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ABSTRACT

We consider the problem of finding a zero of an unknown function, or optimizing an unknown function,
with only a stochastic simulation that outputs noise-corrupted observations. A convenient paradigm to solve
such problems takes a deterministic recursion, e.g., Newton-type or trust-region, and replaces function
values and derivatives appearing in the recursion with their sampled counterparts. While such a paradigm
is convenient, there is as yet no clear guidance on how much simulation effort should be expended as the
resulting recursion evolves through the search space. In this paper, we take the first steps towards answering
this question. We propose using a fully sequential Monte Carlo sampling method to adaptively decide
how much to sample at each point visited by the stochastic recursion. The termination criterion for such
sampling is based on a certain relative width confidence interval constructed to ensure that the resulting
iterates are consistent, and efficient in a rigorous (Monte Carlo canonical) sense. The methods presented
here are adaptive in the sense that they “learn” to sample according to the algorithm trajectory. In this
sense, our methods should be seen as refining recent methods in a similar context that use a predetermined
sequence of sample sizes.

1 INTRODUCTION AND MOTIVATION

We study adaptive sampling within stochastic recursions involving quantities estimated using a stochastic
simulation. The prototypical example setting is Simulation Optimization (SO) (Henderson and Nelson
2006, Pasupathy and Ghosh 2013), where an optimization problem minθ∈Θ g(θ), g : Rd → R, is to be
solved using only a stochastic simulation capable of providing estimates of the objective function and
constraints at a requested point. Another closely related example setting is the Stochastic Root Finding
Problem (SRFP) (Pasupathy and Kim 2011, Pasupathy 2010, Pasupathy and Schmeiser 2009), where the
zero of a vector function h(θ) is sought over the feasible domain Θ, with only simulation-based estimates
of the function involved. (A first-order optimality condition for an SO problem is that the gradient of
the function ∇θ g(θ) = f (θ) matches zero, which is an SRFP.) SO and SRFPs have recently generated
great attention because they allow the function involved in the problem to have an implicit representation
through a stochastic simulation, thereby allowing the embedding of virtually any level of complexity. Such
flexibility has resulted in widespread adoption. Examples include logistics (Homem-de-Mello, Shapiro,
and Spearman 1999, Atlason, Epelman, and Henderson 2008), healthcare (Alagoz, Schaefer, and Roberts
2009, Deng and Ferris 2006), and traffic (Osorio and Bierlaire 2013, Lu and Li 2009).
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A recently popular solution paradigm for solving SO and SRFPs simply mimics what an algorithm
might do within a deterministic context, after estimating any needed function and derivative values using
the available stochastic simulation. An example serves to illustrate such a technique best. Consider the
Newton-type recursion

θk+1 = θk−H−1
g (θk)∇g(θk) (1)

for finding a first-order critical point of the real-valued function g : Rd → R, recalling that Hg(·) in (1) is
an approximation of the Hessian of g. If only “noisy” simulation-based estimates of g are available, then
a reasonable adaptation of (1) might be to use the recursion

θk+1 = θk− H̃−1
g (mk,θk)∇̃g(mk,θk) (2)

where ∇̃g(mk,θk) and H̃−1
g (mk,θk) are the simulation-based approximations of the gradient and Hessian of

g respectively, obtained with simulation effort mk. The simulation effort mk is general and might represent
the number of replications in the case of terminating simulations or the simulation run length in the case
of non-terminating simulations (Law 2007).

Effectively implementing a recursion of the sort (2) relies crucially on the choice of the sample size
sequence {mk}. To understand the trade-offs involved in such choice, note that the error in the iterates
{θk} generated by (2) has two sources. The first, structural error, arises due to the mechanics of the
employed recursion. Structural error is not specific to the simulation context and arises in any recursive
approximation setting. The second, sampling error, arises as a result of the inherent stochasticity of the
simulation output, and is hence directly related to the choice of {mk}. Guaranteeing that the recursion (2)
produces iterates that converge to the correct solution stipulates adequate sampling, that is, the sequence
{mk} should be so large that the observations do not lead the iterates astray per chance. At the same
time, choosing the sample size mk too large would be inefficient since this would mean that the resulting
sampling error will be small compared to the structural error. Thus it seems likely that consistency and
efficiency should dictate an “optimal regime” for the sample sizes {mk}.

