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ABSTRACT

This paper approximates simulation models by B-splines with a penalty on high-order finite differences of the
coefficients of adjacent B-splines. The penalty prevents overfitting. The simulation output is assumed to be
nonnegative. The nonnegative spline simulation metamodel is casted as a second-order cone programming
problem, which can be solved efficiently by modern optimization techniques. The method is implemented
in MATLAB.

1 NONNEGATIVE SPLINE METAMODEL

A simulation model can be represented as a function:

y = f (x), (1)

where x represents the input and y is the response. For complex simulation models, metamodels are often
constructed to approximate the input-output functions by simpler functions. Parametric polynomial response
surface approximation is the most popular technique for building metamodels (Barton 1998), where the
simulation models are approximated by polynomials.

By Weierstrass approximation theorem, every continuous function can be uniformly approximated as
closely as desired by a polynomial. Polynomials are easy to compute and have continuous derivatives of
all orders. On the other hand, polynomials are inflexible: their values on a complex plane are determined
by an arbitrarily small set; they oscillate increasingly with the increase in the order of the polynomials,
while high-order is required for suitable accuracy in approximation. A polynomial fits data nicely near one
data point a may display repulsive features at parts of the curve not close to a.

Spline metamodels (smooth piecewise polynomials) overcome the inflexibility of polynomial meta-
models. In practice, B-Splines are widely used in approximation, as there are good properties associated
with B-splines. Particularly, compared with representations by splines in truncated power basis—defined as
{x j| j = 0, . . . ,d}∪{(x− ti)d

+|(i = 1, . . .n)} for knot sequence (ti)n
i=1, B-spline representations are relatively

well-conditioned and involve fewer basis functions computationally. Let Bik denote the ith (normalized)
B-spline of order k (degree < k) for the knot sequence t ≡ (ti)n

i=1. The B-Spline metamodel for the
simulation model (1) is y = ∑

n
j=1 α jB jk(x), where α j’s are parameters commonly determined by the least

squares methods for m data points (xi;yi)
m
i=1 is minα ∑

m
i=1
[
yi−∑

n
j=1 α jB jk(xi)

]2.
The simulation metamodel tool discussed in this paper is the P-spline least squares method (Eilers

and Marx 1996). The P-spline least squares model combines B-splines with a penalty on high-order finite
differences of the coefficients of adjacent B-splines. The penalty reduces the variation of the fitted curve
caused by data error and prevents overfitting. Denote the parameter controlling the smoothness of the fit
by λ . The least squares objective function (loss function) of estimating the parameter α for the simulation
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model on n B-splines of order four with a penalty on second-order differences of the B-spline coefficients
based on m data points (xi,yi), i.e. the P-spline metamodel studied in this paper, is

min
α

m

∑
i=1

[
yi−

n

∑
j=1

α jB j4(xi)

]2

+λ

n

∑
j=3

(α j−2α j−1 +α j−2)
2 . (2)

In many applications, the model to be fitted is known or required to be nonnegative or above some
threshold; for instance, simulations of prices, demand, sales, wages, amount of precipitation, probability
mass, etc. Because of the noise or the tendency in the data, quite often, the fitted curve doesn’t exhibit
nonnegativitiy, even though it should be. To obtain a satisfiable and sometimes meaningful fitted curve, the
nonnegativity constraint needs to be integrated into the metamodel. Since the B-spline basis functions are
nonnegative, imposing positivity on B-spline coefficients or integrating B-splines with positive coefficients
preserves positivity in the model. But this approach excludes some classes of positive splines and thus
reduces the accuracy of the model. Because of the approximation and computational advantage of P-splines,
this paper focuses on nonnegative P-spline approximation.

2 SECOND-ORDER CONE PROGRAMMING APPROACH

Let ‘,’ denote concatenating vectors row-wise and ‘;’ denote concatenating vectors column-wise; for instance,

the adjoining of vectors x, y, and z can be represented as

x
y
z

=
(
x>,y>,z>

)
= (x;y;z) . Index vectors in

Rn from 0. A second-order cone (quadratic cone, Lorentz cone, or ice-cream cone) in Rn is the set

Qn ≡
{

x = (x0; x̄) ∈ R×Rn−1 : x0 ≥ ‖x̄‖
}
.

We omit the subscript n if it is clear from the context. A vector x ∈ Q is sometimes also represented as
x�Q 0, because second-order cone induces a partial order.

Denote x≡ (x1; . . . ;xr). The second-order cone programming in standard form is

minx ∑
r
i=1 c>i xi

subject to ∑
r
i=1 Aixi = b

xi �Q 0, (i = 1, . . . ,r).

Second-order cone programming has many applications. A solution to a second-order cone programming
problem can be obtained approximately by interior point methods in polynomial time of the problem data
size.

Nonnegative univariate polynomials are representable as positive semidefinite matrices (Nesterov 2000),
which, in three dimensional cases, can be characterized by second-order cones. We reformulate the P-spline
metamodel (2) as a second-order cone programming problem. Finally, we give a numerical example on
simulating probability density distributions by the P-spline metamodel in MATLAB.
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