln
∫

exp(θ T T (x))dx
)

= T (x)−
∫

exp(θ T T (x))T (x)dx∫
exp(θ T T (x))dx

= T (x)−Eθ [T (X)]. (5)
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Differentiating (5) with respect to θ , we obtain

∇
2
θ ln f (x;θ) = −

∫
exp(θ T T (x))T (x)T (x)T dx∫

exp(θ T T (x))dx
+

∫
exp(θ T T (x))T (x)dx

(∫
exp(θ T T (x))T (x)dx

)T

(
∫

exp(θ T T (x))dx)2

= −Eθ [T (X)T (X)T ]+Eθ [T (X)]Eθ [T (X)]T

= −Varθ [T (X)]. (6)

Plugging (5) into (3) yields

∇θ l(θ ;θ
′)|θ=θ ′ = Eg(·;θ ′)[T (X)]−Eθ ′ [T (X)].

Plugging (5) and (6) into (4) yields

∇
2
θ l(θ ;θ

′)|θ=θ ′ = Varg(·;θ ′)[T (X)]−Varθ ′ [T (X)].

Thus, Proposition 2 is proved.

Noticing that the Hessian ∇2
θ

l(θ ′;θ ′) is not necessarily negative definite to ensure the parameter updating
is along the ascent direction of l(θ ;θ ′), we approximate the Hessian by the slightly perturbed second term
in ∇2

θ
l(θ ′;θ ′), i.e., −(Varθ ′ [T (X)]+ εI), which is negative definite. Then we can update the parameter as

follows:

θk+1 = ΠΘ

{
θk +αk (Varθk [T (X)]+ εI)−1

∇θ l(θk;θk)
}

= ΠΘ

{
θk +αk (Varθk [T (X)]+ εI)−1 (Eg(·;θk)[T (X)]−Eθk [T (X)])

}
, (7)

where αk is a positive step-size, and ΠΘ denotes the projection operator that projects an iterate back onto
the parameter space Θ by choosing the closest point in Θ.

To have an implementable algorithm, we still need to evaluate or estimate the expectation and variance
terms in (7). The expectation term Eθk [T (X)] can be evaluated analytically in most cases. For example, if
{ f (·;θk)} is chosen as the Gaussian family, then Eθk [T (X)] reduces to the mean and second moment of
the Gaussian distribution. The variance term Varθk [T (X)] may not be directly available or could be too
complicated to compute analytically, but it can be approximated by the sample variance using the candidate
solutions drawn from f (·;θk). The remaining term Eg(·;θk)[T (X)] can be estimated based on the principle
of importance sampling, since

Eg(·;θk)[T (X)] ∝

∫ ∫
Sθk(h(x,ξ ))T (x)p(ξ ) f (x;θk)dξ dx.

Thus, we draw i.i.d. sample pairs {(xi
k,ξ

i
k), i = 1, . . . ,Nk} from the joint distribution p(ξ ) f (x;θ), compute

normalized weights of the samples by

wi
k ∝ Sθk(h(x

i
k,ξ

i
k)), i = 1, . . . ,Nk,

Nk

∑
i=1

wi
k = 1,

and approximate Eg(·;θk)[T (X)] by

Êgk [T (X)] =
Nk

∑
i=1

wi
kT (xi

k).

Note that in the estimate above, only one performance evaluation h(xi
k,ξ

i
k) is required for each candidate

solution xi
k, that is, we only need to carry out simulation or experimentation once for each candidate solution.

This is different from existing approaches, such as CEOCBA (He et al. 2010), which require multiple
evaluations for every candidate solution in order to obtain a performance estimate of certain accuracy. In
other words, our algorithm avoids the problem of simulation budget allocation among candidate solutions.
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3 ALGORITHM: GASSO

With the derivations above, we propose the following algorithm.
Algorithm 1 Gradient-based Adaptive Stochastic Search for Simulation Optimization (GASSO)

1. Initialization: choose an exponential family of densities { f (·;θ)}, and specify a small positive
constant ε , initial parameter θ0, sample size sequence {Nk} that is non-decreasing, and step size
sequence {αk} that satisfies ∑

∞
k=0 αk = ∞,∑∞

k=0 α2
k < ∞. Set k = 0.

2. Sampling: draw samples xi
k

iid∼ f (x;θk), i = 1,2, . . . ,Nk. For each xi
k, evaluate the performance once

to generate h(xi
k,ξ

i
k).