Recent work by (Pasupathy, Glynn, Ghosh, and Hashemi 2014) explores the notion of optimal sample
size regimes for stochastic recursions such as (2), by introducing and analyzing the broader context of
Sampling-Controlled Stochastic Recursions (SCSR) for finding the zero of an unknown function h :Rd→Rd :

θk+1 = θk−
1
β

h̃mk(θk) (SCSR)

where h̃m is the estimator of h, and β is some constant chosen based on some prior informtaion on curvature
of the function h. (Pasupathy, Glynn, Ghosh, and Hashemi 2014) characterize the rates at which the
sample sizes {mk} should increase in (SCSR) in order to guarantee the consistency and efficiency of the
resulting iterates. In particular, they demonstrate that the speed of the underlying recursive function h, its
estimator h̃mk , and the optimal regime of sample sizes are intimately linked, with faster recursions allowing
for a wider range of sample sizes while remaining efficient. For instance, (Pasupathy, Glynn, Ghosh,
and Hashemi 2014) show that when linearly converging recursions are employed, certain geometrically
increasing sample size sequences are efficient; likewise, when superlinearly converging recursions are
employed, all geometrically increasing sample size sequences, and certain super-exponential sample-size
sequences are efficient.
Remark 1 The celebrated Stochastic Approximation (Kushner and Yin 2003) method is a competitor to
what we propose here but falls within the purview of SCSR. A restriction within SA is that all sample
sizes mk = m, that is, a fixed sample size is used across iterations. The literature on SA is enormous,
and its success somewhat mixed (Pasupathy and Ghosh 2013) due to the presence of certain algorithmic
sequences that need to be chosen by the user. Theoretical prescriptions for the choice of this sequence in
order to preserve the correct direction through the search space and the fast convergence towards the true
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solution, is throroughly discussed in the literature (Hashemi and Pasupathy 2012, Spall 2000, Spall 2012).
Meanwhile there are continuing efforts (Broadie, Cicek, and Zeevi 2010, Broadie, Cicek, and Zeevi 2009)
to make SA implementable by devising schemes that automatically choose these algorithmic sequences.

The sampling regimes characterized in (Pasupathy, Glynn, Ghosh, and Hashemi 2014) constitute an
important step towards making stochastic recursions implementable, since they serve to provide some
guidance on sampling. Such guidance is only broad, however, and still leaves a lot of room for choice.
For instance, when using linearly converging recursions, (Pasupathy, Glynn, Ghosh, and Hashemi 2014)
demonstrate that choosing {mk} such that mk/mk−1 = γ , for all k ≥ 2 produces iterates that are consistent
and efficient (in a certain rigorous sense) as long as γ ∈ (0,c), where c > 1 is a constant. This directive is
useful but, depending on the specific problem, different choices of γ , or even varying γ across iterations,
may be needed to produce robust algorithm performance. In general, good algorithm performance in
finite time entails inferring and reacting to specific problem structure, perhaps by using the trajectory of
algorithm iterates and their corresponding function estimates. Regardless of the problem structure, the
analysis in (Pasupathy, Glynn, Ghosh, and Hashemi 2014) is asymptotic, leaving an enormous range of
possible choices of {mk} that still guarantee efficiency.

Can sample sizes {mk} be chosen adaptively, by reacting to function information that is obtained as
the iterates evolve through the search space? Moreover, can such adaption happen in way that also ensures
consistency and efficiency in the rigorous sense of (Pasupathy, Glynn, Ghosh, and Hashemi 2014)? There
have been some recent proposals in the literature towards answering this question. For instance, Byrd et al.
(2012) propose the following two-stage sampling procedure to determine the sample size at any iteration k:

Mk =
ασ̂2

Mk−1
(θk)

‖h̃Mk−1(θk)‖2
, (3)

where the estimate h̃Mk−1 and its variance σ̂2
Mk−1

are constructed from the Mk−1 samples gathered in the
earlier iteration. The expression in (3) can be interpreted as the result of balancing the squared bias and
the variance of the function estimator; it can also be interpreted as the minimum sample size required to
declare with some certainty that the function value h(θk) at the current iterate θk has been estimated to
a sufficient level of accuracy to rule out θk being the solution. Byrd et al. (2012) show that under the
sampling rule (3), the resulting iterates converge to a zero of h and the samples Mk grow geometrically. The
proof for this convergence requires a strong condition (Eq 4.20), in part because of the two-stage nature
of the procedure, and it is unclear how such a condition can be checked a priori.

