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ABSTRACT

Multi-threaded Parallel Discrete Event Simulation (PDES) is promising to achieve high performance.
Generally employing a collection of multi-core nodes is necessary to accomplish large scale PDES, which
makes it running in a hybrid of distributed and shared memory platform. Present Global Virtual Time
(GVT) computing algorithms are suitable for pure distributed or shared memory platform. In this paper
we present an asynchronous GVT computing algorithm in Neuron Time Warp-Multi Thread (NTW-MT)
simulator for stochastic simulation in NEURON project. GVT is computed asynchronously both within
and among processes, which is the first try in multi-threaded PDES as far as we know. Then we prove this
algorithm can compute a valid GVT at any wall clock time, and conclude it has less computational cost
through analysing the cost and delay . Finally we show results of simulating a calcium wave model in an
unbranched apical dendrite of a hippocampal pyramidal neuron.

1 INTRODUCTION

1.1 Stochastic Simulation of Reaction and Diffusion in Neurons

The human brain may be viewed as a sparsely connected network of neurons (Carnevale and Hines 2006)
containing approximately 1014 neurons. The membrane of a neuron contains channels which selectively
control the flow of ions (primarily sodium, potassium, and calcium) through the membrane. Movements of
ions through these channels is by (a) diffusion from a higher concentration of ions or (b) by pumps which
are dependent on the voltage drop across the membrane. Electrical models for neurons (Lytton 2002) can
be constructed using the well-known laws of electricity (Ohm, Kirchkoff, capacitance). However, these
electrical models only provide a limited view of neuronal activity since there are ions (notably calcium)
which function as information messengers. In order to develop realistic models of a neuron, it is necessary
to develop models which account for the movement and functioning of these messengers.

The combination of chemical reactions within a cell with the diffusion of ions through the membrane
can be modelled as a reaction diffusion system and simulated by (parabolic) partial differential equations
(Carnevale and Hines 2006, Lytton 2002). However, a continuous model is not appropriate for a small
number of molecules. Stochastic model is a far more realistic and accurate representation (Sterratt, Graham,
Gillies, and Willshaw 2011, Ross 2012) for this sort of situation.

It is well known that a system consisting of a collection of chemical reactions can be represented by
a chemical master equation, the solution of which is a probability distribution of the chemical reactants
in the system (Sterratt, Graham, Gillies, and Willshaw 2011). In general, it is very difficult to solve this
equation. In (Gillespie 1977) a Monte Carlo simulation algorithm called Stochastic Simulation Algorithm
(SSA) is described. Under the assumption that the molecules of the system are uniformly distributed, the

1115978-1-4673-9743-8/15/$31.00 ©2015 IEEE



Lin and Yao

algorithm simulates a single trajectory of the chemical system. Simulating a number of these trajectories
then gives a picture of the system. The Next Sub-volume Method (NSM) (Elf and Ehrenberg 2004) is an
extension of SSA which incorporates the diffusion of molecules into the model. The NSM partitions the
whole space into cubes called sub-volumes, and represents the diffusion of ions between these cubes by
events.

As previously indicated, the number of cells involved in a realistic simulation of a network of neurons
is immense. Hence it is necessary to make use of a cluster of computers for such a simulation. Since
each cube in NSM can interact with other cubes, it can be represented by a Logical Process (LP) in PDES
(Wang, Hou, Xing, and Yao 2011), and diffusion of ions between neighbouring sub-volumes is represented
as event, then PDES techniques can be introduced in order to speed up the simulation. We previously
developed a process based simulator, Neuron Time Warp (NTW) (Patoary, Tropper, Lin, McDougal, and
Lytton 2014), which does not use threads. NTW was verified and its performance examined on a Calcium
buffer model and a predator-prey (Schinazi 1997) model.

NEURON (Carnevale and Hines 2013, Carnevale and Hines 2006) is a widely used simulator in
neuroscientist community. It makes use of deterministic simulators for reaction-diffusion models (McDougal,
Hines, and Lytton 2013) and electrical models. We are collaborating with the NEURON group, and our
intention is to develop parallel discrete event simulators suitable for simulating reaction diffusion models
within and among neurons. It is intended that our simulators will be integrated into NEURON.

