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ABSTRACT

We develop a new measure of reliability for the mean behavior of a process by calculating the probability
that the cumulative sample mean will ever deviate from its long-term mean, and its true mean, over a period
of time. This measure can be used as an alternative to estimating system performance using confidence
intervals. We derive the tradeoffs between four critical parameters for this measure: the underlying variance
of the data, the starting sample size of a procedure, and the precision and confidence in the result.

1 INTRODUCTION

We propose a new metric for evaluating system performance that is stronger than the traditional confidence
interval. We present a measure of reliability for the cumulative mean behavior of a process, by calculating
the probability that the sample mean of a time series stays within some fixed distance from its long-term
mean after a given initial sample size. The long-term mean could be the true mean, or the sample mean
after a long period of time. The underlying time series is assumed to meet the conditions for a functional
central limit theorem (FCLT), an assumption used in many simulation output analysis methods.

We calculate this measure by structuring simulation output data as a standardized time series (Schruben
1983), which under the FCLT assumption is a Brownian bridge in the limit. Manipulating the standardization
allows us to evaluate the difference between the cumulative mean and the long-term mean as a function of
a Brownian bridge. We derive a lower bound for the probability that this difference between the means is
always less than a specified amount after a specified initial sample size by calculating boundary crossing
properties of Brownian bridges. This measure provides more information than a traditional confidence
interval, which only evaluates the cumulative mean once.

In addition to the implications for confidence interval procedures, this measure is useful in experimental
settings. Examples include evaluating a production system over a year, where cumulative average perfor-
mance each month converges to average performance over the year. We may be interested in knowing the
likelihood that the cumulative performance early in the year will deviate from the end of year results.

2 A MEASURE OF RELIABILITY FOR MEAN BEHAVIOR

We calculate the probability that the cumulative sample mean of simulation output data Yi after k initial
samples, which is Y i, i = k, . . . ever deviates from its long term mean Y m, or its true mean µ , by more than
δ . Let σ2 be the variance of the Yi data points, δ be the allowable deviation, and m be the total sample
size. We write this measure, standardized by time, as PB (probability in bounds):
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Our result gives a lower bound for PB.
Theorem 2.1. Let Φ be the cumulative distribution function of the standard normal distribution. Under
the FCLT assumption, the probability that the cumulative sample mean Y i stays within distance δ from the
long-term mean Y m over the range i = k, . . . ,m has a lower bound
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The lower bound for the probability that the sample mean Y i stays within distance δ from µ over the range
i = k, . . . ,∞ as m→ ∞ is
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3 RESULTS AND CONCLUSIONS

Figure 1 shows PBL in the limit as m→ ∞ for a variety of combinations of k and δ/σ using (1). Because
δ and σ only appear in (1) as δ/σ we condense them to one term on the y-axis. On the x-axis, as k
increases we see that PBL increases, because the sample mean is more likely to deviate from the true mean
at smaller sample sizes. On the y-axis, when δ is high relative to σ , PBL is higher because the bounds
are loose relative to the variance of the procedure. However, when σ is large, this ratio decreases and the
probability of staying within the bounds decreases. This shows the importance of having δ/σ relatively
large, for any value of k, or alternatively, if a small δ is required, to use a larger k.
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Figure 1: Calculation of (1) showing PBL for a range of values of k and δ/σ , as m→ ∞.
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