
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

PARALLEL BAYESIAN POLICIES FOR FINITE-HORIZON
MULTIPLE COMPARISONS WITH A KNOWN STANDARD

Weici Hu Jing Xie
Peter I. Frazier

School of Operations Research & Information Engineering American Express Company
Cornell University 200 Vesey St
206 Rhodes Hall New York, NY 10285, USA

Ithaca, NY 14853, USA

ABSTRACT

We consider the problem of multiple comparisons with a known standard, in which we wish to allocate
simulation effort efficiently across a finite number of simulated systems, to determine which systems
have mean performance exceeding a known threshold. We suppose that parallel computing resources are
available, and that we are given a fixed simulation budget. We consider this problem in a Bayesian setting,
and formulate it as a stochastic dynamic program. For simplicity, we focus on Bernoulli sampling, with
a linear loss function. Using links to restless multi-armed bandits, we provide a computationally tractable
upper bound on the value of the Bayes-optimal policy, and an index policy motivated by these upper
bounds.

1 INTRODUCTION

Multiple comparisons with a known standard (MCS) is a widely considered problem in simulation. In this
problem, one wishes to use simulation to determine, for each among a finite pool of simulatable systems,
which ones have an expected output measure that exceeds a known threshold. In this paper, we use Bayesian
statistics and dynamic programming to study how one should allocate simulate effort in the MCS problem,
so as to best support this final determination.

The MCS problem arises in at least two distinct ways in simulation applications. First, it arises when
determining which options perform better than some standard option whose performance is so well-estimated
that it can be treated as known (Nelson and Goldsman 2001). Second, it arises when determining which
options have a secondary performance measure that satisfies a constraint (Andradóttir and Kim 2010). The
MCS problem also arises outside of simulation, in crowdsourcing service centers like Amazon’s Mechanical
Turk, when allocating a budget across workers who label items (e.g., images, documents), to best support
accurate classification of these items (Chen, Lin, and Zhou 2013).

We consider a variant of the MCS problem in which parallel computing resources are available. The
growing availability of parallel computing resources presents new opportunities to perform simulation
analysis at larger scales, but also imposes constraints on the way simulation effort is allocated. In our
model, simulation effort is allocated batch-sequentially: simulations are performed in batches, and we
decide how many additional replications to perform for each system at the start of each batch based on
the results of previous batches. We are given a fixed budget, specified as a number of parallel computing
resources and a number of batches, and our goal is to allocate these batches of simulation efficiently, so
as to best allow correct classification of the systems once our simulation budget is exhausted.

We formulate the MCS problem in a Bayesian framework, and we measure the performance of a
batch-sequential procedure by its average case performance, averaging across problem instances drawn

3904978-1-4799-7486-3/14/$31.00 ©2014 IEEE



Hu, Frazier, and Xie

from the prior and across simulation noise. While the Bayes-optimal procedure is characterized by the
dynamic programming equations (Frazier 2011), the curse of dimensionality makes solving this dynamic
program computationally intractable for problems with many systems.

Rather than solving this dynamic program exactly, we provide a computationally tractable upper
bound on its value. This allows us to evaluate the quality of sub-optimal heuristic policies relative to
this upper bound. This provides guidance to the development and improvement of heuristic policies, in
the form of information about the optimality gap. The analysis technique used in this upper bound is a
Lagrangian relaxation on the total number of simulations performed in any given batch. Using the Lagrange
multipliers obtained from this relaxation, we also develop a heuristic policy, and use numerical experiments
to demonstrate that it performs close to the upper bound on optimal in the problem setting studied.

This paper builds on the previous work Xie and Frazier (2013b), which also considered the Bayesian
MCS problem. That paper considered the sequential setting, without parallel resources, and provided a
computationally efficient method for computing the Bayes-optimal policy under two assumptions about
limitations of sampling: that there is a time horizon that is random and exponentially distributed; or there
is no time horizon, and we pay a fixed cost for each sample. Our current work differs from that work by
considering parallelism, and by considering a fixed budget. While the infinite-horizon fixed-cost-per-sample
model in Xie and Frazier (2013b) is quite natural for cloud computing settings, and the random exponentially
distributed horizon is attractive for its computational tractability, using a fixed horizon is more natural
than either model in Xie and Frazier (2013b) when allocating computing resources that are owned rather
than rented. While we focus on the parallel setting and Xie and Frazier (2013b) focused on the sequential
setting, our work can also provide an upper bound for the sequential setting with fixed horizon by setting
the number of parallel nodes to 1.

For simplicity in this paper, we consider only Bernoulli samples, with a linear loss function. However,
the techniques developed in this paper should also be adaptable to other parametric sampling distributions
with conjugate priors, and other loss functions.

Our model assumes synchronous computations, in which we wait for all simulations in a batch to
complete before starting the next batch. This approach is reasonable when the variability in the time to
simulate a system is small enough to allow waiting until simulations finish before starting the next batch.
Such assumptions are more commonly met in controlled high-performance computing environments, and
are less common in cloud computing environments. If computation time is highly variable, it may be more
appropriate to model computation as asynchronous.

