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ABSTRACT

We present a multiple objective simulation optimization algorithm called multiple objective probabilistic
branch and bound (MOPBnB) with the goal of approximating the efficient frontier and the associated
Pareto optimal set in the solution space. MOPBnB is developed for both deterministic and noisy problems
with mixed continuous and discrete variables. When the algorithm terminates, it provides a set of non-
dominated solutions that approximates the Pareto optimal set and the associated objective function estimates
that approximate the efficient frontier. The quality of the solutions is statistically analyzed using a measure
of distance between solutions to the true efficient frontier. We also present numerical experiments with
benchmark functions to visualize the algorithm and its performance.

1 INTRODUCTION

Decision makers are commonly faced with multiple objectives when evaluating real world systems (Jones,
Mirrazavi, and Tamiz 2002). Instead of aggregating the multiple objectives to a single objective with weights,
decision makers want to understand the trade-offs between different objectives. The Pareto optimal set
provides a family of solutions with objective function values that are not dominated by other solutions. The
set of Pareto optimal solutions provides important information that allows the decision makers to determine
the final decision. There are many multiple objective optimization studies (Bianchi et al. 2008), especially
using evolutionary algorithms such as the genetic algorithm (Deb 2001, Jones, Mirrazavi, and Tamiz 2002),
but only limited studies used these algorithms to develop interactive simulation optimization algorithms
(Tekin and Sabuncuoglu 2004). Some of the multiple objective simulation optimization algorithms were
meta-heuristic based (Lin, Sir, and Pasupathy 2013). Meta-heuristic based multiple objective algorithms
could be applied to large scale problems and different types of variables depending on the meta-heuristic
algorithm. However, meta-heuristic based multiple objective algorithms were mostly numerically tested
without statistical analysis. For our proposed algorithm, we derive probability bounds on the quality of
solutions. Our algorithm is designed to provide a set of solutions that is defined by hyper-rectangles in the
solution space, in order to provide more insights than obtaining only a few sampled solutions.

Another group of studies, categorized as ranking and selection, can efficiently identify the non-dominated
solutions in a finite set (Lee et al. 2004, Lee et al. 2008, Lee et al. 2010). The multiple objective ranking
and selection algorithms provided rigorous statistical quality of the solutions by the probability of correct
selection. Ranking and selection is an effective approach when the number of alternatives is relatively
small. However, it is not efficient when there are continuous variables or a very large number of alternatives.
Therefore, our proposed algorithm focuses on mixed-integer/continuous problems.

The probabilistic branch and bound (PBnB) algorithm was first presented in the Winter Simulation
Conference 2011 (Zabinsky et al. 2011), and extended to approximate a desired level-set for single objective
problems (Huang and Zabinsky 2013). The algorithm presented here extends PBnB by considering multiple
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objectives and approximating the set of Pareto optimal solutions. Hence, we refer to the new algorithm as
multiple objective probabilistic branch and bound (MOPBnB).

A simulation often has several performance measures that are output from a single run. Our algorithm
considers a black box simulation that provides m measures as multiple objectives. When we specify r
replications, we are intending that the simulation will be repeated r times, and the simulation provides m
measures for each replication.

In Section 2, we describe the details of MOPBnB. In Section 3, we derive probability bounds for the
performance of the algorithm. Several numerical results are presented in Section 4, and conclusions in
Section 5.

2 Multiple Objective Probabilistic Branch and Bound

The goal of the algorithm is to find an approximation to the efficient frontier in the objective space and
the associated Pareto optimal set in the solution space. The multiple objective optimization problem is in
the following form:

(P) min
x∈S
{ f1(x), . . . , fm(x)}, (1)

where the objective functions can only be estimated by fl(x) = EΞ[gl(x,ξx)], l = 1, . . . ,m and gl(x,ξx) is a
noisy function and ξx is the noise term. We assume the distribution of the noise term ξx may be different for
each x, but is normally distributed. The feasible set S is assumed to be a hyper-rectangle in n dimensions,
to simplify the partition scheme. The variables may be real-valued or integer valued in the hyper-rectangle,
with upper and lower bounds, li ≤ xi ≤ ui for a continuous variable, and xi ∈ {li, li+1, . . . ,ui} for an integer
variable.

