
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

INTRODUCTION TO SAS SIMULATION STUDIO

Ed Hughes
Emily Lada

Phillip Meanor
Hong Chen

SAS Institute Inc.
100 SAS Campus Drive
Cary, NC 27513, USA

ABSTRACT

An overview is presented of SAS Simulation Studio, an object-oriented, Java-based application for building
and analyzing discrete-event simulation models. Emphasis is given to Simulation Studio’s hierarchical,
entity-based approach to resource modeling, which facilitates the creation of realistic simulation models
for systems with complicated resource requirements, such as preemption. Also discussed are the various
ways that Simulation Studio integrates with SAS and JMP for data management, distribution fitting, and
experimental design.

1 INTRODUCTION

SAS Simulation Studio is a SAS application that uses discrete-event simulation to model and analyze
systems. Simulation Studio is based on the Java programming language and is a flexible, general purpose,
object-oriented package designed to provide the necessary modeling and analysis tools for users ranging
from novice to advanced. To facilitate the construction of simulation models, a visual programming
environment based on a flow chart paradigm is provided, along with a programmatic interface for running
models in batch mode.

Simulation Studio provides a comprehensive set of model-building blocks and features; however, it is
not designed as a black box that takes model inputs and autonomously produces model outputs. Instead, it
includes features that enable you to customize your models and tailor them to meet your specific modeling
needs. One modeling feature in particular that can be easily customized in Simulation Studio is resource
management. In general, a resource is a system component that provides service. Examples of resources
in manufacturing systems include machines, operators, space in storage for finished products, cranes, and
forklifts. Resources in a hospital include nurses, doctors, operating rooms, and beds in a recovery room.
The users (or consumers) of resources are entities (Schriber and Brunner 1998). The available resources
in a model might be unlimited, limited, or fixed. In the latter cases, entities may be required to wait for
use of a resource. The number of available resource units may vary throughout a simulation run, perhaps
governed by a predefined schedule or random failure.

Resources are an essential part of most simulation models because they often control or restrict the
flow of entities. In Simulation Studio, resources may be modeled as special types of hierarchical entities
that can be seized and released by other entities to fulfill varying resource demands. Furthermore, resource
entities can be assigned attributes and can flow through the model. Using entity type and attribute values,
a specific resource entity can easily be located in a model, thereby giving the user fine-level control over
resource behavior, such as preemption.

4202978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Hughes, Lada, et. al

While an extensive collection of modeling tools is important in simulation software, advanced analysis
capabilities are critical as well. Because analyzing the data generated by discrete-event simulation models
often requires the use of advanced statistical methods, SAS Simulation Studio is designed to interact with
both SAS (SAS Institute Inc. 2013a) and JMP statistical discovery software (SAS Institute Inc. 2014b) for
analysis of simulation results. Data generated by a simulation model can easily be saved as a SAS data set
or a JMP table, and it is possible to run a SAS or JMP program and utilize its output during a simulation
run. Simulation Studio also integrates seamlessly with JMP for design of experiments and input analysis.

The purpose of this paper is to provide an overview of Simulation Studio and highlight its modeling and
analysis capabilities. In Section 2, an overview of Simulation Studio’s organizational structure is provided,
while Section 3 describes Simulation Studio’s hierarchical, object-based approach to resource management.
Section 4 highlights Simulation Studio’s data management and analysis capabilities, including distribution
fitting and experimental design. Section 5 summarizes the paper.

2 OVERVIEW OF SIMULATION STUDIO

The fundamental modeling objects in Simulation Studio include entities, data values, blocks, ports, and
links. During a simulation, entities and data values can travel among blocks to satisfy various processing
needs. Data values designate information such as numbers, character strings, and boolean values. Entities
are discrete objects that can traverse a simulation model and be assigned attributes, or properties. Simulation
Studio also enables the user to define new entity types possibly with their own default attributes, in which
the primary usage of each new type can be as either a regular entity or a resource entity. Both regular and
resource entities can be used to represent physical or conceptual components in a model, such as telephone
calls in a telecommunications system, customers in a retail store, or ships in a harbor.

In Simulation Studio, blocks are the most fundamental units used to build a model. Each block typically
encapsulates some well-defined and specialized functionality. Communication between blocks occurs via
input and output ports, classified as value ports and entity ports. For example, the OutLength output value
port on a Queue block communicates the length of the associated queue of waiting entities. In Simulation
Studio, the user creates a link between the ports on blocks to define a path for values or entities to flow
(SAS Institute Inc. 2013b). The OutLength port on a Queue block can be connected, for example, to an
input port of a Formula block so that the current queue length is used as part of an expression whose result
is used to route entities to different parts of the model.