Our Lagrangian relaxation of a budget constraint in the MCS problem is related to Lagrangian relaxations
in restless multi-armed bandit problems (Whittle 1988, Gittins, Glazebrook, and Weber 2011). Indeed, if
one added an additional constraint that each system can be simulated at most once in any batch, then our
MCS problem can be reformulated as a restless multi-armed bandit problem where we can pull multiple
arms in each round: in this restless multi-armed bandit problem, each system is an arm, pulling the arm
corresponds to simulating that system; the reward from this pull is the improvement in our ability to classify
this system; and the number of arms we can pull in a round is the number of parallel resources. The
restless multi-armed bandit framework of Whittle (1988) is most well-known for allowing bandit arms to
evolve when they are not pulled, but also allows multiple pulls per round. Our analysis can be seen as
examining a generalization of restless bandits in which each arm can be pulled multiple times per round,
and our heuristic policy can be seen as a generalization of the Whittle index policy to this setting.

Our use of a Lagrangian relaxation to study the Bayesian formulation of the MCS problem is also similar
to Xie and Frazier (2013a), which used a Lagrangian relaxation to bound the value of the Bayes-optimal
procedure for the ranking and selection problem.

While we consider the MCS problem in the Bayesian setting, much of the previous work on the MCS
problem has considered non-Bayesian settings. This previous work includes the one-stage procedures by
Paulson (1952), Dunnett (1955), the two-stage procedures by Dudewicz and Dalal (1983), Bofinger and
Lewis (1992), Damerdji and Nakayama (1996), and work on indifference-zone ranking and selection (see

3905



Hu, Frazier, and Xie

the survey Kim and Nelson (2007)). The more recent frequentist work includes Batur and Kim (2010)
which provides a fully sequential procedure under stochastic constraint, and Healey, Andradóttir, and Kim
(2014) which further allows correlation across systems.

In the version of the MCS problem that we consider, we emphasize that our standard has known
value, and we seek to determine only whether each system is better or worse than this standard. We do
not consider standards with unknown value, produce joint confidence intervals, nor select the best among
those systems performing better than standard. This is in contrast with much previous work on multiple
comparisons (Nelson and Goldsman 2001, Kim 2005). The variant of the MCS problem that we consider
has also been called feasibility determination (Szechtman and Yücesan 2008).

This paper is organized as follows. In Section 2 we formally state the problem. In Section 3, we
provide a computationally tractable upper bound on the value of a Bayes-optimal procedure, and a method
for computing this upper bound. In Section 4 we present a heuristic motivated by this upper bound, which
is similar to the Whittle index policy for restless multi-armed bandits. In Section 5 we present numerical
results in which we demonstrate that the Whittle index policy performs close to an optimal policy. Lastly
we present our numerical results and conclusion in Sections 5 and 6.

2 PROBLEM FORMULATION

We have k systems, each of which can be simulated using a stochastic simulation. When we simulate
system x ∈ {1, . . . ,k}, we observe a Bernoulli(θx) random variable, indicating the system’s performance in
that simulation. We will think of an outcome of 1 as indicating the system succeeded in that simulation,
and 0 as indicating failure. Although we expect that the methods we develop in this paper can be extended
to simulations that generate non-Bernoulli samples, we focus on the Bernoulli setting here for simplicity.
The sampling means θx are initially unknown, and we wish to determine through simulation, for each
system x, whether θx is greater than some known threshold dx. This threshold may differ across systems.

We adopt a Bayesian formulation, in which we seek to do well on average with respect to a prior
probability distribution over the unknown sampling means θ1, . . . ,θk. We consider Bayesian prior probability
distributions under which

θx ∼ Beta(α0,x,β0,x),

with independence across x, for some given values α0,x,β0,x. We assume a Beta prior for tractability: the
Beta prior is conjugate to the Bernoulli likelihood (DeGroot 1970), and so this assumption allows our
posterior distribution to remain Beta-distributed.

We perform N batches of simulations, performing at most m simulations in parallel in each batch. At the
start of each batch n = 1, . . . ,N, we choose the number of samples zn,x to take from each system x, making
sure to satisfy the constraint ∑x zn,x ≤m. This choice of zn,x may depend upon the results observed from all
previous batches. We then observe the number of successes from each system x, which are conditionally
binomial,

Yn,x|θx,zn,x ∼ Binomial(zn,x,θx).

We assume conditional independence of Yn,x across x and from all previous samples, given θx and zn,x. This
precludes the use of common random numbers, but is satisfied when using independent sampling. After
observing this Yn,x, we update our posterior distribution on θx to obtain (DeGroot 1970)

θx|z1,x,Y1,x, . . . ,zn,x,Yn,x ∼ Beta(αn,x,βn,x),

where αn,x = α0,x +∑n′≤nYn′,x can be interpreted as the effective number of successes from system x, and
βn,x = β0,x +∑n′≤n(zn′,x−Yn′,x) as the effective number of failures. This posterior is independent across x.

We use dynamic programming to analyze this problem. To support this, for each x and n, we
define the state variable Sn,x = (αn,x,βn,x). To streamline the discussion, we define αααn = (αn,1, ...,αn,k),
βββ n = (βn,1, ..,βn,k), Sn = (Sn,1, ...,Sn,k), and zn = (zn,1, . . . ,zn,k). Let Λn be the space in which Sn takes
values, Λn =

{
(α0,1 + s1,β0,1 + f1, . . . ,α0,k + sk,β0,k + fk) : sx, fx ∈ Z+∀x, ∑

k
x=1 sx + fx ≤ mn

}
.