In a single objective problem, we can define the quantile of the objective, as in Zabinsky et al. (2011) and
Huang and Zabinsky (2013), to represent the desirable performance. However, with multiple objectives, the
definition of the desirable performance is more difficult to characterize. Therefore, we define an indicator
D(x), the minimum distance to the true efficient frontier in the objective space, for every x as follows,

D(x) = inf{|| f (x)− f (x∗)|| |x∗ ∈ Se, f (x∗) dominates f (x)}, (2)

where Se is the Pareto set and || f (x)− f (x∗)|| is the Euclidean distance in the objective space. Other
distance measures besides Euclidean distance may be used in the definition of D(x) and the theoretical
analysis still holds. Recognizing that D(x) is not able to be evaluated, we only use it in the analysis to
define the desirable performance.

We use D(x) to define a target set L(δ ,S), which can be interpreted as a relaxation of the true Pareto
optimal set, for 0 < δ < 1. The target set L(δ ,S) is defined in terms of the associated quantile y(δ ,S). We
also use y(p,σ) and L(p,σ) in the analysis of the algorithm for 0 < p < 1 and σ ⊆ S. Let y(p,σ) be the
p quantile of value D(x) where x ∈ σ , defined as

y(p,σ) = argmin
y∈{D(x):x∈σ}

{P(D(X)≤ y|X ∈ σ)≥ p}, for 0 < p < 1, (3)

where X is uniformly distributed in σ . Furthermore, let L(p,σ) be a set of best p solutions, defined as

L(p,σ) = {x ∈ σ : D(x)≤ y(p,σ)}, for 0 < p < 1. (4)

MOPBnB provides two types of results. First, the set of non-dominated points that have been sampled
from S by the algorithm and their associated estimated objective function values are provided and stored
in NSk at iteration k. Second, a collection of hyper-rectangles that approximates the Pareto optimal set is
provided, and called the retained region, denoted Σk, at iteration k. In Section 3, we derive probability
bounds to represent the quality of the solutions. Next, we present the MOPBnB algorithm, incorporating
the sample size from Zabinsky et al. (2011) and the ordering method from Huang and Zabinsky (2013).
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Multiple Objective Probabilistic Branch and Bound (MOPBnB)

Step 0. Initialize: Set user-defined parameters δ ,α,Ro,ε , and B ≥ 2. Partition S into B subregions,
σ1, . . . ,σB, and set Σ1 = {σ1, . . . ,σB}, Σ̃1 = S, α1 =

α

B , NSk = φ , R0 = Ro, and k = 1.
Step 1. Sample: For each subregion σi ∈ Σk, i = 1, . . . , ||Σk||, uniformly sample additional points such

that the total number of points in σi is

Nk =

⌈
lnαk

ln(1−δ )

⌉
. (5)

Denote the sample points in σi by xi, j, for j = 1, . . . ,Nk and i = 1, . . . , ||Σk||. For each xi, j ∈ σi,
j = 1, . . . ,Nk and i = 1, . . . , ||Σk||, perform Rk−1 replications to obtain gl(x,ξ r

x ) for l = 1, . . . ,m,
r = 1, . . . ,Rk−1, and evaluate the sample mean and sample variance for each objective l,

f̂l(xi, j) =
∑

Rk−1
r=1 gl(xi, j,ξ

r
x )

Rk−1
and S2

f̂l
(xi, j) =

1
(Rk−1−1)

Rk−1

∑
r=1

(gl(xi, j,ξ
r
x )− f̂n(xi, j))

2for l = 1, . . . ,m.

(6)
Step 2. Calculate additional replications: For j = 1, . . . ,Nk and i = 1, . . . , ||Σk|| order each objective

function l for l = 1, . . . ,m so that

f̂l(z(1))≤ f̂l(z(2))≤ ·· · ≤ f̂l(z(||Σk||Nk)), where z(q) = argmin
xi, j∈Σ̃k\

⋃q−1
l=1 z(l)

f̂l(xi, j).

