
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

GPU-BASED CALCULATION OF TRAJECTORY SIMILARITIES

Stefan Rybacki, Tobias Helms, Lars Moldenhauer, Adelinde Uhrmacher

Institute of Computer Science
University of Rostock

Albert-Einstein-Straße 22
18059 Rostock, GERMANY

ABSTRACT

Graphics Processing Units (GPUs) are more and more used for general purpose calculations. In the area
of modeling and simulation, GPU’s calculations are typically associated with executing specific simulation
models. Besides this application, we propose the use of GPUs not only in the context of model execution
but also to analyze simulation results, e.g., to compute the similarity of simulation trajectories. We present
initial evaluation results from using the GPU for such applications and discuss opportunities, challenges,
and pitfalls. We conclude with further possibilities as well as some future directions for leveraging the
GPU for different analyzing tasks in the field of modeling and simulation.

1 INTRODUCTION

Besides visualizing data, Graphics Processing Units (GPUs) are increasingly employed for general purpose
computations. However, in the area of modeling and simulation, their application has been focused on
executing simulation models, either completely or parts of it in combination with the CPU (Rybacki et al.
2009, Vouzis and Sahinidis 2011, Dematt and Prandi 2010, Richmond et al. 2010). Due to the peculiarities
of the GPU, which favors single instructions and multiple data (SIMD) computations, discrete stepwise
simulation approaches, e.g., cellular automata, lend themselves for this approach and it has been shown
that the execution performance can increase significantly by using the GPU, whereas in the context of
stochastic discrete event simulation, GPU calculations are still comparatively rare. In contrast to using
GPUs only for model execution, we propose to exploit their power additionally to analyze simulation
results. For instance, a full factorial parameter scan of a simulation model easily leads to thousands of
time series, i.e., simulation trajectories. Interactive techniques exist to explore those trajectories, e.g.,
techniques which cluster trajectories according to their similarity enabling the user to determine interesting
parameter combinations and sensitivities (Luboschik et al. 2014). However, to use such techniques the
similarity between trajectories needs to be calculated beforehand. Due to huge numbers of similarities to be
computed, this procedure can be time-consuming. The use of complex similarity measures, which is often
needed (Luboschik et al. 2014), even aggravates the problem. Fortunately, the calculation of similarities
between trajectories can easily be encoded as a SIMD computation. On the one hand, there is the similarity
calculation (the single instruction) between two trajectories which on the other hand is carried out for
multiple trajectory pairs (the multiple data).

2 RESULTS

Different similarity measures exist, e.g., the mean squared error (MSE), the Hausdorff distance, the Fréchet
distance, and dynamic time warping (DTW). Some of them are more demanding calculation-wise than
others and some are more suitable to be implemented in a GPU-based manner. As a straightforward
approach, we adapted the MSE and developed a GPU-based implementation of this measure. However,
we already consider the impact of different measures by using a plug-in based design which allows an

4071978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Rybacki, Helms, Moldenhauer and Uhrmacher

easy exchange of different measures and algorithms (implementations). We started our work based on
the similarity measure MSE and used the framework APARAPI (Frost 2014) to implement the algorithm.
APARAPI is a framework which allows to develop GPU programs in Java. The MSE is computed as
follows:

mse =
1
n

n

∑
i=1

(Ai −Bi)
2.

For instance, each squared difference can be computed in parallel on the GPU. For this, an instance of
APARAPI’s class Kernel must be created overriding its run method with the code to run on the GPU
(squared distance). The run method is then executed in parallel simply by executing the kernel instance
with aparapi.

By using this approach we achieved, particularly with many trajectories, a speed up of roughly one
order of magnitude. Nevertheless, we faced also some challenges and problems, mainly caused by either
the data bandwidth, the calculation of the averaged differences (due to its semi-parallel nature), or operating
system specific configurations, e.g., the timeout detection and recovery for graphic cards. Future work
includes the evaluation of other more complex similarity measures, e.g., DTW (Sart et al. 2010), also
referring to the induced speed up on the GPU. Additionally, we will analyze the potential of the GPU
within other areas of simulation result analysis, e.g., identifying

arbitrary behavior patterns in or over trajectories (Chang et al. 2012), like increasing, decreasing,
oscillating. These patterns shall be specified using a domain specific language, which can be automatically
interpreted and translated into code to be executed (if possible) on the GPU. Eventually, this approach shall
be integrated into the statistical model checking of the modeling and simulation framework JAMES II (Peng
et al. 2014).

REFERENCES

Chang, K.-W., B. Deka, W.-M. W. Hwu, and D. Roth. 2012. “Efficient Pattern-Based Time Series Classi-
fication on GPU”. In ICDM.

Dematt, L., and D. Prandi. 2010. “GPU computing for systems biology”. Briefings in Bioinformatics 11
(3): 323–333.

Frost, G 2014. “Aparapi in amd developer website”. http://developer.amd.com/tools/heterogeneous-
computing/aparapi/.

Luboschik, M., S. Rybacki, F. Haack, and H.-J. Schulz. 2014. “Supporting the integrated visual analysis
of input parameters and simulation trajectories”. Computers & Graphics 39 (0): 37 – 47.

Peng, D., R. Ewald, and A. M. Uhrmacher. 2014. “Towards Semantic Model Composition via Experiments”.
In Proceedings of the 2014 Workshop on Principles of Advanced and Distributed Simulation, 151–162.

Richmond, P., D. Walker, S. Coakley, and D. Romano. 2010. “High performance cellular level agent-based
simulation with FLAME for the GPU”. Briefings in Bioinformatics 11 (3): 334–347.

Rybacki, S., J. Himmelspach, and A. M. Uhrmacher. 2009. “Experiments with single core, multi core, and
GPU based computation of cellular automata”. In First International Conference on Advances in System
Simulation, 62–67. Piscataway, New Jersey: The Institute of Electrical and Electronics Engineers, Inc.

Sart, D., A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul. 2010, Dec. “Accelerating Dynamic Time
Warping Subsequence Search with GPUs and FPGAs”. In Data Mining (ICDM), 2010 IEEE 10th
International Conference on, 1001–1006.

Vouzis, P. D., and N. V. Sahinidis. 2011. “GPU-BLAST: using graphics processors to accelerate protein
sequence alignment”. Bioinformatics 27 (2): 182–188.

4072