3906



Hu, Frazier, and Xie

We stop sampling after batch N and decide, for each system x, whether to label θx as above or below
the threshold dx. If we label it as above, we receive a reward of θx−dx. Otherwise, we receive dx−θx. The
total terminal reward is the sum of these rewards across the systems. As shown in Xie and Frazier (2013b),
to maximize the conditional expected value of this reward given what we know after our simulations are
complete (which is summarized in SN,x), we should choose to receive θx− d whenever the conditional
expected value of this reward E [θx−dx|SN,x] is positive, and to receive dx−θx when it is negative. When
making decisions in this way, the conditional expected terminal reward received is

max{E [θx−dx|SN,x] ,E [dx−θx|SN,x]}=
∣∣∣∣E [θx−dx|SN,x]

∣∣∣∣= ∣∣∣∣ αN,x

αN,x +βN,x
−dx

∣∣∣∣ .
Summing this reward across systems x, our conditional expected terminal reward is

r(SN) =
k

∑
x=1

∣∣∣∣ αN,x

αN,x +βN,x
−dx

∣∣∣∣ .
We optionally allow a cost cx ≥ 0 for each sample generated for system x, in the same units as the

objective function. For example, if the reward is monetary, then the cost might be the payment made to a
cloud computing service such as Amazon Ec2 or Microsoft Azure for the computer time required to run
a simulation. If the computers are owned, rather than rented, then it may be appropriate to set cx = 0.
Combining this optional sampling cost with the reward r(SN) gives the conditional expected overall reward

r(SN)−
k

∑
x=1

N

∑
n=1

cxzn,x.

Our goal is to find an algorithm or policy for choosing the samples to take, zn,x, so as to maximize
the expected value of this reward. A policy is a rule for choosing how to allocate the next batch of
samples, based on the results of the previous samples as summarized by Sn. Formally, a policy π

is a sequence of mappings π = (π0, . . . ,πN−1), where πn : Λn 7→ Zk
+ maps the state Sn to the action

zn = πn(Sn), while satisfying the constraint on the number of samples in each batch. The set of all policies
is Π =

{
π = (π0, . . . ,πN−1) : ∑

k
x=1 πn,x(S)≤ m ∀n = 0, . . . ,N−1,S ∈ Λn

}
, where πnx(S) indicate the xth

component of πn(S).
Each policy π induces a probability distribution over (S0,z0, . . . ,SN−1,zN−1,SN), which we call Pπ .

We let Eπ indicate the expectation taken with respect to this probability distribution. We define,

V π
n (S) = Eπ

[
r(SN)−

k

∑
x=1

N

∑
n′=n+1

cxzn′,x | Sn = S

]
,

for 0≤ n≤ N, which is the conditional expectation of the future reward under policy π , starting from state
S at time n. We also define the value function, used below in our dynamic programming approach, as

Vn(S) = sup
π∈Π

V π
n (S).

The (unconditional) expected reward obtained under π is V π
0 (S0), and an optimal policy π∗ is any for

which π∗ ∈ argmaxπ∈ΠV π
0 (S0).

The problem supπ∈ΠV π
0 (S0) is a Markov decision process with finite horizon and finite state space,

and its solution is characterized by the dynamic programming equations. To apply dynamic programming,
we first write down the dynamic programming equation, which is a recursive relation for Vn:

Vn(Sn) = max
zn+1:∑x zn+1,x≤m

{
−∑

x
cxzn+1,x +E[Vn+1(Sn+1)|Sn,zn+1]

}
, 0≤ n≤ N−1. (1a)

3907



Hu, Frazier, and Xie

VN(SN) =
k

∑
x=1

∣∣∣ αN,x

αN,x +βN,x
−dx

∣∣∣. (1b)

Any policy whose actions achieve the maximum in (1a) is optimal (Dynkin and Yushkevich 1979).
We can use these recursive equations to compute Vn directly, first calculating VN(SN) for all possible

SN ∈ΛN , and then proceeding in a backward recursion, using previously computed values of Vn+1(Sn+1) to
calculate Vn(Sn) for all Sn ∈ Λn. Then, given these computed value functions, we can compute an optimal
policy.

While this direct dynamic programming approach is theoretically well understand, it quickly becomes
computationally intractable as k grows. This is because the state space at time n, Λn, has O((mn)2k)
elements, and so storing the value function at all possible states has a memory requirement that scales
exponentially in k. Computation also scales exponentially in k. This computational infeasibility due to the
large dimension of the problem is generally referred to as the ”curse of dimensionality” (Powell 2007).

The computationally intractability of computing an optimal policy when k is large leads us to consider
other characterizations that can be computed more easily. In the next section, we show how to compute
an upper bound on the value of the optimal policy that scales linearly in k, rather than exponentially.

3 UPPER BOUND

In this section, we provide a computationally tractable upper bound on the value of an optimal policy. This
bound can be used to calculate an optimality gap for any desired heuristic policy π , by comparing the
upper bound to an estimate of the heuristic policy’s value V π(S0) obtained from direct simulation. This in
turn can be used to judge whether a particular heuristic policy is good enough to be used in practice, or if
more development (either of better heuristics or tighter upper bounds) would be worthwhile.