After a model is built in Simulation Studio, an experiment is created to control the initialization and
running of the model. Simulation Studio includes an Experiment window that by default contains columns
for controlling the system parameters (start time, end time, and number of replications) for a model. The
Experiment window can also be used to control the initialization of block parameters, thereby providing
an efficient means for investigating the effects of different input parameters (or factors) on model outputs
(or responses).

Models and experiments in Simulation Studio are organized into projects. A project must contain
at least one model and one experiment but may contain multiple models and experiments. Projects also
provide a storage mechanism for factor and response definitions so that they can be shared across all models
and experiments in the project. When a model/experiment pair is executed, Simulation Studio must map
the factors and responses included in an experiment to specific block parameters in the model. This process
is accomplished using anchors, each of which defines the link between a factor or response defined on a
project and an actual block parameter in a specific model. This mapping technique provides an efficient
and effective means of reusing models and experiments, because multiple models can be linked to the same
experiment and a single model can be linked to multiple experiments.

4203

Hughes, Lada, et. al

3 MODELING RESOURCES IN SIMULATION STUDIO

For building models, Simulation Studio provides a comprehensive set of tools that includes standard blocks
for modeling fundamental concepts, such as queueing, switching (or branching), cloning, and batching.
In addition, Simulation Studio provides unique and highly flexible tools for modeling resources. Because
resources are a fundamental part of most simulation studies, we devote this section to an overview of
Simulation Studio’s resource modeling capabilities and, in particular, the use of both stationary and mobile
resource objects.

3.1 Stationary Resources

Entity holding blocks (such as Queue, Server, and Delay blocks) represent stationary resources in a
Simulation Studio model. These stationary resources are created at model-building time and are used to
model one type of resource. Holding blocks have a capacity (which may be infinite), and they hold or delay
entities for some period of time. Furthermore, entities may compete for available space in a holding block.
This contrasts with nonholding blocks (such as a Switch block) in which entities flow through without the
simulation clock advancing.

To illustrate the use of stationary resources, Figure 1 shows a Simulation Studio model of a bank lobby
in which there are three tellers and one queue for waiting customers. Customer arrivals to the bank are
modeled using an Entity Generator block (labeled Arriving Customers). A Numeric Source block (labeled
Interarrival Time) generates a sample from a specified distribution, and the Entity Generator block pulls
that value through its InterArrivalTime value port to schedule the arrival time of the next customer. When
an entity (representing a bank customer) leaves the Entity Generator block, it is pushed to a Queue block
(labeled FIFO Queue). The Queue block in this model has infinite capacity and a first-in-first-out queueing
discipline. When an entity arrives at the Queue block, it attempts to push the entity to a Server block
(labeled Tellers). The Server block has a specified capacity of three and represents the three bank tellers.
If a unit of the Server is available (that is, one of the bank tellers is idle), then the Server block accepts the
customer entity; otherwise, the entity waits in the Queue. When a unit of the Server becomes available, it
requests an entity from the queue. When an entity arrives at the Server block, a service time is sampled
from a Numeric Source block (labeled ServiceTime) and pulled by the Server through its InServiceTime
value port. Once the entity completes service, it is pushed out to the Disposer block (labeled Departing
Customers) and leaves the system.

In the model shown in Figure 1, there are two stationary resources: the Queue block (with infinite
capacity) and the Server block (with finite capacity). Each block holds entities for some time period and
represents one type of resource. Using a holding block such as a Queue or a Server block is the simplest
way to model resources in Simulation Studio. However, if the system being modeled has a complex
resource structure (perhaps so that several different types of resources are required simultaneously to fulfill
a demand), then mobile resources are needed.

3.2 Mobile Resources

Mobile resources, which are dynamic and created during the simulation run, are resource objects that flow
in the model. Mobile resources are a special type of entity (called a resource entity) and possess all of the
capabilities and attributes of regular entities. They can be processed and managed by the blocks for regular
entities. All resource entities in Simulation Studio have a predefined entity attribute named ResourceUnits,
which is the capacity (number of units) of the resource. In addition to the ResourceUnits attribute, each
resource entity also has run-time state information, such as seized status and resource state, that is used by
the simulation system to perform resource management during the run. From a user’s point of view, the
resource state can be either functional or nonfunctional.