A competing fully sequential rule proposed by Pasupathy and Schmeiser (2010) has the following
form:

Mk = inf
m

: am
σ̂m(θk)√

m
< α‖h̃m(θk)‖, α > 0, (4)

(A simpler version of (4) was proposed in Anscombe (1953) within the context of estimating a confidence
interval on the mean.) Pasupathy and Schmeiser (2010) conjecture that the use of the fully sequential
stopping rule (4) in (SCSR) results in convergent and asymptotically efficient iterates.

1.1 Contributions

We investigate the use of adaptive sampling within stochastic recursions (SCSR) for solving SO and SRFPs.
The adaptive sampling schemes we introduce are a fully sequential version of (3), and are constructed to
balance the estimated variance and squared bias of the (recursive) function estimates at each visited point.
There is emerging evidence that schemes similar to what we propose work well in practice and come closer
to the goal of achieving robust finite-time performance with no user-intervention. However, the analysis
of such fully adaptive schemes turns out to be challenging, and there appears to be no clear analysis of
the consistency and efficiency of the resulting iterates to date. In this paper, we present two results that
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take us closer to the construction of provably consistent and efficient adaptive sampling schemes within
stochastic recursions.

(1) We first analyze a simple adaptive sampling rule similar to (4) obtained by replacing the h̃m(θk) on
the right-hand side with a geometrically decreasing deterministic sequence γ−k, for some γ ∈ (1, γ̄),
where γ̄ is defined based on some prior curvature information . We show that under such a rule, the
iterates converge efficiently. This result is a slight generalization of the geometric sample growth
rates that are shown to be efficient in SCSRs ( (Pasupathy, Glynn, Ghosh, and Hashemi 2014)),
allowing the sample sizes mk to also react to local estimation conditions (σm(θk)).

(2) We next analyze a version of the adaptive sampling rule (4) that replaces h̃m(θk) on the right-hand
side with the actual function value h(θk). Our proposed scheme adapts to the local conditions of
the iterations of SCSR by determining the amount of sampling needed solely based on the relative
accuracy of the function estimate at the current iterate. We start with known results for sequential
estimation methods, first described by (Chow and Robbins 1965) for iid populations with unknown
variance, and extend their analysis to show that SCSR augmented with the proposed sequential
sampling rule is asymptotically efficient.

2 NOTATION AND BASICS

We will adopt the following notation through the section. (i) For a sequence of random variables {Xn}, we

say Xn
p
→X if {Xn} converges to X in probability; similarly, we say Xn

d→X to mean that {Xn} converges

to X in distribution, and finally Xn
wp1
→ X to mean that {Xn} converges to X with probability one. we say

an = o(1) if limn→∞ an = 0; and an = O(1) if {an} is bounded, i.e., ∃c ∈ (0,∞) with |an| < c for large
enough n. We say that an = Θ(1) if an = O(1) but an is not o(1). (v) For a sequence of real numbers {an},
we say an = op(1) if an→ 0 as n→∞; and an = Op(1) if {an} is stochastically bounded, that is, for given
ε > 0 there exists c(ε) ∈ (0,∞) with Pr{|an|< c(ε)}> 1− ε for large enough n. We say that an = Θp(1)
if an = Op(1) but an is not op(1).

Also, the following notion will help our exposition.
Definition 1 (Growth rate of a sequence.) A sequence {mk} is said to exhibit Geometric(c) growth if
mk+1 = cmk,k = 1,2, . . . for some c ∈ (1,∞),

We place the following standing conditions on the function h(·) : Rd → Rd of interest to the SRFP
problem of determining a θ ∗ ∈Θ that satisfies h(θ ∗) = 0̄.
Assumption 2.1 The function h(θ) satisfies the following:

A1 There exists a unique θ ∗ ∈Θ such that h(θ ∗) = 0̄,
A2 for all θ ∈Θ, (θ −θ ∗)T h(θ)≥ l0‖θ −θ ∗‖2,
A3 h is locally Lipschitz continuous at θ ∗, that is, there exists l1 > 0, such that for all θ ∈ Θ,

‖h(θ)‖ ≤ l1‖θ −θ ∗‖.