Let di,l = f̂l(z(i+1))− f̂l(z(i)), where i= 1, . . . ,Nk−1. Determine d∗=mini=1,...,Nk−1,l=1,...,m di,l and S∗2 =

maxi=1,...,Nk,l=1,...,m S2
f̂l
(z(i)).Calculate the updated replication number Rk =max

{
Rk−1,

(
z̃(αk/2)S∗

d∗/2

)2
}
,

where z̃(αk/2) is the 1−αk/2 quantile of the standard normal distribution. Perform Rk−Rk−1
more replications for each sample point. Re-estimate the performance of objective l of each sample

point with Rk replications by f̂l(xi, j) =
∑

Rk
r=1 gl(xi, j,ξ

r
xi, j

)

Rk
.

Step 3. Identify current non-dominated set: Implement an existing comparison algorithm (Kung, Luccio,
and Preparata 1975) to find the non-dominated sample points by f̂l(xi, j) and update NSk with all
non-dominated points and their estimated function values f̂l .

Step 4. Update: For each i, i = 1, . . . , ||Σk||, update the pruning indicator functions Pi,

Pi =

{
1, if σi∩NSk = φ

0, otherwise.
(7)

Also, set αk+1 =
αk
B , εk+1 =

εk
B . If Pi = 0, and if σi is branchable, then partition σi to σ̄1

i , . . . , σ̄
B
i

and update the current set of subregions

Σk+1 = {σ̄ j
i : Pi = 0, j = 1, . . . ,B} and Σ̃k+1 =

⋃
i:Pi=0

(
B⋃

j=1

σ̄
j

i

)
.

A subregion is unbranchable when the longest Euclidean distance of a subregion is less than ε .
Step 5. Stopping Condition: If all subregions σi ∈ Σk are not branchable, terminate the algorithm.

Otherwise, k = k+1 and return to Step 1.

Users need to determine several parameters: δ , 0 < δ < 1, the desired level of quantile; α , 0 < δ < 1 to
determine the probability bounds involving 1−α on the quality of solutions; Ro as a minimal number of
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replications, Ro ≥ 1; ε > 0, to determine the longest Euclidian distance of a subregion that is considered
unbranchable, and B, B≥ 2 to determine the partition scheme.

In Step 1 and Step 2, MOPBnB samples uniformly in the current subregions and orders the samples
with their estimated function values. A two-stage procedure is applied that is based on a method from
Bechhofer, Dunnett, and Sobel (1954) and Gibbons, Olkin, and Sobel (1977) to rank the samples correctly
under noise. The two-stage procedure to determine the replications is extended from Huang and Zabinsky
(2013) for multiple objectives. The first-stage replications Rk−1 are evaluated in Step 1. The original
ranking procedure assumes that there is a common variance σ2 but we do not. Step 2 uses the first-stage
replications to estimate these differences, di for i = 1, . . . ,Nk−1. We use the maximum sample variance to
update the replication number for the second-stage. Consequently, additional replications may be necessary.

In Step 3, the algorithm applies any existing method to compare the m objective function estimates for
all samples in the retained subregions to eliminate dominated solutions. In this paper, we use the widely
used Kung’s algorithm (Kung, Luccio, and Preparata 1975). The method will find the non-dominated
samples from the retained subregions.

In Step 4, the algorithm updates each subregion to be pruned or further branched into smaller subregions.
For each subregion σi, the dimension with longest length is chosen for partitioning. For a continuous
variable, the length is defined as the difference of the bounds. For a discrete variable, the length is defined
as the number of elements. For a continuous variable, partition the associated dimension into even sized B
subregions. For a dimension associated with a discrete variable, if it is not possible to partition evenly, then
partition into unequal sized subregions ordered by size. For example, suppose the hyper-rectangle for σi
in two dimensions has a continuous variable x1, x1 ∈ [1,10], and an integer variable x2, x2 ∈ {1,2,3,4,5}.
The length of σi on dimension 1 is nine, and on dimension 2 is five, so dimension 1 will be partitioned.
And for B = 2, the resulting partition on dimension 1 is [1,5.5] and [5.5,10]. If dimension 2 is partitioned
with B = 2, the result is {1,2} and {3,4,5}.

