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ABSTRACT

In this article we consider the efficient estimation of the tail distribution of the maximum of correlated

normal random variables. We show that the currently recommended Monte Carlo estimator has difficulties

in quantifying its precision, because its sample variance estimator is an inefficient estimator of the true

variance. We propose a simple remedy: to still use this estimator, but to rely on an alternative quantification

of its precision. In addition to this we also consider a completely new sequential importance sampling

estimator of the desired tail probability. Numerical experiments suggest that the sequential importance

sampling estimator can be significantly more efficient than its competitor.

1 INTRODUCTION

Let XXX be a d-dimensional random variable with an N(a,Σ) distribution and corresponding multivariate

normal density φ(xxx;aaa,Σ). In this paper we focus on techniques to efficiently estimate the tail distribution

ℓ(γ)
def
= P

(
max

i∈{1,...,d}
Xi > γ

)
,

in the asymptotic regime that γ grows large. This problem arises, for example, in dealing with Gaussian

random fields in the physical sciences, but in various other application domains as well; see e.g. Adler and

Taylor (2009), Adler et al. (2012), and Mandjes (2007), and the references therein.

Recently, Adler et al. (2008) and Blanchet et al. (2011) proposed an ingenious strongly efficient

estimator for ℓ(γ). Their idea is to recognize that, under the condition that, for all pairs of distinct i, j in

{1, . . . ,d}, P(Xi > γ |X j > γ) = o(1) as γ ↑ ∞ (which applies when Corr(Xi,X j)< 1; we comment on this

later), the inclusion-exclusion formula implies that (throughout the paper x = o(y) stands for limy↑∞ x/y = 0

and x = O(y) stands for limsupy↑∞ |x/y|< ∞)

ℓ(γ) = P

(
d⋃

i=1

{Xi > γ}
)

=
d

∑
i=1

P(Xi > γ)+O

(
∑
i< j

P(Xi > γ,X j > γ)

)
, γ ↑ ∞.
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The next step is to realize that, with Φ denoting the complementary cdf of the N(0,1) estimator, the

marginal probabilities

αi(γ)
def
= P(Xi > γ) = Φ

(
γ−ai√

Σii

)
, i = 1, . . . ,d,

are known (i.e., can be efficiently evaluated with arbitrary precision). As a consequence, the value

α(γ)
def
=

d

∑
i=1

P(Xi > γ)

is also easily computable. These observations suggest the following mixture importance sampling density,

with φ(xxx−i |xi;aaa,Σ) defined in the obvious way:

m(xxx) =
φ(xxx;aaa,Σ)∑

d
i=1 I{xi > γ}

α(γ)

=
d

∑
i=1

wi

φ(xi;ai,Σii)I{xi > γ}
αi(γ)

φ(xxx−i |xi;aaa,Σ), where wi
def
=

αi(γ)

α(γ)
.

It is then straightforward to verify that the resulting importance sampling estimator, with XXX ∼ m(xxx),

ℓ̆=
α(γ)

∑
d
i=1 I{Xi > γ}

is a vanishing relative error one in the sense that, as an immediate consequence of the fact that the likelihood

ratio is bounded from above by α(γ),

Varm(ℓ̆)

ℓ2(γ)
=

Em[ℓ̆
2]

ℓ2(γ)
−1 6

α2(γ)

ℓ2(γ)
−1 = o(1), γ ↑ ∞;

here Em[·] and Varm(·) denote the expectation and variance operators with respect to the density m(·).
In practical simulations Adler et al. (2008), Blanchet et al. (2011) estimate the precision by generating

n independent realizations of ℓ̆, namely ℓ̆1, . . . , ℓ̆n, and then computing the corresponding sample variance

S2
n =

1

n

n

∑
i=1

(ℓ̆i− ℓ̄)2,

where ℓ̄= (ℓ̆1 + · · ·+ ℓ̆n)/n. Ideally, Sn/(ℓ̄
√

n) would then yield a consistent estimator of the relative error

of the sample mean ℓ̄ and in numerical experiments we would report either the pair ℓ̄ and Sn/(ℓ̄
√

n), or

(say) the 95% approximate confidence interval ℓ̄±1.96×Sn/
√

n.

Despite the vanishing relative error property of ℓ̄, the practical performance of its error estimate

Sn/(ℓ̄
√

n) is problematic, because S2
n is not a reliable and efficient estimator of the true variance of ℓ̄.