Analogously, the function f (·) : Rd → R of interest to the SO problem {minθ f (θ)} is assumed to satisfy
the following.
Assumption 2.2 (Strong Convexity) The function f (θ) is twice continuously differentiable and there exist
constants 0 < λ < β , such that

λ‖u‖2 ≤ uT
∇h(θ)u≤ β‖u‖2, for all θ and u. (5)

In the context of SRFPs, the function h of Assumption 2.1 relates to the function f of Assumption 2.2 as
∇ f (θ) = h(θ), and the conditions can be verified to yield the same SCSR error structure.

The stochastic recursion (SCSR) requires an estimate of the function h(θ). Assume that i.i.d. observations
Y1,Y2, . . . on the probability space (Ω,F ,P) are available such that their (unknown) mean E[Yi(θ)] = h(θ),
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and the (unknown) non-singular (d×d)-covariance matrix Σ, with tr(Σ)≤ σ 2 for a finite positive constant
σ . The estimator for h(θ) from m copies of these observations is

h̃m(θ) = m−1
m

∑
i=1

Yi(θ),

The following linear transformation of the sample covariance matrix will play an important role in the
sequel:

σ̂
2
m = tr(

1
m−1

m

∑
i=1

(Yi− h̃m)(Yi− h̃m)
T ).

Finally, we call a stochastic recursion asymptotically efficient if the following holds.
Definition 2 (Asymptotically Efficient) Denote Γk := ∑

k
i=1 Mi as the total samples used up till the kth

iteration. If there exists a sequence {νk} such that Γk = Op(νk), then a stochastic recursion with iterations
defined by (SCSR) converges asymptotically efficiently if

E[h(θk)] = E[h(θk)−h(θ ∗)] = O(ν−1
k ). (6)

Pasupathy et al. (2014) show in Theorem 6.1 that this rate is the fastest that any sampling-controlled
stochastic recursion (SCSR) under the assumed conditions can achieve. We anticipate that this result will
be true for stochastic recursions with dynamic random sample sizes Mk; this paper assumes this in the
definition of asymptotic efficiency.

3 MAIN RESULTS

In this section we investigate the behavior of sampling-controlled stochastic recursions

θk+1 = θk−
1
β

h̃mk(θk) (SCSR)

when augmented with sequential rules for choosing the sample size mk. Under each of the two rules
we consider, the sample size is, conditional on the current iterate θk, a random variable. We shall use
the notation Mk to emphasize this distinction. The random variable Mk is a stopping time adapted to the
sequence {Yi} in both methods, and is determined as the lowest sample size that matches the confidence
interval of the estimate h̃Mk to a target value. A measure of the squared half-width of the confidence interval
is σ2

Mk
/Mk.

The first stopping rule matches the confidence interval widths to a pre-specified sequence of target
values γk, where γk→ 0 and k→ ∞, but ∑k γk < ∞. Theorem 1 shows that the sequence of iterates {θk}
converges to θ ∗ a.s. under these mild conditions on γk. Furthermore, if γk were to grow geometrically, then
the recursion is asymptotically work-efficient for all geometric growth factors up to a finite upper bound.
The main tool used for analysis of the proposed sequential sampling rules embedded in stochastic recursions,
is to study asymptotic theories for randomly stopped random sequences, traces back to (Anscombe 1953).
Theorem 1 Let {γk}k≥1 be a fixed positive sequence for which we have ∑

∞
i=1 γi < ∞. Let the function

h(·) satisfy Assumption 2.1,

(i) Let for α > 0, β in (SCSR) satisfy (1+α)l2
1

2l0
< β < ∞. Denote {Mk}k≥1 as a sequence of random

variables in the probability space (Ω,F ,P). Considering the stochastic recursion

θk+1 = θk−
1
β

h̃Mk(θk), k = 1,2, . . . , (7)
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denote the history of the method up to time k by

Fk = {θ0,(M1,SM1),(M2,SM2), . . . ,(Mk−1,SMk−1)},

where S j = (Y1,Y2, . . . ,Yj). Assume either of the following holds.

(R1) Y1 is normally distributed, and M(θk) = inf{m > 3 : σ̂2
m(θk)
m < αγk|Fk}, k = 1,2, . . . ;

(R2) E[Y 6
1 ]< ∞, and for 0 < α < 1, M(θk) = inf{m > max(2, [αγk]

−1/2 +1) : σ̂2
m(θ)
m < αγk|Fk}.