3. Estimation: compute the normalized weights wi
k according to

wi
k =

Sθk(h(x
i
k,ξ

i
k))

∑
Nk
j=1 Sθk(h(x

j
k,ξ

j
k ))

,

and estimate Egk [T (X)] and Varθk [T (X)] as follows:

Êgk [T (X)] =
Nk

∑
i=1

wi
kT (xi

k),

V̂arθk [T (X)] =
1

Nk−1

Nk

∑
i=1

T (xi
k)T (x

i
k)

T − 1
N2

k −Nk

(
Nk

∑
i=1

T (xi
k)

)(
Nk

∑
i=1

T (xi
k)

)T

.

4. Updating: update the parameter θ according to

θk+1 = Π
Θ̃

{
θk +αk(V̂arθk [T (X)]+ εI)−1(Êgk [T (X)]−Eθk [T (X)])

}
, (8)

where Θ̃ ⊆ Θ is a non-empty compact and convex constraint set, and Π
Θ̃

denotes the projection
operator that projects an iterate back onto the set Θ̃ by choosing the closest point in Θ̃.

5. Stopping: check if some stopping criterion is satisfied. If yes, stop and return the current best
sampled solution; else, set k := k+1 and go back to step 2.

In the initialization step (step 1) above, the conditions on the sample size sequence and step size sequence
are imposed to guarantee the convergence. The sampling step (step 2) draws candidate solutions from the
current sampling distribution and runs simulation or experimentation once for each candidate solution to
obtain its performance evaluation. The estimation step (step 3) computes the gradient and Hessian estimates
using the samples. One common choice of the shape function S is similar to the level/indicator function
used in the CE method and MRAS:

Sθ (h(x,ξ )) =
1

1+ e−S0(h(x,ξ )−γθ )
, (9)

where S0 is a large positive constant, and γθ is the (1−ρ)-quantile

γθ , sup
r
{r : Pθ{x ∈X : h(x,ξ )≥ r} ≥ ρ} ,

where Pθ denotes the probability with respect to f (·;θ). Noticing that 1/(1+e−S0(h(x,ξ )−γθ )) is a continuous
approximation of the indicator function I{h(x,ξ ) ≥ γθ}, this shape function essentially prunes the level
sets below γθ . By varying ρ , we can adjust the percentile of elite samples that are selected to update the
next sampling distribution: the smaller ρ , the less elite samples selected and hence more emphasis is put
on exploiting the neighborhood of the current best solutions. The projection operator in the updating step
(step 4) is primarily used to ensure the numerical stability of the algorithm. It prevents the iterates of the
algorithm from becoming too big in practice and ensures the sequence {θk} to stay bounded as the search
proceeds. Intuitively, such a constraint set should be chosen sufficiently large in practice so that the limits
of the recursion at step 4 without the projection are contained in its interior.
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3.1 Two-timescale GASSO

The parameter updating step in GASSO can be interpreted as a stochastic approximation scheme for
evaluating the zeros of Π

Θ̃
{Varθ [T (X)]+εI)−1∇θ l(θ ;θ)}= 0. To reduce the sample size per iteration and

further improve the efficiency, we can also use a stochastic approximation scheme to update the Hessian
and gradient estimates on a faster timescale. That is, at kth iteration we carry out the following steps:

• Draw candidate solutions xi
k

iid∼ f (x;θk), i = 1, . . . ,N, and simulate to obtain h(xi
k,ξ

i
k), i = 1, . . . ,N.

• Update the gradient and Hessian estimates on the fast timescale with step size βk.
• Update the parameter θk on the slow timescale with step size αk.

The step sizes satisfy the standard conditions in two-timescale stochastic approximation (cf. Borkar (2008))
as shown in the following assumption.
Assumption 2 The step sizes satisfy the following conditions

∑
k

αk = ∑
k

βk = ∞, (10)

∑
k
(α2

k +β
2
k ) < ∞, (11)

lim
k→∞

αk

βk
= 0. (12)

By Assumption 2, as k goes to infinity, βk dominates αk. So the parameter θ is updated on the slow
timescale with step size αk, while the gradient and Hessian estimates are updated on the fast timescale
with step size βk. When k is large, the parameter θk remains almost unchanged compared with the gradient
and Hessian estimates, so θk is often said to be quasi-static to the fast timescale. As a result, the sampling
distribution can be viewed as fixed over many iterations while the gradient and Hessian estimates are
updated, which needs only a small sample size N for every iteration.

With the above idea, we propose the following two-timescale variant of GASSO.
Algorithm 2 Two-timescale Gradient-based Adaptive Stochastic Search for Simulation Optimization
(GASSO-2T)

1. Initialization: choose an exponential family of densities { f (·;θ)}, and specify a small positive
constant ε , initial parameter θ0, sample size N (N > 1), and step size sequences {αk} and {βk}
that satisfy Assumption 2. Set k = 0. Set L0(1) = 0, ET0(1) = 0, T0(1) = 0, Q0(1) = 0.