The main idea in our upper bound is to relax the constraints ∑
k
x=1 zn,x ≤m with a Lagrange multiplier.

As the first step, we introduce values λλλ = (λ1, ...,λN) ∈Rk
+. The value λn will be the Lagrange multiplier

for the constraint ∑
k
x=1 zn,x ≤ m. For each λλλ , define a modified value function Vλλλ

n (Sn) via the following
recursion:

Vλλλ
n (Sn) = max

zn+1∈{0,1,...,m}k

{
−∑

x
cxzn+1,x +E

[
Vλλλ

n+1(Sn+1)|Sn,zn+1

]
−λn+1

( k

∑
x=1

zn+1,x−m
)}

,n≤ N−1,

(2a)

Vλλλ
N (SN) =

k

∑
x=1

∣∣∣ αN,x

αN,x +βN,x
−dx

∣∣∣. (2b)

We will see below in Lemma 2 that Vλλλ
0 (S0) provides an upper bound on the value function V0(S0), and

hence on the value of an optimal policy.
While computing Vλλλ

0 (S0) directly using the recursion (2) would also seem to require storing a value
for every state in the state space, just as the recursion (1), we will see below in Lemma 1 that it can be
computed instead as the sum of other modified value functions, each of which corresponds to a single
system, and which can be computed by considering a much smaller state space whose size does not grow
with k. This will allow efficient computation.

Toward this end, we define the function Vλλλ
n,x for each x via the recursive relation

Vλλλ
n,x(Sn,x) = max

zn+1,x∈{0,...,m}

{
− zn+1,x(cx +λn+1)+E

[
V λ

n+1,x(Sn+1,x)
∣∣∣Sn,x,zn+1,x

]}
, n≤ N−1, (3a)

Vλλλ
N,x(SN,x) =

∣∣∣ αN,x

αN,x +βN,x
−dx

∣∣∣. (3b)

Vλλλ
n,x(Sn,x) is the value function for a dynamic program corresponding to an MCS problem with a

single system x, with a new sampling cost cx + λn+1 for samples in batch n. The cost of sampling

3908



Hu, Frazier, and Xie

depends on the batch n. The additional cost λn+1 beyond the cost cx in our original model arises
from the way in which we relaxed the constraint on the number of samples in each batch in the multi-
system problem. Vλλλ

n,x(Sn,x) can be computed directly using this recursive relation, because the space
Λn,x = {(α0,x + sx,β0,x + fx) : sx, fx ∈ Z+,sx + fx ≤ mn} in which Sn,x takes values has only O(nm) elements,
and does not grow exponentially in the problem parameters.

The following lemma shows that Vλλλ
n (Sn) can be computed directly from Vλλλ

n,x(Sn,x), allowing its efficient
computation.
Lemma 1 For any λλλ ≥ 0,

Vλλλ
n (Sn) =

k

∑
x=1

Vλλλ
n,x(Sn,x)+m

N

∑
n′=n+1

λn′ , (4)

Proof. This proof uses an inductive argument. At time N, (4) holds from (3b) and (2b). Assume (4)
holds for time n+1. Then,

Vλλλ
n (Sn) = max

zn+1∈{1,..,m}k

{
−

k

∑
x=1

cxzn+1,x +E
[ k

∑
x=1

Vλλλ
n+1,x(Sn+1,x)+m

N

∑
n′=n+2

λn′

∣∣∣Sn,zn+1

]
−λn+1(

k

∑
x=1

zn+1,x−m)
}

(5)

= max
zn+1∈{1,...,m}k

{
−

k

∑
x=1

(
cxzn+1,x +E

[
Vλλλ

n+1,x(Sn+1,x)
∣∣∣Sn,x,zn+1,x

])
−λn+1

k

∑
x=1

zn+1,x

}
+m

N

∑
n′=n+1

λn′

(6)

=
k

∑
x=1

max
zn+1,x∈{1,...,m}

{
− cxzn+1,x +E

[
Vλλλ

n+1,x(Sn,x)
∣∣∣Sn+1,x,zn+1,x

]
−λn+1,xzn+1,x

}
+m

N

∑
n′=n+1

λn′ (7)

=
k

∑
x=1

Vλλλ
n,x(Sn,x)+m

N

∑
n′=n+1

λn′ . (8)

Equation (5) follows from the inductive hypothesis. Equality (6) holds due to the fact that each system
is independent from the current action and states of the other systems. Equality (7) holds because the xth

summand in the summation of (6) only depends on zn+1,x; to maximize the sum is to maximize each of
the summands by choosing the right zn+1,x.