Then (7) satisfies θk+1→ θ ∗ a.s..
(ii) Further, letting γ

−1
k = [γ]k, 1 < γ ≤ (1− 2l0

β
+

(1+α)l2
1

β 2 )−1, the algorithm is asymptotically efficient.

The following Lemma is used in proving Theorem 1.
Lemma 3.1 Let Xis , i = 1, . . . be iid observations from N(µ,Σ), whose m-sample mean is denoted by
Zm = 1/m∑

m
i=1 Xi. Consider the following sequential procedure:

Mc = inf{m≥ 1 :
σ̂ 2

m

m
< c}, (8)

where σ2
m is the trace of the sample covariance matrix, c is a positive constant that is allowed to approach

zero. Letting σ2 = tr(Σ), we have

(i) Mc is a stopping time with respect to {Xi}1≤i≤m, and limc→0(
c
σ
)2Mc = 1 a.s.;

(ii) for the stopped process ZMc we have Var(ZMc) = E[σ2M−1
c ].

Proof. First we prove that Mc is a well-defined stopping time with respect to {Xi}1≤i≤m. Consider the
stochastic process X = {Xm : m ∈N} defined on the probability space (Ω,F ,P). We note that M as defined
in (8) is a random time for the stochastic process X = {Xm : m≥ 1}, as Mc is a discrete random variable
on the same probability space as X . For m ∈ N, let Fm = σ{Xs,s ∈ N,s≤ m}, be the σ -algebra of events
up to time m. The random time Mc, is a stopping time since

{Mc > m} ∈Fm,

for each m ∈ N. In other words, {Mc = m}, is Fm measurable, which means that the event {Mc = m} is
completely determined by the total information up to time m, {X1,X2, . . . ,Xm}, and is not dependent on
the future Xm+1,Xm+2, . . . .

Then part (i) follows by Lemma 2 in (Chow and Robbins 1965). For the second part, we note that the
probability distribution of Mc is defined for any m≥ 1 by

P(Mc = m) = P{σ̂ 2
k < ck for k = m but not for any k < m}. (9)

Since Xis are normally distributed, we know from Basu (1955) that σ̂ 2
m is statistically independent of Zm.

Therefore

P(M = m|ZM) = P(M = m). (10)

Hence the event {M = m} is independent of ZM, and so

Var(ZM) = E[Var(ZM|M = m)]+Var(E[ZM|M = m])

= E[σ 2M−1].
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Proof of Theorem 1(i). First we find a finite time upper bound on the squared error. To this end, by (7),
letting Zk = θk−θ ∗, we have for all k,

Z2
k+1 = Z2

k −
2
β

ZT
k h̃Mk(θk)+

1
β 2 ‖h̃Mk(θk)‖2,

= Z2
k −

2
β

ZT
k (h̃Mk(θk)−h(θk))−

2
β

ZT
k h(θk)+

1
β 2 ‖h̃Mk(θk)−h(θk)‖2

+
1

β 2 ‖h(θk)‖2 +
2

β 2 h(θk)
T (h̃Mk(θk)−h(Θk)).

By Assumption 2.1(A2), we have

EΩ[Z2
k+1|Fk] = Z2

k −
2
β

ZT
k h(θk)+

1
β 2 ‖h(θk)‖2 +

1
β 2EΩ[‖h̃Mk(θk)−h(θk)‖2|Fk],

≤ Z2
k −

2l0
β

Z2
k +

l2
1

β 2 Z2
k +

1
β 2EΩ[‖h̃Mk(θk)−h(θk)‖2|Fk],

= (1− 2l0
β

+
l2
1

β 2 )Z
2
k +

1
β 2EΩ[‖h̃Mk(θk)−h(θk)‖2|Fk]. (11)

Letting a := 1− 2l0
β
+

l2
1

β 2 , since β >
l2
1

2l0
, 0 < a < 1.

Under (R1), by Lemma 3.1 part (ii) we have

EΩ[(h̃Mk(θk)−h(θk))
2|Fk] = tr(Σ)EΩ[M−1

k |Fk].