MOPnB follows the same stopping condition as Zabinsky et al. (2011) and Huang and Zabinsky (2013).
This stopping condition assures the algorithm will terminate in a finite number of iterations, however users
may wish to terminate earlier.

3 Performance Analysis

In this section, we analyze the performance of MOPBnB by deriving probability bounds to indicate the
quality of solutions. First, we consider the deterministic case without the noise term. Theorem 1 is analogous
to Lemma 1 in Zabinsky et al. (2011) where the single objective function is replaced with the distance
function D(x), representing the closeness of the estimated function values of x to the true efficient frontier.
The extension is allowed because our use of order statistics has minimal assumptions on the function. In
Theorem 2, we derive the quality of the retained region Σk at iteration k with no noise. The impact of the
noisy function is discussed in Theorems 3 and 4. These are used in Corollary 5 and Theorem 6.

The main results providing probability bounds on the quality of solutions are stated in Corollary 5 and
Theorem 6. Corollary 5 is the noisy version of Theorem 2 and gives probability bounds that we correctly
retain subregions in our approximation of the Pareto optimal set because they intersect the true Pareto
optimal set. Theorem 6 shows that the concentration of points with objective function values close to the
true efficient frontier increases with iteration, with probability bounds.
Theorem 1 (c.f. Zabinsky et al. (2011)) Let y(δ ,σm) be the δ quantile as defined in (3) for some subregion
σm ∈ Σk and 0 < δ < 1. Suppose N∗ =

⌈
lnαk

ln(1−δ )

⌉
and Xm,1, . . . ,Xm,N∗ are sampled i.i.d. uniformly from σm.

Let D(Xm,(1)) be the minimum of D(Xm,1), . . . ,D(Xm,N∗), then

P(D(Xm,(1))< y(δ ,σm))≥ 1−α. (8)

Using (8), we derive the quality of the approximate Pareto optimal set Σk in Theorem 2.
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Theorem 2 Suppose MOPBnB has progressed to the current kth iteration on Problem (P) where there is
no noise, with α1 < α . At iteration k of MOPBnB, let the number of sample points be given as in Step 1,

Nk =

⌈
lnαk

ln(1−δ )

⌉
, (9)

and let σ k
p denote the pruned region at iteration k, then

P

((
S\

k⋃
h=1

σ
h
p

)⋂
L(δ ,S) 6= φ

)
≥ 1−α. (10)

Proof. Initially, PBnB branches S into M subregions σ1, . . . ,σM and samples N1 =
⌈

lnα1
ln(1−δ )

⌉
on each

subregion. Therefore, the total number of sample points from all subregions at first iteration is M
⌈

lnα1
ln(1−δ )

⌉
.

Within the M
⌈

lnα1
ln(1−δ )

⌉
samples, there is a sample, XS,(1), which performs best with regard to our distance

metric, D(x). Note

M
⌈

lnα1

ln(1−δ )

⌉
≥M

⌈
lnα

ln(1−δ )

⌉
≥
⌈

lnα

ln(1−δ )

⌉
, (11)

thus we know
P(D(XS,(1))< y(δ ,S))≥ 1−α (12)

by applying Theorem 1 to S. This indicates that L(δ ,S) is sampled by at least one of the sample points
in the first iteration with 1−α probability. Furthermore, later iterations could have sampled points that
dominate the best point of the first iteration, but the non-dominated points will also be in L(δ ,S) with
at least 1−α probability. Also, non-dominated points will not be pruned by the algorithm. Hence, the
intersection of the retaining subregions and L(δ ,S) is non-empty with probability at least 1−α , and the
proof is completed.

The previous analysis assumes the objective functions fl(x) are not noisy. In Theorem 3, we consider
the objectives that can only be estimated by f̂l(x). Therefore, in order to achieve the quality in Theorem 2,
we seek a correct ordering of the different objective function values to eliminate the dominated solutions,
and subregions. Theorem 3 provides rigorous probability bounds for correctly ordering at iteration k, where
Theorem 4 combines all iterations from 1 to k and gives a probability bound of 1−α on the correct
ordering.