1.2 Multi-threaded Extension to NTW

Communicational latency is the main bottleneck of PDES systems (Fujimoto 1999). The emergence and
widespread use of multi-core processor presents a promising opportunity to PDES, for the communicational
cost is significantly reduced by very fast channels among cores on a multi-core chip. Alam (Alam,
Barrett, Kuehn, Roth, and Vetter 2006) observed a significant benefit (approximately 8% to 12%) when
communicating between processes running within a multi-core processor as opposed to between cores on
different processors.

Two constrains make it impractical to have very large scale PDES in a single cluster node: (a) the
number of threads should not exceed the number of physical cores in a cluster node (Alam, Barrett, Kuehn,
Roth, and Vetter 2006); (b) the processing rate of all cores in a cluster node is enslaved to the bandwidth
of memory bus, for the cores still share the same memory. Hence to run a simulation in a collection of
cluster nodes is needed, necessitating corresponding architecture and algorithms.

The architecture of our multi-threaded simulator, Neuron Time Warp-Multi Thread (NTW-MT), is
depicted in figure 1. One process is the controller, exercising global control functions (GVT computing and
load balancing etc.). The remaining processes are worker processes that process events at the LPs residing
in each process. Each worker process contains a communication thread and a bunch of processing threads.
The overhead of communication is high, thus we remove message receiving and sending in the main loop
of event-processing and employ a communication thread to receive and send messages for those processing
threads within the same process instead. All worker processes have the same number of threads.

The communication thread sends and receives messages for an individual process. Processing threads
can neither send nor receive messages. After initialization, the communication thread receives messages
from shared memory if the message is from a family process that resides in the same cluster node or via
MPI from remote cluster nodes. LPs then schedule external events by first placing them into the send
buffer of the corresponding communication thread. To avoid contention on this buffer, it is partitioned into
m segments, where m is the number of processing threads-the ith processing thread can write only into the
ith segment. The communication thread also scans the segments in this buffer and sends out the messages.
At present, the communication thread sends only one message per segment (a fairness policy).

LPs are partitioned into m×n subsets, where n is the number of worker processes and m is the number of
processing threads in each worker process. Each subset is mapped to a processing thread. Each processing
thread includes a LP List that stores the LPs associated with the thread, a Thread Event Queue (TEQ), a
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Figure 1: Architecture of NTW-MT simulator.

Thread Memory Allocator involved in Memory Management and a Thread Function. The Thread Function
is responsible for processing events.

An event has two timestamps, the receive time and the send time (Jefferson 1985). Events in priority
queues are sorted by their receive time. There are two types of events: internal event scheduled by internal
processing threads and external event from external processing threads. As the processing threads within
a worker process share the same memory space, internal events are managed by pointers (eliminating
copying messages), and they use pointers to identify LPs, then a thread can use this pointer to access
the associated LP directly. External events use an integer identifier to represent LPs. They are converted
into internal events upon receipt by communication threads and then inserted into LPs. We extend the
Multi-Level-Queue (MLQ) algorithm and RB-message mechanism in (Xu and Tropper 2005) to reduce
contention on TEQs and overhead of roll-back respectively.

NTW uses Mattern’s algorithm (Mattern 1993) to compute GVT. As processing threads in NTW-
MT can neither send nor receive external events, Mattern’s algorithm cannot work, while employing the
communication thread alone to compute GVT would cause simultaneous reporting problem. In this paper
we are computing GVT asynchronously both within and among processes by combining distributed-memory
and shared-memory GVT computing algorithms.

The remainder of this paper is as follows. Section 2 is devoted to related work. We analyse the
simultaneous reporting problem in computing local GVT asynchronously within a process, present and
prove our asynchronous algorithm, and analyse the computational cost and delay of our algorithm in section
3. Section 4 contains a description of our experiments as well as the results and section 5 contains our
conclusion and future work.