Hence by (11) and Theorem 3∗ of (Starr 1966), when γk→ 0,

EΩ[Z2
k+1|Fk] ≤ aZ2

k +
σ 2

β 2 EΩ[M−1
k |Fk],

≤ aZ2
k +

α

β 2 γk. (12)

Since ∑
∞
i=1 γk < ∞, by Lemma 2 in (Yousefian, Nedić, and Shanbhag 2012), we have that θk→ θ ∗a.s..

Under (R2), by (11) and the relation (2.4) in (Mukhopadhyay and Datta 1996), (12) holds, and the
claim follows accordingly.
Proof of Theorem 1(ii)

By Assumptions 2.1(A2) and (A3), we have

l2
0z2

k ≤ ‖h(θk)‖2 ≤ l2
1z2

k . (13)

Considering Γk = Op(∑
k
i=1[a+α( l1

β
)2]−i), asymptotic efficiency of (7) follows by (12), corollary 4.3 of

(Byrd, Chin, Nocedal, and Wu 2012) and Definition 2.

Theorem 1 closely matches a result for SCSRs under the same conditions; Theorem 6.5 in (Pasupathy,
Glynn, Ghosh, and Hashemi 2014) shows that pre-determined sample sizes mk that grow geometrically
with the same growth rate restrictions as Theorem 1(ii) are asymptotically efficient. Note that the sequential
sampling rule introduced in Theorem 1 results in larger samples than the lower bound of the geometrically
growing γ

−1
k , and is sensitive to the quality of the estimator h̃m at the current estimate. This sequential

stopping rule is easy to implement given the chosen sequence {γ−1
k } since the update of the variance

estimator σ̃m is a constant-computational-effort operation. However, we do not have a truly hands-off
method yet since the user needs to still pick the geometric growth factor γ carefully to ensure efficiency.
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However note that the random sample size Mk ∼ Op(γ
−1
k ), and the sequences {γ−1

k } that were judged
efficient grow exactly as the inverse of E[h(θk)] by Theorem 1(ii). This motivates the next sampling rule
14, which will sample till the sampling error at the current iterate is just smaller than the optimality gap
of the iterate. Will SCSR augmented with such sampling rule be efficient ?”

Accordingly, we introduce another sequential procedure that replaces the sequence {γk} with purely
local information:

Mk = inf{m > max{3,γk} :
σ̂ 2

m(θk)

m
< α‖h(θk)‖2}, (14)

for α > 0, Theorem 2 analyses the asymptotic behavior of the corresponding SCSR method.
Theorem 2 The function h(·) satisfies Assumption 2.1. Let {γk}k≥1 be a fixed positive sequence for
which we have ∑

∞
i=1 1/γi < ∞. Denote {Mk}k≥1 as a sequence of random variables in probability space

(Ω,F ,P). Considering the following stochastic recursion,

θk+1 = θk−
1
β

h̃Mk(θk), k = 1,2, . . . , (15)

denote the history of the method up to time k by

Fk = {θ0,(M1,SM1),(M2,SM2), . . . ,(Mk−1,SMk−1)},

where S j = (Y1,Y2, . . . ,Yj). Given Fk. Assume either of the following conditions hold.

(C1) (Parametric Setup)Y1 is normally distributed, and for 0<α < 1, Mk :=M(θk)= inf{m>max{3,γk} : σ̂2
m(θk)
m <

α‖h(θk)‖2|Fk};
(C2) (Nonparametric Setup) Let E[Y 8

1 ] < ∞, and for 0 < α < 1/4, ζ > 0, Mk := M(θk) = inf{m >

max{3,γk} : σ̂m(θk)
m +m−(1+α) < ζ‖h(θk)‖2|Fk}.

Then the SCSR iterates (15) are (a) almost surely convergent to the true solution θ ∗, and (b) asymptotically
efficient.

Proof. First we note that under either (C1), or (C2), by Lemma 3.1, Mk is a stopping time with respect
to Fk.