Most importantly, functional resource entities fulfill resource requirements by being seized by other
entities (including other resource entities) in a simulation model. Once resource entities have been allocated

4204

Hughes, Lada, et. al

Figure 1: The banking system model in Simulation Studio using stationary resources.

and seized by a controlling entity, an entity hierarchy is formed with the controlling entity at the top level
and each seized resource at the next level. The controlling entity then typically continues to flow through
the model, along with its seized resource entities. In Figure 2, an alternative Simulation Studio model of
the same bank lobby system described in Figure 1 is shown. Recall that in the model in Figure 1, the
bank tellers are modeled as a stationary resource (a Server block), unable to flow or move through the
model. In Figure 2, the bank tellers are modeled as resource entities, created at model run-time. An Entity
Generator block (labeled Create Teller) generates three resource entities (one for each teller) at time zero
and sends those entities to a Resource Pool block (labeled Teller Pool) to wait until needed. The arrival
of customers to the bank is modeled in the same way as in Figure 1. However, as shown in Figure 2, a
Seize block (labeled Seize Teller), a Resource Pool block (Teller Pool), a Delay block (Hold Teller), and
a Release block (Release Teller) work together to reproduce the functionality of the Server block in the
model in Figure 1.

When a customer entity arrives at the FIFO Queue block, the Queue block notifies the Seize block
(labeled Seize Teller) that a customer is waiting. The Seize block then checks to see if a bank teller resource
entity is available in the Resource Pool block. If one is not available, then the customer entity remains in
the queue. If a bank teller resource entity is available, the Seize block accepts the customer entity from
the Queue block, pulls a bank teller resource entity from the Resource Pool block, and attaches it to the
customer entity, forming a hierarchy of entities. As the customer entity flows through the simulation model,
it brings the teller resource entity along with it. After seizing a teller resource entity, the customer entity
is sent to a Delay block (labeled Hold Teller) where it is held (along with the teller resource entity) until
its service is completed. It is then routed to a Release block where the teller resource entity is extracted
from the customer entity. The two entities flow out of different ports on the Release block and are sent to
different locations: the customer entity is routed to a Disposer block (labeled Departing Customers) and
the teller resource entity is routed back to the Resource Pool block, where it waits to be seized by another
customer entity.

A hierarchical entity-based approach to resource modeling greatly facilitates the modeling of scenarios
that require multiple types of resources simultaneously. Any entity (including a resource entity) can seize
multiple resources of different types simultaneously and then release them (perhaps partially) as needed.
For this simple banking system, using a stationary resource (that is, a Server block) to model the bank
tellers is sufficient, and mobile resources are not really required. However, suppose at some point a bank
teller requires the assistance of a manager in order to service a customer. For this scenario, the bank

4205

Hughes, Lada, et. al

Figure 2: The banking system model in Simulation Studio using mobile resources.

tellers must be modeled as mobile resource entities as in Figure 2. After seizing a teller resource entity,
a customer entity could then seize a manager resource entity. Following a delay (representing service
time), the customer entity could then release both the teller resource entity and the manager resource entity
simultaneously, or it could release them at different points in the model. Because the released resources are
also entities, each can flow either to a holding block (like a Resource Pool) to wait to be seized by another
entity or to other blocks in the model before returning to a Resource Pool block. For example, suppose a
teller needs to complete clerical work before assisting the next customer. This scenario is easily modeled
in Simulation Studio by sending the teller resource entity to a Delay block (representing the clerical work
completion time) before sending it back to a Resource Pool where it can subsequently be seized by another
customer entity.

Even though the individual resource entities may be scattered throughout the model during a simulation
run, it is fairly easy to locate a specific resource entity using resource entity rules, which are defined using
entity characteristics such as type and attribute values. Once the resource entity is located, its state or
capacity can be adjusted as needed according to a specified resource schedule, or it can be allocated to
another entity to fulfill a demand.

3.3 Preemption

Simulation Studio supports two types of resource preemption: priority-based and scheduled. Priority-based
preemption is used primarily for preempting entities occupying stationary resources (entity holding blocks),
including the Queue, Server, and Delay blocks. An entity attempting to enter a holding block is considered
to be a consumer of the stationary resource represented by that block. Allocation of stationary resources
usually involves the acceptance of entering entities into the holding block to occupy space. Preemption of
stationary resources forces out one or more entities currently holding a space in the block. The preempted
entity is pushed out a dedicated OutPreempt port and can be routed to any part of the model, as dictated
by the system logic. For example, an entity preempted from a Server block can be routed first to another

4206

Hughes, Lada, et. al

block that computes its remaining processing time and then back into a queue to wait for space in the
Server block to complete its processing time.