Setting n = 0 in the above lemma, we obtain a readily computed expression for Vλλλ
0 (S0),

Vλλλ
0 (S0) =

k

∑
x=1

Vλλλ
0,x(S0,x)+m

N

∑
n=1

λn. (9)

The following lemma shows that this is an upper bound on the value function for our original MCS problem.
Lemma 2 For any λλλ ≥ 0,

Vλλλ
0 (S0)≥V0(S0). (10)

Proof. We first prove
Vλλλ

n (Sn)≥Vn(Sn), (11)

for all n such that 0 ≤ n ≤ N using an inductive argument. Then (10) holds automatically. At time
N, inequality (11) follows from equation (1b) and (2b). Assume (11) holds at time n+ 1. Noticing

3909



Hu, Frazier, and Xie

∑
k
x=1 zn+1,x−m≤ 0 as stated in the problem formulation, we have

Vλλλ
n (Sn) = max

zn+1∈{1,..,m}k
{−

k

∑
x=1

cxzn+1,x +E[Vλλλ
n+1(Sn+1)|Sn,zn+1]−λn+1(

k

∑
x=1

zn+1,x−m)}

≥ max
zn+1∈{1,..,m}k

{−
k

∑
x=1

cxzn+1,x +E[Vλλλ
n+1(Sn+1)|Sn,zn+1]}

≥ max
zn+1∈{1,..,m}k

{−
k

∑
x=1

cxzn+1,x +E[Vn+1(Sn+1)|Sn,zn+1]}

≥ max
zn+1∈{1,..,m}k,s.t. ∑

k
x=1 zn+1,x≤m

{−
k

∑
x=1

cxzn+1,x +E[Vn+1(Sn+1)|Sn,zn+1]}=Vn(Sn).

Now we have that for any λλλ ≥ 0, Vλλλ
0 (S0) forms an upper bound on the optimal total expected reward

of the original problem. We then obtain the tightest upper bound of this form by selecting the infimum.
Theorem 1

UB(S0) = inf
λλλ≥0

[ k

∑
x=1

Vλλλ
0,x(S0,x)+m

N

∑
n=1

λn

]
(12)

gives an upper bound on V0(S0).

Proof. This result follows directly from (9) and Lemma 2.

While we have argued that Vλλλ
0 (S0) can be computed efficiently as the sum of values from small

dynamic programs, each corresponding to a single system. We now show how the infimum in UB(S0)

can be computed. Define B(S0,λλλ ) = ∑
k
x=1Vλλλ

0,x(S0,x)+m∑
N
n=1 λn. To compute the upper bound in equation

(12), we first show that B(S0,λλλ ) is convex in λλλ and subsequently (12) is a convex optimization problem.
Moreover, it is possible to compute the subgradient of λλλ 7→ B(S0,λλλ ), allowing the use of a first-order
convex optimization method.
Lemma 3 B(S0,λλλ ) is convex in λλλ for any λλλ ≥ 0.

Proof. Since m∑
N
n=1 λn is convex in λλλ , it is sufficient to show Vλλλ

0,x(S0,x) is convex in λλλ for all x. This
shall be shown by induction. At time N, Vλλλ

N,x(SN,x) = | αN,x
αN,x+βN,x

−dx| is constant thus convex in λλλ . Assume

the result holds true for Vλλλ
n+1(Sn+1,x), then same is true for E[Vλλλ

n+1(Sn+1,x)|Sn,x,zn+1,x] for any fixed Sn,x
and zn+1,x. −zn+1,x(cx +λn+1), which is linear in λn+1, is also convex in λλλ . Since the maximum of convex
functions is still convex, V λ

n,x(Sn,x) = maxzn+1,x{−zn+1,x(cx +λn+1)+E[V λ
n+1(Sn+1,x)|Sn,x,zn+1,x]} is convex

in λλλ . Subsequently we have Vλλλ
0,x(S0,x) is also convex through an inductive argument.

To allow the use of a first-order convex optimization method for solving (12), which are generally
faster than derivative-free methods, we much provide a method for computing the subgradient of B(S0,λλλ )

with respect to λλλ . Since B(S0,λλλ ) is the sum of Vλλλ
0,x(S0,x) and a term that is linear in λλλ , it is sufficient to

compute the subgradient Vλλλ
0,x(S0,x). The next lemma provides an expression for this subgradient.

Before presenting this lemma, we first introduce some notation. Define π∗x (λλλ ) to be an optimal policy
obtained by solving the single-system MCS problem for system x, that is, the optimal policy for the
dynamic program (3). Let rn,x(Sn−1,x,zn,x;λn) = −zn,x(cx +λn) be the reward collected in state Sn−1,x by
taking action zn,x for the single-system MCS problem in (3). Let rN+1,x(SN,x) be the terminal reward. Then
Vλλλ

0,x(S0,x) = Eπ∗x (λλλ )[∑N
n=1 rn,x(Sn−1,x,zn,x;λn)+ rN+1,x(SN,x)|S0,x].

3910



Hu, Frazier, and Xie

Lemma 4 Fix any λλλ , and any corresponding optimal policy π∗x (λλλ ). Then, the vector

g(S0,x;λλλ ) =
(
−Eπ∗x (λλλ )[zn,x|S0,x] : n = 1, . . . ,N

)
(13)

is a subgradient of λλλ 7→Vλλλ
0,x(S0,x) at λλλ .