We use the analysis of a two-stage replication approach, by Bechhofer, Dunnett, and Sobel (1954), in
Theorem 3, which has following assumption:

(A1) The noisy function is normally distributed with an unknown common variance σ2, and at each
solution z j ∈ S, the variance can be expressed as V (z j) = a jσ

2 where a j is a known constant for each j.
In MOPBnB, the constants a j are not known, hence, we implement a modified two-stage replication

approach (described after Theorem 3, c.f. Huang and Zabinsky (2013)).
Theorem 3 (cf. Bechhofer, Dunnett, and Sobel (1954)) With Assumption (A1), the probability of correct
ordering all samples in the current region at iteration k is

P( f̂l(Zk
(1))≤ f̂l(Zk

(2))≤ ·· · ≤ f̂l(Zk
(Nk)

)| fl(Zk
(1))≤ fl(Zk

(2))≤ ·· · ≤ fl(Zk
(Nk)

))≥ 1−αk, (13)

given that we have a jR0 as the first stage replication number for each sample point to estimate the common
variance by S2

0 =
1

Nk
∑

Nk
i=1

1
a j

S2
f̂
(z( j)) and set up the minimum difference desired to be separated as d∗, and

sampling Rk = max{a jR0,2(
hS∗0

d∗/2)
2} in the second stage of the procedure, where h is a value in the H c.d.f.

of a multivariate student t’s distribution with Nk−1 dimensions such that H(h) = 1−αk.
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The algorithm intends to find the non-dominated points by correctly ordering points by their objective
function values. Although the objective function values could be correlated, the comparison of the function
values is separated for each objective function. Therefore, the probability of ordering m objectives correctly
for a current iterations is greater than the probability of correct ordering of each objective separately,
bounded by (1−αk)

m ≥ 1−mαk. For any iteration k, we take a conservative approach (c.f. Huang and
Zabinsky (2013)) to achieve the 1−mαk probability of correct ordering by separating each estimated
performance mean f̂ (z(i)) with its neighbor by the smallest difference d∗ = mini=1,...,Nk−1,l=1,...,n di,l of any
two neighbors. We also use the largest variance S∗2 = maxi=1,...,Nk,l=1,...,n S2

f̂l
(z(i)) so that all ordering is

conservative. The implemented two-stage procedure for any iteration k is
1. Implement Rk−1 replications to estimate the function value f̂ (x) and sample variance S2

f̂
(x) and calculate

the differences di,l between ordered samples f̂l(z(i)) and f̂l(z(i+1)) for i = 1, . . . ,Nk−1 and l = 1, . . . ,n.

2. Implement additional replications Rk−Rk−1 where Rk = max{Rk−1,(
z̃(αk/2)S∗

d∗/2 )2}.
The following Theorem 4 considers the assumptions and rigorous situation in Theorem 3 to derive a

rigorous bound for iteration 1 to k.
Theorem 4 With Assumption (A1), the probability of correct ordering from iteration 1 to iteration k is

P

( ⋂
q=1,...,k,l=1,...,m

(
f̂l(Z

q
(1))≤ f̂l(Z

q
(2))≤ ·· · ≤ f̂l(Z

q
(Nq)

)| fl(Zl
(1))≤ fl(Z

q
(2))≤ ·· · ≤ fl(Z

q
(Nq)

)
))
≥ 1−mα,

(14)

where fl(Z
q
( j)) is the jth ordered sampled point at iteration q by objective l.

Proof. The probability of ordering m objective functions correctly through iteration k is bounded by the
individual probability of correct ordering for each iteration and each objective function, given by

P

( ⋂
q=1,...,k,l=1,...,m

(
f̂l(Z

q
(1))≤ f̂l(Z

q
(2))≤ ·· · ≤ f̂l(Z

q
(Nq)

)| fl(Z
q
(1))≤ fl(Z

q
(2))≤ ·· · ≤ fl(Z

q
(Nq)

)
))

≥
k

∏
q=1

(
1−m

α

Bq

)
, (15)

and then apply Bernoulli’s inequality repeatedly to yield the final result.