To handle priority-based preemption, Simulation Studio provides an Entity Group object that is a
collection of entity references. An entity reference contains information that uniquely identifies a particular
entity. Thus, an Entity Group holds information about a collection of entities, but not the actual entities
themselves. Each Simulation Studio holding block has an OutHoldings port that other blocks can use to
access an Entity Group object that contains a collection of references to entities held by the block. The
Simulation Studio holding blocks also each provide an InPreempt port that accepts an Entity Group object
as input. These blocks compare the entity references in the Entity Group object to the entities currently
held by the block and preempt any matches. With this design, it is possible to preempt any number of
units of a stationary resource. Also, determining which entities to preempt from service is specific to the
system being modeled, and the Entity Group construct allows the user to control exactly which entities are
preempted.

Scheduled preemption is used for preempting mobile resources (resource entities) and is based on the
requirements of a resource schedule. Within a defined resource schedule, the user indicates whether a
capacity or state change should be preemptive. Resource entity rules can be specified as part of a schedule
to precisely indicate which resource entities (according to type and attribute values) the schedule should
be applied to. Sometimes an allocated and seized resource entity needs to be preempted from its current
controlling entity because (i) the resource entity needs to be reallocated to a different controlling entity, (ii)
the resource entity needs to be sent to some other part of the model for processing, or (iii) the resource entity
has a scheduled capacity reduction or state change. The entity holding blocks provide an OutResource
output port for routing the preempted resource entity so that the user can decide (through modeling) how
to handle the post-processing of preempted entities.

4 DATA INPUT, COLLECTION, AND ANALYSIS

The subject matter of a simulation investigation or the sophistication of a model often dictates what type
of data needs to be collected from each simulation run and the amount of data required to perform an
appropriate analysis. Simulation Studio is well-integrated with both SAS and JMP to take advantage of
the rich and powerful data processing and analysis capabilities available in each package. In this section,
we provide an overview of the various ways in which Simulation Studio interacts with both SAS and JMP
for data management, distribution fitting (input analysis), and experimental design.

4.1 Input Data Management

Simulation Studio provides two special data object types to manage the collection of data during a simulation
run. The first, a data model object, can be viewed as an in-memory representation of a SAS data set or
JMP table during a simulation run. It contains information and/or values specified in rows, columns, and
cells. The second type, an observation object, represents one row from a data model object. It can be
viewed as the simulation-time representation of a data observation from a SAS data set or a data row from
a JMP table. The data model and observation objects are used in Simulation Studio blocks to represent data
for various access and collection tasks. For example, the Dataset Holder block can be used as a holding
facility for a data model object, making it useful for matrix computations, as well as for modeling scenarios
that require repeated access to a data set (or look-up table) to perform a particular computation. During
a simulation run, the contents of a data model object (such as individual data cell values and observation
objects) stored in a Dataset Holder block can be pulled through user-defined output ports and passed to
other blocks in the model.

In a Simulation Studio model, the Numeric Source, Text Source, and Observation Source blocks can be
used to input data to a model. The Numeric Source and Text Source blocks can be used to read a column
of numbers or strings from a SAS data set or JMP table, while the Observation Source block provides a

4207

Hughes, Lada, et. al

stream of data observation (row) objects from a SAS data set or JMP table. For example, the Observation
Source block can be used to read the rows from a data set and either assign an entire row as attributes on
an entity or assign a subset of the data cell values in the row as attributes. The Observation Source block
can also be used to read in an entire SAS data set or JMP table.

Figure 3: The machining center model in Simulation Studio using the Dataset Holder block.

Figure 3 shows a Simulation Studio model of a machining center in which an Observation Source
block (labeled Read Dataset) reads in a SAS data set and stores it in a Dataset Holder block for use as a
look-up table indicating the routing of parts of various types through the stations in the machining center.
In this system, each part type is processed in a distinct sequence at some or all of four different stations.
In this example, a Dataset Holder block with one user-defined output port (located at the bottom right of
the Dataset Holder block) is used to hold the machining sequence data set, which is displayed by using
a Table block (located at the bottom left of Figure 3). The data set value that is pulled from the bottom
right output port is a particular cell value based on part type; it indicates the next station in the processing
sequence. In this example, the Dataset Holder block holds a data set that is used repeatedly by all entities.
An alternative is to store the information in the machining sequence data set as entity attributes, but that
would result in the same data being stored multiple times. The Dataset Holder block enables the data to
be stored once and accessed as needed for each part type.