More often than not, the pair ℓ̄ and S2
n does not provide any more useful information than the asymptotic

approximation α(γ), because with very high probability ℓ̆i = α(γ) for all 1 = 1, . . . ,n, and hence S2
n = 0,

resulting in severely underestimating the true variance of ℓ̄.
In this article we formally prove (Section 2) that the sample variance estimator S2

n is inefficient, in the

sense that its relative error diverges. This has motivated us to advocate a simple remedy to this problem:

we propose estimating or bounding the variance of ℓ̄ using an estimator different from the inefficient S2
n.

As a consequence, it is now always possible to quantify the accuracy of the estimator ℓ̄.
In addition to this simple remedy, we also investigate a new sequential importance sampling estimator

(Section 3), whose likelihood ratio is a smooth function. The advantage of having a smooth likelihood

ratio in the current context is that the corresponding sample variance estimator will deviate from zero.
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On the down side, we do not provide a formal proof of the efficiency (or inefficiency, for that matter) of

the sample variance of the sequential importance sampling estimator. Nevertheless, numerical experiments

(Section 3.3) indicate that the sequential importance sampling estimator provides a reliable error estimate,

and can achieve (in representative examples) a variance reduction over ℓ̄ of the order O(1012) .

2 QUANTIFYING THE PRECISION

The reason why it is difficult to quantify the precision of ℓ̄ using S2
n is a direct consequence of the following

result. It entails that estimating the variance for large γ via S2
n is impractical.

Proposition 2.1 (Inefficiency of Sample Variance of ℓ̆). Let S2
n be the sample variance based on n independent

replications of ℓ̆. Then,

liminf
γ↑∞

Varm(S
2
n)

Var2
m(ℓ̆)

= ∞.

Proof: Define by N the number of entries of XXX larger than γ:

N
def
=

d

∑
i=1

I{Xi > γ},

so that ℓ(γ) = P(N > 1). Next, we define βi, j(γ) = P(Xi > γ,X j > γ) and β (γ) = ∑i< j βi, j so that the

residual α(γ)− ℓ(γ) satisfies

r(γ)
def
= α(γ)− ℓ(γ) = β (γ)+o

(
∑
i< j

P(Xi > γ,X j > γ)

)
.

Note that it holds that ℓ(γ) = Θ(α(γ)), which means that both ℓ(γ) = O(α(γ)) and α(γ) = O(ℓ(γ)) are

valid. In addition, r(γ) = o(α(γ)); P(N > 1) = Θ(r(γ)); and Pm(N = 1) = P(N = 1)/α(γ) = Θ(1).
Using these properties, we obtain by distinguishing between the possible values of N ∈ {1, . . . ,d}, that

the k-th centered moment (for any k > 1) of ℓ̆ can be written as

Em

∣∣ℓ̆− ℓ(γ)
∣∣k =

d

∑
j=1

Em

[∣∣ℓ̆− ℓ(γ)
∣∣k I{N = j}

]

= |α(γ)− ℓ(γ)|kPm(N = 1)+
d

∑
j=2

∣∣∣∣
α(γ)

j
− ℓ(γ)

∣∣∣∣
k

Pm(N = j)

= rk(γ)Pm(N = 1)+Θ(αk)Pm(N > 1)

= rk(γ)Pm(N = 1)+Θ(αk−1)P(N > 1)

= Θ

(
rk(γ)

)
+Θ

(
αk−1r(γ)

)
.

Therefore, for the relative error of S2
n given in equation 9 of L’Ecuyer et al. (2010) we obtain (abbreviating

for the moment r = r(γ))

nVarm(S
2
n)

Var2
m(ℓ̆)

=
Em(ℓ̆− ℓ(γ))4

[Em(ℓ̆− ℓ(γ))2]2
−1+

2

n−1

=
Θ(r4)+Θ(α3r)

Θ(r4)+Θ(αr3)+Θ(α2r2)
+O(1)

The first term diverges, because r(γ) = o(α(γ)) implies that the denominator converges to zero faster than

the numerator; in fact, the relative error grows at the rate α/r. ✷
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Even though the relative error diverges, one can still hope that the growth would be at a very slow rate.