2. Sampling: draw samples xi
k

iid∼ f (x;θk), i = 1,2, . . . ,N. For each xi
k, evaluate the performance once

to generate h(xi
k,ξ

i
k).

3. Estimation:
(a) We first estimate L(θ ;θk) in the following manner: For i = 1, . . . ,N, update

Lk(i+1) = Lk(i)+βk(Sθk(h(x
i
k,ξ

i
k))−Lk(i)).

Set Lk+1(1) := Lk(N +1).
(b) Next, we estimate Egk [T (X)] as follows: For i = 1, . . . ,N, update

Gk(i+1) = Gk(i)+βk

(
Sθk(h(x

i
k,ξ

i
k))

Lk(N +1)
T (xi

k)−Gk(i)
)
.

Set Êgk [T (X)] := Gk(N +1). Set Gk+1(1) := Gk(N +1).
(c) Finally, we estimate Varθk [T (X)] as follows: For i = 1, . . . ,N, update

Pk(i+1) = Pk(i)+βk(P(xi
k)−Pk(i))

Qk(i+1) = Qk(i)+βk(P(xi
k)P(x

i
k)
′ −Qk(i)).

Set V̂arθk [T (X)] := Qk(N +1)−Pk(N +1)Pk(N +1)′. Set Pk+1(1) := Pk(N +1).
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4. Updating: update the parameter θ according to

θk+1 = Π
Θ̃

{
θk +αk(V̂arθk [T (X)]+ εI)−1(Êgk [T (X)]−Eθk [T (X)])

}
,

where Θ̃ ⊆ Θ is a non-empty compact and convex constraint set, and Π
Θ̃

denotes the projection
operator that projects an iterate back onto the set Θ̃ by choosing the closest point in Θ̃.

5. Stopping: check if some stopping criterion is satisfied. If yes, stop and return the current best
sampled solution; else, set k := k+1 and go back to step 2.

GASSO-2T differs from GASSO in the estimation step (step 3), where the expectation and variance
terms are estimated through stochastic approximation iterations instead of sample average or importance
sampling estimates. It is worth mentioning that GASSO and GASSO-2T can be interpreted as stochastic
approximation and two-timescale stochastic approximation, respectively; therefore, it is possible to analyze
the convergence properties by drawing upon techniques from stochastic approximation literature (Kushner
and Yin 2004, Borkar 2008).

4 NUMERICAL EXPERIMENTS

In this section, we test GASSO and GASSO-2T on some continuous benchmark global optimization
problems from Hu, Fu, and Marcus (2007) with additive noise ξ that is normally distributed with mean 0
and variance 100. We compare the performance of GASSO and GASSO-2T with the cross-entropy with
optimal computing budget allocation (CEOCBA) method developed by He et al. (2010). The test functions
are listed below with dimension n specified in the parentheses.

(1) Powell singular function (n = 10): h1(x,ξ ) =−1−∑
n−2
i=2

[
(xi−1 +10xi)

2 +5(xi+1− xi+2)
2

+(xi−2xi+1)
4 +10(xi−1− xi+2)

4
]
+ξ , where x∗ = (0, · · · ,0)T , H1(x∗) = Eξ [h1(x∗,ξ )] =−1.

(2) Griewank function (n= 5): h2(x,ξ )=− 1
4000 ∑

n
i=1 x2

i +∏
n
i=1 cos

(
xi√

i

)
−1+ξ , where x∗=(0, · · · ,0)T ,

H2(x∗) = Eξ [h2(x∗,ξ )] = 0.
(3) Trigonometric function (n = 10): h3(x,ξ ) =−1−∑

n
i=1
[
8sin2(7(xi−0.9)2)+6sin2(14(xi−0.9)2)

+(xi−0.9)2
]
+ξ , where x∗ = (0.9, · · · ,0.9)T , H3(x∗) = Eξ [h3(x∗,ξ )] =−1.

(4) Pintér’s function (n = 10): h4(x,ξ ) =−1−
[
∑

n
i=1 ix2

i +∑
n
i=1 20isin2(xi−1 sinxi− xi + sinxi+1)

+∑
n
i=1 i log10(1+ i(x2

i−1−2xi +3xi+1− cosxi +1)2)
]
+ξ , where x∗ = (0, · · · ,0)T ,

H4(x∗) = Eξ [h4(x∗,ξ )] =−1.