4.2 Output Data Storage and Analysis

Simulation Studio has a number of blocks that can accumulate data and store it as a data model object. A
data model can be accessed by other blocks in the simulation model via an OutData port. For example, a
plot or table block can be connected to the OutData port of a Queue Stats Collector block to visually display
the queue statistics (such as average waiting time) while the simulation model is running. The contents
of a data model can also be saved at the end of a run as a SAS data set or a JMP table. Furthermore, a
Dataset Writer block can be used to save the contents of a data model object as either a SAS data set or a
JMP table at any point during a simulation run. The data saving operation is triggered by a Boolean signal
that is sent to the Dataset Writer block from another block in the model.

4208

Hughes, Lada, et. al

In addition to the data collection blocks, Simulation Studio includes a SAS Program block that can be
used to execute a SAS program or a JMP script at any point during a simulation run. For example, in a
simulation model of an inventory system, it may be necessary to update a production plan data set based
on the current state of the system. If the number of backlogged orders exceeds a certain level, a SAS
Program block can be signaled to execute a SAS program that generates a new production plan data set
that is used to set production levels downstream in the model.

4.3 Input Analysis

The process of building a simulation model may include the need to identify probability distributions that
faithfully represent the behavior of the random input processes driving the system under study. Given a
data set of values that represent observations of a particular random input process, it is first necessary to
identify an appropriate distribution family and then estimate the corresponding distribution parameters. The
accuracy of the simulation results depends on the quality of the distribution fit, making input modeling one
of the critical problems in the design and construction of a simulation model. The automatic distribution-
fitting procedure of JMP provides a list of candidate distributions and corresponding estimated parameters
for a specified data set. The distribution fits are ranked using the Akaike information criterion (Akaike
1974). Simulation Studio is integrated with JMP for input modeling capabilities so that the JMP automatic
distribution-fitting procedure can be easily accessed through the Numeric Source block in Simulation Studio.

Figure 4 shows the results of JMP automatic distribution fitting applied to a column of data labeled
bvar. The first distribution listed in the Compare Distributions section of the output (Weibull) is
the top-ranked fit. After analyzing the fit results in JMP and selecting a distribution, the Commit to
Simulation Studio button can be used to pass the selected distribution and its parameter values back
to a Numeric Source block in Simulation Studio.

4.4 Design of Experiments

After building a simulation model and ensuring the system under investigation is accurately reflected, a
typical next step is to systematically study the impact of various model input parameters on the simulation
output. Experimental design techniques can be used to generate an efficient and effective plan to guide your
simulation runs. Generating an experimental design begins by defining the input parameters, or factors,
for a particular model. Possible factors for a simulation experiment might include staffing levels, rates
of work, or maximum lengths for queues. In general a simulation experiment may have many factors
and each factor is defined on a range of values, called levels. Next the simulation performance measures,
or responses, are defined. Examples of responses include average waiting times in queues, utilization of
resources, and total cost.

A design is a matrix in which each column corresponds to a factor and each row (called a design point)
corresponds to a particular combination of factor levels. Examples of classic experimental designs include
factorials, fractional factorials, central composite, and Latin hypercube. After establishing a design, the
simulation model is run for each design point and values of the responses are recorded. The primary goals
of experimental design are (i) to identify those factors that have the greatest impact on the responses; (ii)
to categorize the nature of the impact of a particular factor on the responses (for example is the effect
increasing, linear, or quadratic); and (iii) to determine if factor interactions exist, that is, to determine if
the levels of some factors influence the effects that other factors have on the responses (Sanchez and Wan
2009).

Once the factors and responses are defined in Simulation Studio for a particular model, JMP can be
used to generate an experimental design. Simulation Studio interfaces with JMP so that given the factor and
response definitions, a default design is created by the JMP custom designer (SAS Institute Inc. 2014a) and
automatically passed back to the Experiment window in Simulation Studio. The user can alter the default
JMP design by adding, for example, additional design points, replicates, or interaction terms. Figure 5

4209

Hughes, Lada, et. al

Figure 4: Automatic distribution-fitting in JMP.

4210

Hughes, Lada, et. al

shows the Experiment window for a model of a repair shop. The three factors (yellow columns) denote
staffing levels at the Quality Control, Repair, and Service locations. The responses (pink columns) include
the number of units fixed and the average wait at the Quality Control, Repair, and Service locations.
The default design generated by JMP has 12 design points and five replications are run for each design
point. Design point number 4 has been expanded to show the results for each of its five replications.
The remaining design point rows display the average for each response over the five replications. After
running an experiment, the results (that is, the entire contents of the Experiment window) can be passed
directly back to JMP for analysis. For example, the simulated results can be used to estimate a statistical
model, which in turn can be used to determine optimal levels of the factors so that a particular response is
maximized or minimized. The results can also be saved as a SAS data set or a JMP table for later analysis.