Unfortunately, this is not the case. Assume, for example, that all pairs (Xi,X j) are jointly normal with zero

mean, Var(Xi) = Var(X j) = 1, and Corr(Xi,X j) = ρi, j < 1, then using the results in Hashorva and Hüsler

(2003) we can easily show that, for ease writing ρ = ρi, j,

βi, j = P(Xi > γ,X j > γ)≃ (1+ρ)2

2π
√

1−ρ2 γ2
exp

(
−γ2

2

2

1+ρ

)
, γ ↑ ∞ .

In other words,
βi, j

α j

= P(Xi > γ |X j > γ)≃ (1+ρ)2

√
2π(1−ρ2) γ

exp

(
−γ2

2

1−ρ

1+ρ

)
(1)

and from r =Θ(∑i< j βi, j) we conclude that the relative error of S2
n grows at the exponential rate c1γ exp(c2γ2)

for some strictly positive constants c1,c2.

Example 2.1 (Positive Correlation). To illustrate the failure of S2
n as an estimator, consider the case with

aaa = 0 with covariance matrix with entries Σi, j = exp(−|i− j|) for d = 103. Table 1 below shows that S2
n

is only nonzero when γ is small, and that it fails as an estimator for γ > 5.5. In fact, for the precision

considered in this simulation, the estimator ℓ̄= α for γ > 5.5.

Table 1: Estimates of ℓ, using n = 103 and d = 103.

γ α(γ) ℓ̄ Sn/(ℓ̄
√

n) κ

3 0.73 0.0165 0.036 0.036

4 0.0316 0.0311 0.0029 0.0046

5 0.0002866 0.0002865 0.00050 0.00078

5.5 1.899×10−5 1.899×10−5 0 0.00037

6 9.8659×10−7 9.8659×10−7 0 0.00018

6.5 4.0160×10−8 4.0160×10−8 0 8.2×10−5

7 1.2798×10−9 1.2798×10−9 0 3.6×10−5

7.5 3.1908×10−11 3.1908×10−11 0 1.5×10−5

8 6.22096×10−13 6.22096×10−13 0 6.0×10−6

9 1.128588×10−16 1.128588×10−16 0 8.0×10−7

10 7.6198530×10−21 7.6198530×10−21 0 8.5×10−8

Note that in this example the covariance matrix has positive correlation structure, which is beneficial for

the performance of the estimator S2
n, as seen from (1). For a negative correlation matrix, the performance

of S2
n is even worse. The last column shows κ , which is an alternative estimator of the true relative error,

which we introduce below. ✷

Given the problem with quantifying the error of the estimator ℓ̄, a natural way to proceed is to attempt

to modify ℓ̆ so that we do observe some variability during the course of the simulation. One such idea is the

undershooting adaptation investigated by Blanchet et al. (2011) for completely different reasons (relating

to the discretization of Gaussian random fields), but which may be helpful in our context as well. The idea

is to sample from the modified importance sampling density which undershoots by ε , say ε = 1/γ:

mε(xxx) =
φ(xxx;aaa,Σ)∑

d
i=1 I{xi > γ− ε}

∑
d
i=1P(Xi > γ− ε)

=
φ(xxx;aaa,Σ)∑

d
i=1 I{xi > γ− ε}
αε(γ)

and then use the importance sampling estimator

ℓ̆ε = αε(γ)
I{maxi Xi > γ}

∑
d
i=1 I{Xi > γ− ε}

.
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With a suitable choice of ε , this modification introduces some variability in ℓ̆ε , but at a significant loss of

efficiency. For example, for γ = 10 in Table 1 one can at most obtain an accuracy of one significant figure

for the same simulation effort. Observe, however, that it does not seem logical to use an expensive Monte

Carlo estimator to obtain a mediocre accuracy of one or two significant figures when the simple asymptotic

approximation α is already accurate at least to seven significant figures (where we again refer to the κ
column in Table 1). Summarizing, the estimator ℓ̆ should not be tampered with, because it already provides

a nice transition from a Monte Carlo estimate (for small γ) to a very accurate deterministic estimate α (for

large γ). The estimator is efficient, but the problem is that we simply do not know how efficient it is. The

remedy we propose in this paper, is that we advise to use an upper bound on the relative error.

To find how efficient ℓ̆ is, one can consider the following upper bound on the relative error (writing

for ease ℓ for ℓ(γ)):

nVar(ℓ̄)

ℓ2
=

α(γ)

ℓ2
E

[
I{N > 1}

N

]
−1

6
α(γ)

ℓ2
P(N > 1)−1

6
α(γ)

ℓ
−1 =

α(γ)− ℓ

ℓ(γ)
6

β (γ)

ℓ
,

where β (γ)
def
= ∑i< j P(Xi > γ,X j > γ). Thus, if we knew β (γ), we can use κ

def
=
√

β (γ)/(ℓ̄n) as our estimate

for the relative error of ℓ̄. This is the value displayed in the last column of Table 1.