Theorem 2 holds in the noisy condition with (A1) assumption if the orderings of function values of
each objective at iteration 1 to k are correct. Therefore, the quality of solution with noise is quantified as
Corollary 5, which is the noisy version of Theorem 2.
Corollary 5 Consider the Kth iteration of MOPBnB on (P) where (A1) is assumed. The intersection of
the approximating set and L(δ ,S) is non-empty with

P

((
S\

K⋃
k=1

σ
k
p

)⋂
L(δ ,S) 6= φ

)
≥ (1−α)(1−mα). (16)

Under the noisy condition, Corollary 5 indicates that the intersection of the approximated Pareto optimal
set Σk with the target set L(δ ,S) is non-empty with at least (1−α)(1−mα) probability.

In order to evaluate the incremental improvement of the algorithm, we consider a metric defined by
Zabinsky et al. (2011), the concentration of the retained unpruned region. The concentration considers the
proportion of desirable region in the remaining unpruned region, and is defined as

Ck =
v({S\∪k

i=1σ i
p}∩L(δ ,S))

v(S\∪k
i=1σ i

p)
, (17)
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where v() is the volume of a region of solutions. When a dimension is associated with a discrete variable,
the volume is calculated as counting the elements in the region.
Theorem 6 Assuming the algorithm progresses to Kth iteration and the best distance of the sampled points
has not reached the desirable set, i.e., D(XNSk,(1))> y(δ ,S) for k = 1, . . . ,K−1, then

P(Ck+1 ≥ Ck)≥ (1−α)(1−mα). (18)

Proof. See Appendix A.

4 Numerical Experiments

Two test functions, he Fonseca and Fleming function and the Kursawe function (Deb 2001), are used in
this section to illustrate the performance of MOPBnB, both test functions have two objective functions and
are box-constrained. The Fonseca and Fleming function has a two-dimensional feasible region S, so we
can visually illustrate the algorithm on the solution space. The Kursawe function is in three dimensional
space, so we only illustrate the efficient frontier.

• Fonseca and Fleming function (n = 2,−4≤ xi ≤ 4, i = 1, . . . ,n)

Minimize =


g1(x) = 1− exp

(
−∑

n
i=1

(
xi− 1√

n

)2
)

g2(x) = 1− exp
(
−∑

n
i=1

(
xi +

1√
n

)2
) (19)

• Kursawe function (n = 3 and −5≤ xi ≤ 5, i = 1, . . . ,n)

Minimize =

{
g1(x) = ∑

2
i=1

[
−10exp

(
−0.2

√
x2

i + x2
i+1

)]
g2(x) = ∑

3
i=1
[
|xi|0.8+5sin(x3

i )
] (20)

The parameters were set as δ = 0.1, α = 0.05, and B = 2. The ε parameter was set at one percent of
the longest Euclidean distance of S. For both test functions, we tested with no noise, ξx,l = 0, and with
noise, ξx,l = N(0,0.3) for Fonseca and Fleming function and ξx,l = N(0,1) for Kursawe function. The
noise is additive, gl(x)+ξx,l . The variability of the noise was determined by considering of the range of
the efficient frontier’s function value.

Figure 1 illustrates the efficient frontier and the approximated Pareto optimal set for the Fonseca and
Fleming function. Panels (A) and (C) of Figure 1 are with no noise, and panels (B) and (D) are with
noise. Panels (A) and (B) illustrate the efficient frontier in the objective function space and panels (C)
and (D) illustrate the approximated Pareto optimal set in the solution space. In panel (A) of Figure 1,
the stars (blue) represent the empirically estimated true efficient frontier and were obtained by performing
grid search for 100x100 points. The dots (red) are the estimated objective function values from NSk in
the MOPBnB algorithm at the final iteration (k = 14), there are 1,589 non-dominated points in NSk, out
of 11,643 total sampled points. As illustrated, our approximation of the efficient frontier shows excellent
closeness and spreading. Panel (B) of Figure 1 includes noise, ξx,l = N(0,0.3). The stars (blue) are the
same as in panel (A), and the dots (red) are the estimated objective function values f̂l from the MOPBnB
algorithm, under the noisy condition. It is interesting that the red dots appear “better” than the blue stars, so
we also plotted the true function values with no noise, fl (blue circles) associated with the non-dominated
points. The blue circles are actually overlapping or very close to the true efficient frontier. Furthermore,
in the noisy condition, there were 22 non-dominated points in NSk, out of 8,742 total sampled points.