Specifically, Powell (H1) is badly-scaled function; Griewank (H2) and Trigonometric (H3) are multimodal
functions with a large number of local optima; Pintér (H4) is both multimodal and badly-scaled.

In all these three algorithms, we use independent multivariate normal distribution N (µk,Σk) as the
parameterized distributions f (·;θk), where Σk = diag(σ2

k ), θk = (µk,σ
2
k ), and k is the iteration number. The

initial mean µ0 is chosen randomly according to uniform distributions on [−30,30]n, and the initial covariance
matrix is set to be Σ0 = 1000In×n, where In×n is the identity matrix with size n. We observe in the experiment
that the performance of the algorithm is insensitive to the initial candidate solutions, if the initial variance is
large enough. Since CEOCBA uses the elite samples at each iteration to update the sampling distribution,
a comparable choice in our algorithms is to set the shape function as Sθk(h(x,ξ )) = I{h(x,ξ ) ≥ γθk}. In
all three algorithms, the quantile parameter ρ is set to be 0.1, and the (1−ρ)-quantile γθk is estimated by
the (1−ρ) sample quantile of the function values corresponding to all the candidate solutions generated
at the kth iteration. In GASSO and GASSO-2T, we set the small constant ε = 10−10, and the step sizes
αk = 50/(k+2000)0.6 and βk = 1/(k+2000)0.55, which satisfy Assumption 2. The sample size for each
iteration is set to be N = 1000 for GASSO and N = 100 for GASSO-2T, since GASSO-2T can use a small
sample size due to the two-timescale updating scheme. For a fair comparison, for CEOCBA we set the
total number of sampling budget T = 1000, the number of candidate solutions per iteration to be 100,
the initial number of function evaluations for each candidate solution n0 = 5, and the budget increment
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∆ = 100. For CEOCBA, we apply the smoothing parameter updating procedure in DeBoer et al. (2005)
on the parameter updating to prevent premature convergence, and the smoothing parameter is chosen to
be ν = 0.5 as suggested by He et al. (2010).

Table 1: Average performance of GASSO, GASSO-2T, and CEOCBA

GASSO GASSO-2T CEOCBA
H∗ H̄∗ std err H̄∗ std err H̄∗ std err

Powell H1 -1 -1.025 0.002 -1.195 0.060 -775.9 326.7
Griewank H2 0 -0.298 0.016 -0.436 0.019 -0.608 0.029

Trigonometric H3 -1 -1.001 0.522×10−4 -1.003 3.129×10−4 -1.019 0.002
Pinter H4 -1 -3.010 0.044 -3.809 0.093 -6.486 1.160
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Figure 1: Average performance of GASSO, GASSO-2T, and CEOCBA

We run each of these three algorithms 50 times independently, and compare the average performance
in Table 1 and Figure 1. We denote by H∗ the true optimal value of H(·), H̄∗ the average of the function
values H(µK) returned by the 50 runs of an algorithm, where K is the number of iterations of an algorithm,
and std err the standard error of the optimal function values. In the experiments, we found the computation
time of function evaluations dominates the time of other steps, so we compare the performance of the
algorithms with respect to the total number of function evaluations in Figures 1. For all the test functions,
the average optimal function values returned by GASSO and GASSO-2T are very close, although GASSO
is slightly more accurate than GASSO-2T. Both return better solutions than CEOCBA on all the test
functions. GASSO and CEOCBA have similar convergence speed, but GASSO avoids the problem of
allocating simulation budget to candidate solutions and hence is easier to implement. GASSO-2T converges

3877



Zhou, Bhatnagar, and Chen

faster than the other two algorithms and often reduces the total number of function evaluations needed for
convergence by about 3-4 times. This confirms the benefit of using a two-timescale updating scheme.

5 CONCLUSION

In this paper, we developed a gradient-based adaptive stochastic search approach to simulation optimization
over continuous solution space. Our proposed algorithm iteratively draws candidate solutions from a
parameterized sampling distribution and updates the parameter of the sampling distribution using a direct
gradient search over the parameter space. Compared with existing model-based methods that often require
multiple function evaluations for each candidate solution, a salient feature of our algorithm is that it requires
only one single function evaluation per solution, which makes our algorithm simpler to implement without
the need to design a simulation budget allocation rule. To reduce the number of candidate solutions
that need to be generated per iteration, we further incorporated a two-timescale updating scheme into
the algorithm. Numerical results on several benchmark problems showed our algorithms have superior
empirical performance, and the two-timescale algorithm improves computational efficiency by several fold.
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