Note that there are deterministic quadrature algorithms for the computation of each βi j; see, for example,

Drezner and Wesolowsky (1990). Thus, in principle, β (γ) is computable in O(d2) time, which is acceptable

since the simulation of XXX requires O(d3) time — the complexity of the Cholesky decomposition of the

matrix Σ.

3 SEQUENTIAL IMPORTANCE SAMPLING ESTIMATOR

As mentioned in the previous section, there is no point in considering an alternative to the already quite

good ℓ̆, unless the new estimator is at least as efficient as ℓ̆ and provides an error estimate. In this section

we provide one such alternative estimator. The new estimator also enjoys vanishing relative error, and in all

numerical experiments that we performed it turned out to be more accurate than ℓ̆. The proposed estimator

is based on the following splitting of the event into d components (Kroese et al. 2011, Page 396):

ℓ(γ) = P

(
max

i∈{1,...,d}
Xi > γ

)
=

d

∑
i=1

P

(
Xi > γ,Xi > max

k 6=i
Xk

)
=

d

∑
i=1

P(APi XXX > lll) ,

where Pi is a permutation matrix that swaps the i-th entry with the first entry, and

A
def
=




1 0 · · · · · · 0

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
. . .

. . .
...

1 0 · · · 0 −1



, lll

def
=




γ

0
...

0


 (2)

Since APi(XXX−aaa)∼ N(0,APiΣP⊤i A⊤) we can write

P(APi XXX > lll) = P(LiZZZ > llli), ZZZ ∼ N(0, I),
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where llli = lll−APi aaa; the matrix Li is the L factor in the LQ matrix decomposition (Golub and Van Loan

2012) of the covariance

LiL
⊤
i = APiΣP⊤i A⊤

We insist that Li has nonnegative entries down the main diagonal so that, whenever Li is full rank, it

coincides with the Cholesky factor of LiL
⊤
i .

We propose to estimate the probabilities pi = P(LiZZZ > llli) separately. Suppose p̂i is an unbiased Monte

Carlo estimator of pi constructed from a sample size of ni, and with variance Var(p̂i) = σ2
i /ni. Our goal

now is to estimate ℓ via ℓ̂= ∑i p̂i, using a total computational budget of n = ∑i ni. We choose

ni
def
=

⌈
n× αi(γ)

α(γ)

⌉
∧3,

that is, ni ∝ αi, for reasons that will be discussed later. All that remains to make ℓ̂ a viable estimator is to

explain how we estimate a generic probability of the form p = P(LZZZ > lll), where L is lower triangular.

We use the sequential Monte Carlo method of Genz and Bretz (2009). The method relies on the

observation that the set {zzz : Lzzz > lll} can be written as the intersection of

z1 > l̃1
def
=

l1

L11

, z2 > l̃2
def
=

l2−L21z1

L22

, · · · , zd > l̃d
def
=

ld−∑
d−1
j=1 Ld jz j

Ldd

This decomposition suggests the sequential importance sampling pdf: g(zzz) = g(z1)g(z2 |z1) · · ·g(zd−1 |zd)
with

g(zi |z1, . . . ,zi−1) =
φ(zi;0,1)I{zi > l̃i}

Φ(l̃i)
,

where Φ(·) is, as before, the tail distribution of the standard normal. Thus, conditional on all preceding

variables, each Zi is drawn from a truncated normal density. The resulting importance sampling estimator

of p = P(LZZZ > lll) based on a single simulation is

V =
φ(ZZZ;0, I)

g(ZZZ)
= exp

(
d

∑
i=1

lnΦ

(
li−∑

i−1
j=1 Li jZ j

Lii

))
, ZZZ ∼ g(zzz) (3)

We can now summarize the main ingredients of the proposed algorithm.

Algorithm 1 : Estimating ℓ(γ) = P(maxi∈{1,...,d}Xi > γ) with XXX ∼ N(aaa,Σ).