Panel (C) of Figure 1 illustrates the progress of the MOPBnB algorithm in the solution space, with
the final subregions approximating the Pareto optimal set. Each rectangle represents a subregion in the

3922



Huang and Zabinsky

Figure 1: Fonseca and Fleming function. Panels (A) and (B) plot the two objective functions to illustrate
the efficient frontier, (A) no noise, ξx = 0, and (B) with noise, ξx = N(0,1). Panels (C) and (D) plot the
approximated Pareto optimal set, (C) no noise, ξx = 0, and (D) with noise, ξx = N(0,1).
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Figure 2: Kursawe function. Panels (A) and (B) plot the two objective functions to illustrate the efficient
frontier, (A) no noise, ξx = 0 and (B) with noise, ξx = N(0,1).

algorithm, where the number in a subregion represents the iteration that the subregion is pruned. Similarly,
panel (D) in Figure 1 shows the results of Fonseca and Fleming function with ξx,l = N(0,0.3).

For the Kursawe function, only the approximate efficient frontiers (no noise and N(0,1) noise) are
shown in Figure 2, because the solution space in three dimension is difficult to visualize. The approximated
efficient frontier illustrates a good approximation to the true efficient frontier with regard to both closeness
and spread. Similarly, the noise version in panel (B) of Figure 2 shows the bias of the estimated efficient
frontier (red dots), but the corresponding true function values (blue circles) estimate the efficient frontier
well. For no noise, the algorithm found 415 non-dominated solutions out of 31,104 points sampled, and,
with noise, the algorithm found 56 non-dominated solutions from total 17,967 samples.

Both test functions show that the influence of noise decreases the spread and the size of the approximated
Pareto optimal set. A possible reason is that the MOPBnB is currently designed by only considering the
closeness of the solution. The sample size and pruning step do not consider the spread and the potential
loss of Pareto optimal set. Hence, a good future research direction is to incorporate the spread and the size
of approximated Pareto optimal set to the algorithm.

5 Conclusion

We develop the MOPBnB algorithm to provide the approximated efficient frontier by the objective function
values of the sample points in NSk in the objective space and the approximated Pareto optimal set Σk in
the solution space for multiple objective stochastic global optimization problems. The algorithm has the
capability to work with mixed-integer/continuous variables. The framework of MOPBnB is to partition
the solution space iteratively and determine whether each subregion should be pruned or further branched
depending on the observed non-dominated samples. The algorithm provides the quality of the approximated
Pareto optimal set Σk by considering the distance to the true efficient frontier in the objective space. We
prove that, with probability (1−α)(1−mα), the approximated Pareto optimal set intersects the relaxed
Pareto set L(δ ,S). We also prove that the concentration of “good” solutions in the retained region increases
with iteration.

The potential future work to this algorithm includes two directions, deriving further quality for the current
algorithm and developing a new version of MOPBnB with different metrics. In general, approximating
the efficient frontier considers three criteria, closeness, spread and the number of points. MOPBnB is only
driven by the distance, an indicator of closeness. Considering the other two metrics could provide more
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comprehensive insights to the quality of MOPBnB. Another future direction is to redefine the sample size
and partition scheme to develop a new version of the MOPBnB with the consideration of spread and the
number of points.
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A Proof of Theorem 6

Proof. (Based on Wang (2011)) For any k = 1, . . . ,K−1, we rewrite the concentration of desired solutions
Ck+1 after the iteration k+1 as follows,

v({S\∪k+1
i=1 σ i

p}∩L(δ ,S))

v(S\∪k+1
i=1 σ i

p)
=

v({S\∪k
i=1σ i

p}∩L(δ ,S))− v(σ k+1
p ∩L(δ ,S))

v(S\∪k
i=1σ i

p)− v(σ k+1
p )

≡ A−B
C−D

. (21)

Thus (18) is equivalent to P
( A−B

C−D ≥
A
C

)
≥ (1−α)(1−mα). Note that with A > B,C > D and A,B,C,D > 0,

A−B
C−D

≥ A
C
⇔ AC−BC ≥ AC−AD⇔ AD≥ BC⇔ A

C
≥ B

D
. (22)