Under (C1), a.s. convergence follows by slight changes in Theorem 1. For efficiency of (15), by (12)
we get

EΩ[Z2
k+1|Fk] ≤ aZ2

k , (16)

where a := 1− 2l0
β
+

(1+α)l2
1

β 2 , and by β >
(1+α)l2

1
2l0

, 0< a< 1. Hence letting bk :=E[Z2
k ], qk := 1

β 2EΩ[‖H̃Mk(θk)−
h(θk)‖2] and dk := b1(1− 2l0

β
)k +∑

k−1
i=2 (1−

2l0
β
)k−iqi +qk, and

η = max(bk0a1−k0 , max
1≤k≤k0

{a−kdk}),

for all k ≥ 1, we have bk ≤ ηak.
Since for all k, bk ≤ aη , Z2

k is uniformly integrable, and so is ‖h(θk)‖2, by (13). Hence E‖h(θk)‖2

approaches to zero with the same geometric rate as bk.
Moreover since for all k, Pr(Mk < ∞) = 1, we have

E[‖h(θk)‖2Mk] = E[E[‖h(θk)‖2Mk|Fk]],

= E‖h(θ)‖2E[Mk|Fk]. (17)
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Thus, when for a given ε , ‖Zk‖ ≤ ε , E‖h(θk)‖2Mk→ σ2/α a.s. and we have

logMk

k
=

logMkE‖h(θk)‖2

k
− logE‖h(θk)‖2

k
≈ log1/bk

k
→ 1/a,

which proves that as θk→ θ ∗, Mk is geometrically growing with constant 1/a.
Accordingly, asymptotic efficiency of the method follows by considering Γk = Op(∑

k
i=1[a]

−i) =

Op([a]−k), and νk = [a]k in Definition 2.
Under (C2), first we prove that (15) is a.s. convergent. Letting ck := α‖ f (θk)‖2, for all iterations we have

P(Mk = ∞) = lim
m→∞

P{Mk > m} ≤ P{σ 2
m(θk)/m > ck for all m≥ γk}= 0 (18)

as σ2
m is convergent a.s. as m→ ∞. Therefore P{Mk < ∞}= 1, and√

Mk(‖h̃Mk(θk)−h(θk)‖)≤ supm
√

m(‖h̃m(θk)−h(θk)‖).

Besides since E[‖Y1‖2]< ∞, E[supm m‖h̃m(θk)−h(θk)‖2]< ∞; together with

EΩ[‖h̃Mk(θk)−h(θk)‖2|Fk]≤
1
γk
E[(

√
Mk(‖h̃Mk(θk)−h(θk)‖))2|Fk],

by (11), ∑k γ
−1
k < ∞ and Lemma 2 in (Yousefian, Nedić, and Shanbhag 2012), we conclude (15) is a.s.

convergent.
In order to prove part (ii) of the theorem for condition (C2), we first note that by (Ghosh and

Mukhopadhyay 1979), when θk→ θ ∗, ‖h̃Mk(θk)−h(θk)‖2‖h(θk)‖−2 is uniformly integrable and we have

E‖h̃Mk(θk)−h(θk)‖/‖h(θk)‖→ ζ .

Therefore by (A3) and (11), there exists k0, such that for all k > k0,

EΩ[Z2
k+1|Fk] ≤ (1− 2l0

β
+

l2
1

β 2 )Z
2
k +

1
β 2EΩ[‖H̃Mk(θk)−h(θk)‖2|Fk]

= (1− 2l0
β

+
l2
1

β 2 )Z
2
k +

1
β 2 ‖h(θk)‖2EΩ[‖H̃Mk(θk)−h(θk)‖2/‖h(θk)‖2||Fk]

≤ (1− 2l0
β

+
l2
1

β 2 )Z
2
k +

ζ l2
1

β 2 Z2
k .

(19)

Accordingly efficiency of (15) follows by the same approach as in part (C1).

The following corollary is an immediate consequence of Theorem 2 and the equivalence of Assump-
tion 2.1 for h(·) and Assumption 2.2 for f (·) where h(θ) = ∇θ f (θ).
Corollary 3 The function h(·) satisfies the conditions in Assumption 2.2. Let {γk}k≥1 be a fixed
positive sequence for which we have ∑

∞
i=1 1/γi < ∞. Define {Mk}k≥1 as a sequence of random variables

in probability space (Ω,F ,P). Let E[Y 8
1 ] < ∞, and for 0 < α < 1/4, ζ > 0, Mk := M(θk) = inf{m >

max{3,γk} : σ̂m(θk)
m +m−(1+α) < ζ‖h(θk)‖2|Fk}. Then the SA iterates

θk+1 = θk−1/β h̃Mk(θk), k = 1,2, . . . , (20)

are (a) almost surely convergent to the true solution θ ∗, and (b) asymptotically efficient.
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The version of the sequential rule used in Theorem 2 and Corollary3 has the true function h(θk) value
on the right-hand side of (14), thereby leaving no critical parameters for choice by the user. Thus, this
version of the stochastic recursion is truly parameter-free and fully adaptive, in that the sample size needed
in each iteration is determined solely by local functional and estimation properties. Such a rule is, however,
not implementable because the function h(θk) is not known. To reach a completely adaptive version that
can be implemented easily, one can modify (14) to:

Mk = inf{m > max{3,γk} :
σ 2

m(θk)

m
< α‖h̃Mk−1(θk)‖2}, (21)

This rule is easy to implement as a sequential rule if the estimator h̃Mk−1 and the variance function σ 2
m can be

updated using constant-effort computations. The results in Theorem 2 indicate that one can expect similar
a.s. and efficient convergence properties. Unlike the rule (14) which compares the absolute confidence
interval to a fixed target h(θk), the rule (21) compares the relative confidence interval σ2

Mk
/(Mk‖h̃Mk‖2) to

a target. Thus, the convergence under (21) is not a straightforward consequence of the proof method of
Theorem 2. The convergence properties under the rule (21) is of active research interest to the authors.

4 CONCLUDING REMARKS

Our goal is to develop an adaptive sampling rule for use in parameter-free stochastic recursions to produce
iterates that perform well in finite time while enjoying provable asymptotic consistency and efficiency under
mild restrictions. The main idea underlying our adaptive sampling proposal is to continue sampling at a
point until there is enough probabilistic evidence that the subsequent iterate θk+1 is of a higher quality (in
terms of objective function value) than the current iterate θk. The corresponding sample size Mk will then
be used in estimating the function h and its derivatives at the incumbent point. The sample size determining
rules Mk are designed to provide the stochastic recursion the flexibility to adapt to the problem structure
and exhibit good performance in both finite and infinite time. This is as opposed traditional algorithms
like SAA (Pasupathy and Ghosh 2013) and SA where the sample size growth follows a deterministic rule
(e.g. geometric) as the algorithm searches through potential solutions in the search space.

While adaptive sampling schemes such as those we have presented have been shown to be effective in
a number of recent studies, their analysis when used within (SCSR) has posed challenges. The results we
provide in this paper take the first steps towards the analyzing the consistency and efficiency of a broad
swathe of adaptive sampling strategies within (SCSR).
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Yousefian, F., A. Nedić, and U. V. Shanbhag. 2012. “On stochastic gradient and subgradient methods with

adaptive steplength sequences”. Automatica 48 (1): 56–67.

3969



Hashemi, Ghosh and Pasupathy

AUTHOR BIOGRAPHIES

FATEMEH S. HASHEMI is a PhD candidate in the Grado Department of Industrial and Systems Engi-
neering at Virginia Tech under supervision of Dr. Raghu Pasupathy. Currently, she is a research Co-op
at IBM Thomas J. Watson Research Center. Her research interests are methods for sampling within
stochastic recursions, and applications to simulation optimization and stochastic root finding. Fatemeh’s
research finds application in large scale machine learning, stochastic adaptive controls, system design
for dynamical systems and artificial neural networking. She is the recipient of INFORMS-DGWGOR
finalist award, ACM-SIGSIM Student Travel Award, Best Score Award in Research Symposium and Re-
search Travel Grant Award in Virginia Tech. Her email address is fatemeh@vt.edu and her website is at
https://filebox.vt.edu/users/fatemeh/.

SOUMYADIP GHOSH is a Research Staff Member in the Business Analytics and Mathematical Sciences
Department at the IBM T.J. Watson Research Center. His current research interests lie in simulation based
optimization techniques for stochastic optimization problems, with a focus on applications in Energy and
Power systems and supply chain management. His email is ghoshs@us.ibm.com and his web page is at
https://researcher.ibm.com/researcher/view.php?person=us-ghoshs.

RAGHU PASUPATHY is an associate professor in the Department of Statistics at Purdue University. His
research interests lie broadly in Monte Carlo methods with a specific focus on simulation optimization. He
is a member of INFORMS, IIE, and ASA, and serves as an associate editor for Operations Research and
INFORMS Journal on Computing. He is the Area Editor for the Simulation Desk at IIE Transactions. His
email address is pasupath@purdue.edu and his web page is https://filebox.vt.edu/users/pasupath/pasupath.
htm.

3970