Require: parameter γ; d×d covariance Σ; mean aaa; sample sizes {ni} such that ∑
d
i=1 ni = n.

for i = 1, . . . ,d do

2: Let Pi be a permutation matrix swapping the i-th element with the first element.

llli← lll−APi aaa, where A,lll are defined in (2).

4: Compute the lower triangular factor Li such that LiL
⊤
i = APiΣP⊤i A⊤.

Simulate ni independent replications of (3), V1, . . . ,Vni
.

6: p̂i← 1
ni

∑ j Vj, so that E[p̂i] = P(Li ZZZ > llli)

σ̂2
i ← 1

ni
∑ j(Vj− p̂i)

2

8: ℓ̂← ∑i p̂i

return ℓ̂ and its estimated relative error

√
∑i σ̂2

i /ni

/
ℓ̂.

In the following two subsections we comment on two issues: (1) the efficiency of the newly constructed

estimator ℓ̂ as γ ↑∞, and the concomitant choice ni ∝ αi/α , and (2) the efficient computation of the factors

L1, . . . ,Ld .
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3.1 Efficiency And Strata Sample Sizes

First note that pi ≃ αi(γ), in the sense that

αi(γ)> pi = αi(γ)−αi(γ)P

(
max
k 6=i

Xk > Xi |Xi > γ

)

> αi(γ)−αi(γ)P

(
max
k 6=i

Xk > γ |Xi > γ

)
= αi(γ)× (1−o(1)).

Next, observe that (3) can be rearranged as

V

P(L11Z1 > γ)
=

d

∏
i=2

Φ

(
li−∑

i−1
j=1 Li jZ j

Lii

)
6 1.

In other words, all the p̂i s can be written as p̂i = αi(γ) q̂i where q̂i 6 1 is an unbiased estimator of the

conditional probability P(maxk 6=i Xk < Xi |Xi > γ). Therefore,

niVar( p̂i) = σ2
i 6 αi(γ) pi− p2

i

Then, ∑i pi = ℓ(γ) ≃ α(γ) and pi ≃ αi(γ) in combination with ni ≃ n×αi(γ)/α(γ) imply a vanishing

relative error estimator:

nVar(ℓ̂)

ℓ2
=

n∑i σ2
i /ni

ℓ2

≃ α(γ) ∑i σ2
i /αi(γ)

ℓ2

6
α(γ)∑i pi

ℓ2
− α(γ)∑i p2

i /αi(γ)

ℓ2
= o(1).

3.2 Computation Of L1,L2, . . . ,Ld in O(d3) Time

At first examination, it would seem that in Step 4 of Algorithm 1 we need to compute each lower triangular

factor Li from scratch at a cost of O(d3), and since this step is inside a loop of length d, the running time

of the algorithm would be O(d4). But in fact, the computation of all the d lower triangular factors can still

be accomplished in O(d3) time, as we point out now. Let

C1C⊤1 = P1 ΣP1 = Σ

be the standard Cholesky decomposition of the unpermuted covariance Σ. Set Q1 = I, so that C1Q1 is the

LQ decomposition of C1 (or equivalently Q⊤1 C⊤1 is the QR decomposition of C⊤1 ). The computation of C1

takes O(d3) operations.

Given C1 we wish to compute the Cholesky decomposition CiC
⊤
i of the permuted covariance matrix

Pi ΣP⊤i = (PiC1)(PiC1)
⊤

in O(d2) operations. To this end, let ei denote the unit column vector with one in the i-th position and ci

denote the i-th row of C1. Then, we can express PiC1 as a rank one perturbation of matrix C1:

PiC1 =C1 +(e1− ei)(c
⊤
i − c⊤1 )

It is well known, see for example (Golub and Van Loan 2012, Page 593), that given the LQ factors of C1,

we can obtain the LQ factors, Ci and Qi, of the rank-1 perturbed matrix

C1 +(e1− ei)(c
⊤
i − c⊤1 )
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in O(d2) time. Hence, the entire list C1, . . . ,Cd is computable in O(d3) time. From this list we can easily

obtain the factors Li as follows.

Observe that ACi is lower triangular, because A is lower triangular. Set ui = diag(ACi) to be the vector

containing the diagonal elements of matrix ACi and let Di = diag(sign(ui)) be a diagonal matrix with

diagonal corresponding to the signs of the elements of ui. Then,

Li = ACi Di

is the desired factor of PiΣP⊤i , because Li is lower triangular by construction, and has nonnegative diagonal

entries. Note that, whenever Li is full rank, it coincides with the Cholesky factor of Pi ΣP⊤i .