Proof. Let λλλ ′ ∈ RN
+. Consider the dynamic program (3) with this value λλλ ′, which has value Vλλλ ′

0,x(S0,x).
Since π∗x (λλλ ) is a feasible policy for this dynamic program, we have

Vλλλ ′
0,x(S0,x)≥ Eπ∗x (λλλ )

[ N

∑
n=1

rn,x(Sn−1,x,zn,x;λ
′
n)+ rN+1,x(SN,x)|S0,x

]
= Eπ∗x (λλλ )

[ N

∑
n=1

rn,x(Sn−1,x,zn,x;λn)+ rN+1,x(SN,x)|S0,x

]
−

N

∑
n=1

(λ ′n−λn)Eπ∗x (λλλ )[zn,x|S0,x]

=Vλλλ
0,x(S0,x)+(λλλ ′ −λλλ ) ·g(S0,x,λλλ )

Thus g(S0,x;λλλ ) is a subgradient of Vλλλ
0,x(S0,x).

We can compute (13) recursively using the Markov property. Recall π∗(λλλ ) is an optimal policy for
the single-system problem (3) when given λλλ , and let z∗n+1,x(Sn,x) be the action taken in state Sn,x at time n
as dictated by π∗(λλλ ). Let P(s,n) = Pπ∗(λλλ )[Sn,x = s|S0,x]. We can then write the subgradient (13) as

−Eπ∗x (λλλ )[zn,x|S0,x = sx] =− ∑
s′∈Λn−1,x

z∗n(s
′)P(s′,n−1). (14)

P(s,n) can then be computed recursively as

P(s,n) =


1(s=S0,x), if n = 0,
P[S1,x = s|S0,x,z∗1(S0,x)], if n = 1,

∑s′∈Λn−1,x P[Sn,x = s|Sn−1,x = s′,z∗n(s
′)] ·P(s′,n−1), if n > 1.

Hence we can compute (13). Finally, since B(S0,λλλ ) is the sum of the single-system values Vλλλ
0,x(S0,x) and

m∑
N
n=1 λn, we have the following subgradient of B(S0,λλλ ):

k

∑
x=1

∂Vλλλ
0,x(S0,x)

∂λn
+m ∈ ∂B(S0,λλλ ) (15)

Equation (15) allows us to compute the upper bound (12) by first-order convex optimization.

4 INDEX POLICY

In this section, we describe an index-based policy based on the same decomposition used to develop
the upper bound. The intuition behind this policy is based on an unproven conjecture, but the policy is
well-defined whether or not this conjecture is true. We demonstrate in numerical experiments in Section 5
that this policy performs well.

This index-based policy considers the relaxed problem (2) with a Lagrange multiplier λλλ = λe, where
e = (1, . . . ,1) is the vector of all 1s and λ is a real number. This index-based policy is based on the intuition
that, for any state Sn,x, as we increase λ and thus λλλ we should see that an optimal policy corresponding

3911



Hu, Frazier, and Xie

0 0.1 0.2
−1

0

1

2

3

λ

z 2,
2

λ

(a)

0 0.1 0.2
−1

0

1

2

3

λ

zλ 3,
3

(b)

0 0.1 0.2
−1
0
1
2
3
4
5

λ

zλ 3,
3+

zλ 2,
2

(c)

Figure 1: This figure illustrates how zn is chosen by the index-based policy with k = 2 systems, m = 2
parallel computing resources, and N = 20 simulation batches. Figure (a) plots zλλλ

2,2, the optimal number of
samples to take in batch 3 from system 1 when it is in state (2,2), against the value of λ ; Figure (b) plots
zλλλ

3,3, the optimal number of samples to take in batch 3 from system 2 when it is in state (3,3). Figure (c)
plots zλλλ

2,2 + zλλλ
3,3, the optimal total number of samples to take across both systems. The dashed line in (c)

shows the constraint m = 2, and λ ∗ will be the left endpoint of the solid line overlapping this dashed line.
The number of samples taken from each system will be zλλλ ∗

2,2 = 1 and zλλλ ∗
3,3 = 1 respectively.

to λλλ should take fewer samples, because the samples are more expensive. While we conjecture that this
is true, and our numerical experiments support it, we have not confirmed it theoretically.

To calculate the number of samples taken in a given state, our index-based policy varies λλλ until we
find a value in which an optimal policy for the relaxed problem takes m samples (or, if no such λλλ exists, it
should take as many samples as possible without taking more than m). We then sample according to the
optimal policy for this λλλ . When we get a new state, we repeat this process, finding a new λλλ vector, and a
new sampling allocation.

We define this index-based policy more formally as follows. We first introduce some notation. Let Qλλλ

be the set of single-arm policies that are optimal for (3) at the given value of λλλ . Let zπ
n,x(Sn−1,x) be the

number of samples taken under a single-arm policy π at time n in state Sn−1,x.
At each time step n = 1, . . . ,N, this policy computes zn based on Sn−1 in the following way:

1. Let zλλλ
n,x(Sn−1,x) ∈

{
zπ

n,x(Sn−1,x) : π ∈ Qλλλ

}
be the number of samples taken under an optimal single-

arm policy with the given set of Lagrange multipliers λλλ , breaking ties arbitrarily.
2. Let λ ∗ = inf

{
λ : ∑x zλλλ

n,x(Sn−1,x)≤ m,λλλ = λe
}

.
3. Set λλλ ∗ = λ ∗e.
4. Let zn,x ∈ {zπ

n,x(Sn−1,x) : π ∈ Qλλλ ∗}, so as to satisfy ∑
k
x=1 zn,x ≤ m, breaking ties arbitrarily between

different allocations zn that satisfy this constraint.