For each iteration, if ||σ k
p||= 0, then the proof is trivial. Therefore, consider ||σ k

p|| ≥ 1 First, consider the
B
D part. Let Dk

p be the best performance associated to a sample point from all points in the pruned regions
at iteration k, and let Dk

NS,p be the distance performance associated to a sample from the non-dominated
set which dominates the sample point associated to Dk

p considering all m objectives. From Theorem 3,
under (A1) assumption, we know that the order will be correct with 1−αk probability for one objective.
Hence, with 1−mαk probability, Dk

NS,p < Dk
p. Let σ k

p be partitioned into the following two disjoint sets{
x ∈ σ

k
p : D(x)< Dk

p

}
and
{

x ∈ σ
k
p : D(x)≥ Dk

p

}
.

Also, Dk
NS,p ≥ D(XNS,(1))> y(δ ,S) by the assumption. Therefore, there is 1−mαk probability that{

x ∈ σ
k
p : D(x)≥ Dk

p

}⋂
L(δ ,S) = φ .

Hence, with 1−mαk probability, we can say

v
(

σ
k
p

⋂
L(δ ,S)

)
= v
({

x ∈ σ
k
p : D(x)< Dk

p

}⋂
L(δ ,S)

)
+ v
({

x ∈ σ
k
p : D(x)≥ Dk

p

}⋂
L(δ ,S)

)
= v
({

x ∈ σ
k
p : D(x)< Dk

p

}⋂
L(δ ,S)

)
≤ v
({

x ∈ σ
k
p : D(x)< Dk

p

})
. (23)

By Theorem 1, it holds that

P(Dk
p < y(δ ,σ k

p))≥ 1−αk. (24)

Combining (23) and (24), with at least (1−αk)(1−mαk) probability

v
(

σ
k
p

⋂
L(δ ,S)

)
≤ v
({

x ∈ σ
k
p : D(x)< y(δ ,σ k

p)
})

. (25)
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By the definition of quantile, we have

v
({

x ∈ σ k
p : D(x)< y(δ ,σ k

p)
})

v
(
σ k

p
) ≤ δ . (26)

Combining (25) and (26), we have at least (1−αk)(1−mαk) probability that

B
D

=
v
(
σ k

p
⋂

L(δ ,S)
)

v
(
σ k

p
) ≤ δ . (27)

Replacing k with k+1 since (27) is for any iteration, we have

B
D

=
v
(
σ k+1

p
⋂

L(δ ,S)
)

v
(
σ

k+1
p
) ≤ δ . (28)

For the A
C part,because S

⋂
L(δ ,S) = L(δ ,S) and v(L(δ ,S))≥ δv(S) by quantile definition, we can derive

v
({

S\∪k
i=1σ

i
p

}⋂
L(δ ,S)

)
= v
(

S
⋂

L(δ ,S)
)
−

k

∑
i=1

v
(

σ
i
p

⋂
L(δ ,S)

)
≥ δv(S)−

k

∑
i=1

v
(

σ
i
p

⋂
L(δ ,S)

)
≥ δv(S)−δv(σ1

p)−
k

∑
i=2

v
(

σ
i
p

⋂
L(δ ,S)

)
with at least (1−αk)(1−mαk) probability by (27). Then repeating the step for i = 2, . . . ,k, with at least

∏
k
i=1(1−αi)(1−mαi) probability, the previous statement becomes

≥ δv(S)−δ

k

∑
i=1

v(σ i
p) = δv

(
S\∪k

i=1σ
i
p

)
. (29)

Dividing both sides by the volume term on the right hand side, we have, with at least ∏
k
i=1 1−αi)(1−mαi)

probability,

A
C

=
v
({

S\∪k
i=1σ i

p
}⋂

L(δ ,S)
)

v
(
S\∪k

i=1σ i
p
) ≥ δ . (30)

Combining (28) and (30), we have that A
C ≥

B
D with at least ∏

k+1
i=1 1(−αi)(1−mαi) probability, which is

strictly greater than (1−α)(1−mα) by Bernoulli’s inequality and the proof of (18) is completed.
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