3.3 A Numerical Study

In this subsection we discuss two numerical examples.

Example 3.1 (Negative Correlation). We consider estimating ℓ with aaa = 2× 1, d = 100, and precision

matrix (Fernández et al. 2007):

Σ−1 =
1

2
I +

1

2
11⊤

Table 2 below shows the estimate ℓ̂ and the relative error estimator for both ℓ̂ and ℓ̄ (including the

new estimate κ). The last column shows the factor by which the variance is reduced using the sequential

importance sampling estimator, namely, the ratio V̂ar(ℓ̄)/V̂ar(ℓ̂). ✷

Table 2: Estimates of ℓ using n = 105 for both methods.

γ ℓ̂ rel. err. ℓ̂ Sn/(ℓ̄
√

n) κ variance gain

6 0.202 2.2×10−4 7×10−4 1.0×10−3 32

7 1.887×10−2 2.0×10−5 2.0×10−4 2.8×10−4 102

8 1.0044×10−3 1.2×10−6 4.2×10−5 6.3×10−5 352

8.5 1.92672×10−4 2.4×10−7 1.8×10−5 2.7×10−5 802

8.8 6.74778×10−5 1.2×10−7 1.2×10−5 1.6×10−5 1002

9 3.271876×10−5 5.4×10−8 5×10−6 1.1×10−5 922

9.5 4.917356×10−6 9.0×10−9 7×10−6 4.2×10−6 4602

10 6.5380233×10−7 1.0×10−9 0 1.5×10−6 15002

11 7.990587315×10−9 1.3×10−11 0 1.6×10−7 108

12 5.95823969666×10−11 1.5×10−13 0 1.3×10−8 109

13 2.70552710714302×10−13 6.1×10−16 0 8.4×10−10 1012

Example 3.2 (Random Correlation Matrices). We next compare the two estimators by using a large scale

simulation with randomly generated test correlation matrices. The random correlation matrices are simulated

via the method of Davies and Higham (2000), whereby the eigenvalues {λi} of each correlation matrix are

uniformly distributed over the simplex {λλλ : ∑i λi = d, λi > 0}.
Thus, the experiments consist of the following. For a given value of γ and d = 100, we simulate 100

independent realizations of aaa∼ U(0,1)100 (uniformly distributed in the unit hypercube) and Σ (simulated

according to the Davies and Higham (2000) generator). In each of these 100 experiments we compute ℓ̂
and ℓ̄ (estimators of ℓ(γ), XXX ∼ N(aaa,Σ)) and their respective relative errors using a sample size of n = 104.

The boxplots on Figure 1 show the empirical distribution of the relative errors of ℓ̂ and ℓ̄ (using n = 104)

for different values of γ . Each boxplot is built based on the 100 independent replications. The boxplots

corresponding to ℓ̄ are all in the upper left part of the graph (in black). The boxplots corresponding to ℓ̂
are always in lower position (in blue).
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Figure 1: Distribution of relative errors of ℓ̂ and ℓ̄ for different values of γ .

We observe that the relative error of ℓ̂ is always lower compared to that of ℓ̄, and that the difference in

computational cost between the algorithms is negligible. In addition, the sample variance S2
n works only

up until γ 6 6, after which it yields the meaningless estimate of 0. In fact, the boxplot for γ = 6 is not fully

formed, because most of the 100 independent simulations did not yield a meaningful variance estimate.

The rest of the boxplots for γ > 6 are computed from the distribution of our new error estimate κ . ✷

4 CONCLUDING REMARKS

We considered the estimation of the tail distribution of the maximum of correlated normal random variables.

We showed that the sample variance of an vanishing relative error estimator is not suitable for assessing

its Monte Carlo variance. As a simple remedy, we propose an alternative estimate of the error. In addition,

we consider a new sequential Monte Carlo estimator of the tail probability, which turns out to be more

accurate in all of the examples we considered.

In future research we hope to achieve even better accuracy by exploiting the representation

ℓ(γ) = α(γ)−∑
i

αi(γ)P

(
max
k>i

Xk > γ |Xi > γ

)
,

and applying the mixture importance sampling idea of Adler and Taylor (2009) to the estimation of the

terms P(maxk>i Xk > γ |Xi), conditional on having simulated an Xi > γ . This approach seems promising in

that one may be able to prove a bounded relative error property for the sample variance estimator.
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