Figure 5: An experimental design in the Simulation Studio Experiment window.

5 RUNNING A MODEL

Before you can run your simulation model, you must select an active model and an active experiment,
and the active experiment must have at least one design point selected or highlighted in the Experiment
window. Although a project can have multiple models and experiments associated with it and multiple
windows visible in the Project window, only one model and one experiment are considered active at any
particular time. After you have a valid model and experiment selected (that is, active), you can start the
simulation running by selecting the Start icon on the toolbar or by selecting Start from the Run menu.
As a model is executing, a progress bar is displayed and animated in the upper right corner of the SAS
Simulation Studio window. The progress bar displays the percentage of the total number of replications
across all selected design points that have completed execution.

If you are building and running a simulation model on a machine that has a multicore processor, then
in SAS Simulation Studio 13.2 you can select the Parallel Mode option from the Run menu or select the
corresponding toolbar icon to improve the run-time performance of the model. When you select parallel
mode, different design points and replications are distributed on different cores simultaneously. The actual
distribution of design points and replications depends on the number of cores available along with the
number of design points and replications that you have selected to run. If you do not select parallel mode,
then a single core is used to run the model. In parallel mode, the progress bar displays the percentage
of replications that have completed execution, and you can use the run-time commands Start, Pause,
Augment, and Reset in the same way as in nonparallel mode.

4211

Hughes, Lada, et. al

6 CONCLUSIONS

SAS Simulation Studio is an object-oriented, Java-based application for discrete-event simulation that
features a hierarchical, entity-based approach to resource management. These resource entities can be
processed by the modeling blocks for regular entities, and they can be seized by other entities to fulfill
resource demands. There are many advantages to an entity-based approach, including greater control over
complicated resource management issues such as scheduling and preemption.

SAS Simulation Studio is closely integrated with SAS and JMP for data management and analysis
capabilities. Special data model and observation objects are used to manage the collection of data during
a run and facilitate the inputting of SAS data sets or JMP tables to a model. Data model objects can be
saved as either a SAS data set or JMP table at any point during a simulation run. To systematically study
the effect of specific input parameters on the simulation model output, experimental designs can be created
in JMP and passed back to the Experiment window in Simulation Studio. JMP can also be used to fit a
distribution to a specified data set, and the distribution, along with the corresponding estimated parameters,
can easily be passed back to Simulation Studio for use as a model input.

SAS Simulation Studio is available as a component of SAS/OR software for operations research and
is also available separately as an add-on to JMP. SAS Simulation Studio is supported on 32-bit and 64-bit
Microsoft Windows platforms.

REFERENCES

Akaike, H. 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic
Control AC-19 (6): 716–723.

Sanchez, S. M., and H. Wan. 2009. “Better Than a Petaflop: The Power of Efficient Experimental Design.”
In Proceedings of the 2009 Winter Simulation Conference, edited by M. D. Rossetti, R. R. Hill, B.
Johansson, A. Dunkin, and R. G. Ingalls, 60–74. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

SAS Institute Inc. 2013a. SAS 9.4 Language Reference: Concepts.
SAS Institute Inc. 2013b. SAS Simulation Studio 13.1: User’s Guide.
SAS Institute Inc. 2014a. JMP 11 Design of Experiments Guide.
SAS Institute Inc. 2014b. Using JMP 11, Second Edition.
Schriber, T. J., and D. T. Brunner. 1998. “How Discrete-Event Simulation Software Works.” In Handbook

of Simulation, edited by J. Banks, 765–811. New York: John Wiley & Sons, Inc.

AUTHOR BIOGRAPHIES

ED HUGHES is a product manager at SAS Institute Inc. He is a member of INFORMS and his e-mail
address is Ed.Hughes@sas.com.

EMILY LADA is a research and development team lead at SAS Institute Inc. She is a member of INFORMS
and her e-mail address is Emily.Lada@sas.com.

PHILLIP MEANOR is a research and development manager at SAS Institute Inc. His e-mail address is
Phillip.Meanor@sas.com.

HONG CHEN is a software developer at SAS Institute Inc. His e-mail address is Hong.Chen@sas.com.

4212

