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ABSTRACT

In this poster, we evaluate the effectiveness of four kriging-based approaches for simulation optimization with
homogeneous noise: Augmented Expected Improvement (AEl), Approximate Knowledge Gradient (AKG),
the Two-stage sequential optimization method (TSSO), and the well-known Efficient Global Optimization
(EGO) algorithm. We test the performance of these algorithms on test functions with homogeneous noise,
assuming given computing budget constraints (i.e., given number of infill points and replication budget).
Our results indicate that, as long as we have enough replication budget to implement both stages of the
Two-stage algorithm, this method is highly competitive, providing similar or better performance particularly
in settings with high noise and many infill points.

1 INTRODUCTION

Picheny et al. (2013) compared several kriging-based methods for optimizing functions with homogeneous
noise and showed that Augmented Expected Improvement (AEI, see Huang et al. (2006)) and Approximate
Knowledge Gradient (AKG, see Scott et al. (2011)) are the best alternatives. The Two-stage sequential
optimization method (denoted by TSSO here, see Quan et al. (2013)), which is not included in Picheny
et al. (2013), is a recently proposed kriging-based method that can also handle heterogeneous simulation
noise without requiring any knowledge about the noise variance function.

This poster evaluates the effectiveness of TSSO for simulation optimization with homogeneous noise
by comparing it against AEI, AKG, and the popular Efficient Global Optimization (EGO) approach (Jones
et al. 1998). To this end, we apply these methods to three well-known test functions: Hartmann-6 and
Six-hump Camelback (as in Kleijnen et al. (2012)), and the rescaled Branin function (proposed in Picheny
et al. (2013)). While the former functions can be considered as “bumpy”, the latter one has a flat valley
which makes the convergence to the global minimum difficult.

2 TEST SCENARIOS

Each function evaluation (i.e., each replication) is perturbed by a homogeneous Gaussian noise. In EGO,
AKG, and AEI, we sample infill points by performing B replications while in TSSO, this budget is used
for sampling a new point (the search stage) and for performing more replications at already sampled points
(the allocation stage). A heuristic is employed to divide B between these two stages; for the allocation
stage to be active, the budget B needs to be sufficiently high relative to the number of infill points allowed
(which we denote by I, see Quan et al. (2013) for details).

Throughout the experiment, we vary the maximum number of infill points allowed (1), the replication
budget (B) and, the noise level, yielding 18 scenarios per test function. The initial design is a maximin
LHS design of size 10 x d (where d is the dimension of the test function), as suggested by Jones et al.
(1998). We perform 100 macroreplications per scenario, each using a different initial design and noise
realization.
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Analogous to Kleijnen et al. (2012), we use a fixed set of candidate points consisting of 200 points for
the Six-hump Camelback and rescaled Branin functions and 500 points for the Hartmann-6 function; our
objective is to find the global minimum among these candidate points (referred to as x*, having function value
y*) using our 4 kriging-based methods. We use DACE to implement EGO, the R package DiceOptim for
AKG and AEI, and the code provided in http://www.ise.nus.edu.sg/staff/ngsh/download/matlabdocs/SOK/
for TSSO.

3 RESULTS

To compare the 4 kriging-based methods for different scenarios, we evaluate the following performance
measures for each method: (1) the distribution of the optimality gap (defined as the difference between
the function value at the best point returned by the method and y*) across the macroreplications (2) the
number of macroreplications that identify x* as the minimum (i.e., for which the previous criterion equals
zero) and (3) the number of infill points required to reach this optimum.

Our results indicate that with regard to the first two performance measures, on average, the Two-stage
sequential optimization method is the best alternative, provided that the replication budget (B) is high
enough to allow the allocation stage to be active. Since the allocation stage is active only when B is
sufficiently larger than I, opting for high number of infill points requires ample computing budget. Only
for the Branin function, TSSO performs slightly worse than AKG or AEI for scenarios with low number
of infill points. The superior performance of TSSO is more evident when we have high noise. Indeed,
although the performance of all methods suffers from higher noise, we found TSSO to be more robust.

The performance of AKG and AEI are most of the time similar. With low number of infill points,
most of the time, EGO surprisingly provides similar results or even outperforms AKG and AEI (we found
AKG to be especially sensitive to low number of infill points). As we increase the number of infill points,
AKG and AEI give better results, especially when we have high noise.

Increasing the replication budget (B) and the maximum number of infill points (/) enhance the performance
of all algorithms, helping them to return solutions that are closer to y*. In terms of speed (the third performance
measure), we didn’t find evidence on significant difference between the algorithms; with higher noise all
of them became slightly slower to converge to the global minimum.
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