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ABSTRACT

Distributed computing facilitates very large scale agent-based models. However, reliable and efficient
communication strategies are needed to synchronize agent states across multiple processors. Traditional
management methods are conservative in nature and perform a complete synchronization of all agent state
information at every time step of the simulation. An alternative approach to traditional methods is proposed
which uses an event-driven technique to synchronize agents. This procedure only synchronizes changes
to pertinent information in the model at each time step. This technique requires less information to be
broadcast which reduces the run time of the simulation while maintaining consistency in the model.

1 INTRODUCTION

Distributed computing addresses the traditional scaling limitations of Agent Based Models (ABMs) and
allows for the development of massive-scale models. Synchronization of agent states between multiple
processors is complex and needs to be reliable and efficient. The protocol used to synchronize agent states
across processors has a significant impact on the efficiency of the tool. Repast HPC is one of the currently
available tools for distributed ABMs (Collier and North 2013). This framework approaches the problem
by performing a complete synchronization of all entities of interest at every time step.

This poster reviews an alternative approach to entity synchronization, a design which manages persistent,
pertinent information. This protocol performs an initial synchronization between all entities with relationships
to other agents and then only performs updates and synchronization following changes to relevant information.
The pertinent data synchronization technique is an event-driven method to manage the communication
and synchronization between the processors. The conservative and the event-driven approaches are both
described and analyzed in the following sections.

2 METHODS
2.1 AGENT REQUESTS

The conservative approach to the problem performs a consistent synchronization of pertinent information at
every time step of the simulation. Each processor cycles through their agents and compiles a list of non-local
agents from which information is needed. The root processor aggregates this information and broadcasts
the requests to all processors which return the requested state information to the root processor. Once the
root processor distributes the information gathered, each processor creates local copies of their non-local
agents of interest. These temporary copies only contain necessary state information on the requested entity.
Therefore, each processor has information regarding the current state of their own agents as well as state
information on all agents of interest. This entire process is repeated at the beginning of every time step.
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Figure 1: Timing Analysis of Requests and Watches

2.2 AGENT WATCHES

The alternate approach recognizes that not all pertinent information changes at every time step in the
simulation. Complete synchronization can be achieved by only tracking and reporting the changes to
relevant information. Agent watching only synchronizes information when an entity has experienced a
change in state. After the creation of a relationship between two entities, if the agent of interest is not local,
it is added to a global list of watched entities. During the synchronization process, the states of newly
watched agents are communicated to any processor which has an interest in the agent. Basic, persistent
local copies of these watched agents are made on the processors that require the state information of the
non-local agent. The processor uses these local copies as a source of information for the updates on their
local agents. When watched agents experience a change in state the processor sends the updated state
information to the root node to be broadcast to all processors. Then, at the start of the next time step,
remote copies of agents are updated to the correct, current state. With this method, fewer and smaller
messages are sent at each time step than with the previous technique.

3 RESULTS

A complete timing analysis was performed on both techniques using Python’s cProfile tool. The sample
model used in this experiment was a basic rumor model, where each agent has exactly two assigned
neighbors which were distributed according to the probability of having a neighbor on a foreign processor.
Trials were run with 80 million agents total split across 4, 8, 16 and 32 processors. Three trials were
completed at each design point and the average of these three trials can be seen in the charts above. The
displayed timing is the actual simulation running time, which does not include the overhead to initialize
the model.

4 CONCLUSIONS

The completed timing analysis shows that the watches technique is significantly faster than the requests
method. The run times for the method are quicker overall than the requests technique. In addition to the
overall speed increase, the watches technique also scales up in both number of processors and number of
agents per processor more efficiently than the requests method. The use of the agent watches synchronization
technique enhances the usability, scalability, and speed for anyone executing massive-scale agent based
simulations.
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