This index-based policy leaves free the tie-breaking rule used when choosing zλλλ
n,x(Sn−1,x), and also

when choosing zn,x in the final step. We conjecture that the first tie-breaking rule has no impact on the value
for λ ∗, although we have not confirmed this theoretically. We conjecture that the best tie-breaking rule
used to choose zn,x in the final step is one that minimizes the number of unused cores, m−∑

k
x=1 zn,x, and

that it is always possible to find one with m = ∑
k
x=1 zn,x, but again we have not confirmed this theoretically.

Figure 1 illustrates the above procedure with two systems and two parallel resources. Figure 1a and 1b
show how the optimal number of samples varies with the value of λ for each system, given their current
states (2,2) and (3,3). Figure 1c shows the optimal total number of samples across both systems. Since

3912



Hu, Frazier, and Xie

there are two parallel resources, the constraint is m = 2. Hence in this case λ ∗ is the left end point of the
interval at height zλλλ

2,2 + zλλλ
3,3 = 2.

5 NUMERICAL RESULTS

In this section, we present numerical results illustrating the upper bound and the index-based policy, as
well as the baseline equal allocation policy.

We consider 4 different value of k: k = 2,4,8,16. For each value of k, we set the time horizon N = 5,
the threshold value dx = 0.2 for all x ∈ {1, ...,k}, and the number of parallel computing resources m = k.
We set the initial state to be the same for every system: S0,x = (1,1). We first calculated the upper bounds
according to Theorem 1 for each value of k. The squared dots in Figure 2 represents the values of the upper
bounds (shown on a scale in which we divide by k). We then simulated the index-based policy described
in Section 4 for 10000 iterations respectively for k = 2,4,8,16 respectively. The thinner lines in Figure 2
show 95% confidence intervals for the mean performance of this policy. As a baseline, we also simulate
the equal allocation policy in which the m parallel computing resources are distributed equally to the k
systems. The equal allocation policy is simulated for 50,000 replications for each value of k, and 95%
confidence intervals for the mean performance are shown as the thicker lines in Figure 2.

0 2 4 6 8 10 12 14 16 18
0.318

0.32

0.322

0.324

0.326

0.328

0.33

0.332

0.334

E
xp

ec
te

d 
T

ot
al

 R
ew

ar
d 

/ k

Number of Alternatives (k)

 

 

Upper Bound
Index Policy
Equal Allocation Policy

Figure 2: This figure shows the upper bound on the performance of the optimal policy for the MCS problem
(dashed line with squares) normalized by dividing by k, as well as the estimated performance of two
sub-optimal policies: the index policy from Section 4 (thinner lines and dots); and the equal allocation
policy (thicker lines and dots). The setting pictured uses m = k, dx = 0.2, α0x = β0x = 1, cx = 0. We
use 10,000 independent replications to estimate the value of the index policy, and 50,000 for the equal
allocation policy. The plot shows that the index policy is substantially better than equal allocation, and is
statistically indistinguishable from optimal given the number of replications performed.

Confidence intervals for the index policy are wider than those for the equal allocation policy because
fewer samples are taken when estimating the expected value of the index policy. This is because each
simulation of the index policy takes a substantial amount of time in our current implementation. For
the same reason, the index policy’s confidence intervals still overlap the upper bounds. If we took more

3913



Hu, Frazier, and Xie

samples, we expect that the upper limit of the confidence interval would eventually fall below the upper
bound, because we do not think that our policy is optimal. Nevertheless, our results show that the index
policy performs substantially better than the equal allocation policy in the setting studied.

In the figure, the upper bound, divided by k, initially increases, and then levels out. This can be
understood as follows. Because our initial state S0,x is identical for each system, our upper bound 12 can be

rewritten as UB(S0) = infλλλ≥0

[
kVλλλ

0,x(S0,x)+ k ∑
N
n=1 λn

]
. where x is any arbitrary x. Dividing by k provides

1
k UB(S0) = infλλλ≥0

[
Vλλλ

0,x(S0,x)+∑
N
n=1 λn

]
.

Vλλλ
0,x does not depend on k directly, but it does depend on m which is the constraint on the maximum

number of samples that can be taken from system x in any batch, and we set m = k in our experiments.
Thus, when we increase k, we loosen this constraint. We believe this is why 1

k UB(S0) increases initially
with k. Then, as k grows large, this constraint is no longer binding, as the optimal value of λλλ causes us to
take less than m = k samples in each batch. We believe this is why 1

k UB(S0) levels off as k becomes large.

6 CONCLUSION

We offered a computationally feasible way to obtain the upper bound on the total expected reward of the
finite-horizon MCS problem through Lagrangian relaxation. We then proposed an index-based policy using
this Lagrangian relaxation. Using the upper bound as a reference, we showed this index policy performs
close to optimal by running numerical experiments on a specific set of parameters.

ACKNOWLEDGMENTS

Peter Frazier was supported by NSF CAREER CMMI-1254298, NSF IIS-1247696, AFOSR YIP FA9550-
11-1-0083, and AFOSR FA9550-12-1-0200.

REFERENCES

Andradóttir, S., and S. H. Kim. 2010. “Fully Sequential Procedures for Comparing Constrained Systems
via Simulation”. Naval Research Logistics 57 (5): 403–421.

Batur, D., and S. H. Kim. 2010. “Finding Feasible Systems in the Presence of Constraints on Multiple
Performance Measures”. ACM Transactions on Modeling and Computer Simulation 20 (3): 13:1–13:26.

Bofinger, E., and G. J. Lewis. 1992. “Two-Stage Procedures for Multiple Comparisons with a Control”.
American Journal of Mathematical and Management Sciences 12 (4): 253–275.

Chen, X., Q. Lin, and D. Zhou. 2013. “Optimistic Knowledge Gradient Policy for Optimal Budget Allocation
in Crowdsourcing”. In Proceedings of the 30th International Conference on Machine Learning, 64–72.

Damerdji, H., and M. K. Nakayama. 1996. “Two-Stage Procedures for Multiple Comparisons with a
Control in Steady-State Simulations”. In Proceedings of the 1996 Winter Simulation Conference,
372–375. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

DeGroot, M. H. 1970. Optimal Statistical Decisions. New York: McGraw Hill.
Dudewicz, E. J., and S. R. Dalal. 1983. “Multiple Comparisons with a Control When Variances Are

Unknown and Unequal”. American Journal of Mathematics and Management Sciences 3 (4): 275–295.
Dunnett, C. W. 1955. “A Multiple Comparison Procedure for Comparing Several Treatments with a Control”.

Journal of the American Statistical Association 50 (272): 1096–1121.
Dynkin, E. B., and A. A. Yushkevich. 1979. Controlled Markov Processes. New York: Springer.
Frazier, P. I. 2011. “Learning with Dynamic Programming”. In Wiley Encyclopedia of Operations Research

and Management Science, 1–13. Hoboken, New Jersey: Wiley.
Gittins, J., K. Glazebrook, and R. Weber. 2011. Multi-armed Bandit Allocation Indices. 2nd ed. Hoboken,

New Jersey: Wiley.

3914



Hu, Frazier, and Xie

Healey, C., S. Andradóttir, and S.-H. Kim. 2014. “Selection Procedures for Simulations with Multiple
Constraints under Independent and Correlated Sampling”. ACM Transactions on Modeling and Computer
Simulation 24 (3): 14:1–14:25.

Kim, S. H. 2005. “Comparison with a Standard via Fully Sequential Procedures”. ACM Transactions on
Modeling and Computer Simulation 15 (2): 155–174.

Kim, S. H., and B. L. Nelson. 2007. “Recent Advances in Ranking and Selection”. In Proceedings of
the 2007 Winter Simulation Conference, 162–172. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Nelson, B. L., and D. Goldsman. 2001. “Comparisons with a Standard in Simulation Experiments”.
Management Science 47 (3): 449–463.

Paulson, E. 1952. “On the Comparison of Several Experimental Categories with a Control”. The Annals
of Mathematical Statistics 23 (2): 239–246.

Powell, W. B. 2007. Approximate Dynamic Programming: Solving the curses of dimensionality. New York:
John Wiley and Sons.

Szechtman, R., and E. Yücesan. 2008. “A New Perspective on Feasibility Determination”. In Proceedings
of the 2008 Winter Simulation Conference, 273–280. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Whittle, P. 1988. “Restless bandits: Activity Allocation in a Changing World”. Journal of Applied Proba-
bility 25:287–298.

Xie, J., and P. Frazier. 2013a. “Upper Bounds on the Bayes-Optimal Procedure for Ranking & Selection
with Independent Normal Priors”. In Proceedings of the 2013 Winter Simulation Conference, 877–887.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Xie, J., and P. I. Frazier. 2013b. “Sequential Bayes-Optimal Policies for Multiple Comparisons with a
Known Standard”. Operations Research 61 (3): 1174–1189.

AUTHOR BIOGRAPHIES

WEICI HU is a PhD student in the School of Operations Research and Information Engineering at Cornell
University. She received a B.A. in mathematics from Smith College. She has a research interest in simulation
optimization and Bayesian statistics. Her e-mail is wh343@cornell.edu.

PETER I. FRAZIER is an assistant professor in the School of Operations Research and Information
Engineering at Cornell University, and received a Ph.D. in Operations Research and Financial Engineering
from Princeton University in 2009. He is the recipient of an AFOSR Young Investigator Award and an NSF
CAREER Award. He is an associate editor for Operations Research, ACM Transactions on Modeling and
Computer Simulation and IIE Transactions. His research interest is in dynamic programming and Bayesian
statistics, focusing on the optimal acquisition of information and sequential design of experiments. He
works on applications in simulation, optimization, operations management, medicine, and materials science.
His email address is pf98@cornell.edu and his web page is <www.orie.cornell.edu/pfrazier>.

JING XIE is a risk & information manager at American Express Company. She received a Ph.D. in
Operations Research & Information Engineering from Cornell University in 2014. Her Ph.D. thesis was
on Bayesian designs for sequential learning problems. Her e-mail is joyce.jingx@gmail.com and her web
page is <http://people.orie.cornell.edu/jx66/>.

3915