2 RELATED WORK

The Time Warp protocol (Jefferson 1985) includes local control mechanism and global control mechanism.
Computing GVT is one essential operation of global mechanism. A GVT value t at wall clock time T tells
the fact that no LP will roll back to a time point prior to t after T , then all states and processed events
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with timestamp less than t can be reclaimed, i.e. fossil collection. Obviously, GVT should be computed
frequently to save memory consumption, and efficiently to achieve high performance.

In distributed memory environment two problems, the transient message problem and the simultaneous
reporting problem (Samadi 1985), make it non-trivial to compute GVT. Both Samadi’s (Samadi 1985) and
Mattern’s (Mattern 1993) algorithm, two classical GVT computing algorithms, compute GVT by two rounds
of message passing, while Mattern’s algorithm does not require acknowledgement for each message, which
turns out better performance. Fujimoto (Fujimoto and Hybinette 1997) proposed an efficient algorithm
for shared memory multiprocessors. In this algorithm, suppose p processes participate in a simulation,
any process can trigger GVT computing by setting a variable GV T Flag to p, other processes periodically
check this variable, report its local GVT and decrease GV T Flag by 1, then the latest GVT comes out when
GV T Flag equals to zero. However this algorithm requires all of the processes reside within one shared
memory cluster, which constrains the scale of simulation.

For computing GVT in multi-threaded PDES systems, Ross-MT (Jagtap, Abu-Ghazaleh, and Ponomarev
2012) uses an optimized barrier to block all threads at wall clock time point T , which can cause high
overhead in waiting for all threads if there are a few threads within one process or the duration for processing
a single event is long. Each thread in (Chen, Lu, Yao, Peng, and Wu 2011) can receive and send message,
thus Mattern’s algorithm can work properly. In Threaded WARPED (Miller 2010), a manager thread is
responsible to calculate local GVT in a threadedWarped node. When a GVT computing requirement arrives
at a node, the manager thread suspends all of the simulation objects in that node (to make sure no creation
of new messages within that node) and then sets the Least Time-Stamped Event (LTSE) as the present
local GVT of that node. The computing of local GVT in Threaded WARPED still operates like a barrier.
In (Pellegrini and Quaglia 2014) the authors propose a wait-free GVT computing algorithm by splitting the
GVT computing phase in (Fujimoto and Hybinette 1997) into three phases and achieve better performance
than Fujimoto’s original algorithm, whereas this algorithm only works in shared memory platform due to
the need of memory consistency.

Overall the present GVT computing algorithms are suitable for either pure distributed or pure shared
memory platform. NTW-MT runs in a hybrid platform and thereby needs corresponding algorithms.

3 ASYNCHRONOUS GVT COMPUTING IN NTW-MT

3.1 Problem Analysis

There is no transient message problem within a worker process, for any internal message should be in the
queuing system of that process in either the sender thread side or the receiver thread side. In a barrier based
GVT computing algorithm, the processing threads in a worker process are blocked when this process is
computing GVT, thus there will be no creation of new messages before a local GVT value is computed.
This fact eliminates the probability of simultaneous reporting problem within worker processes. In NTW-
MT, a local GVT is calculated asynchronously among processing threads in a process to avoid cost for
synchronizing threads, then the simultaneous reporting problem can occur. Consider the example in figure
2, the number on a local GVT computing arrow is the wall clock time of that operation, and the number on
an event scheduling arrow is the wall clock time of that scheduling, while the number in parentheses is the
timestamp of that event and the number in a processing thread rectangle is the least timestamp of events
in that TEQ (note that all number is given as an example). There are concurrent operations to TEQs (the
hosting thread dequeues event from the corresponding TEQ while other threads can enqueue events into
that TEQ simultaneously.) within a worker process, thus each access and operation to a TEQ is exclusive,
and each individual TEQ is protected by a lock.

In figure 2, in order to compute a local GVT meeting the definition in (Fujimoto 1999) the communication
thread begins to check T EQi at wall clock time T1 and leaves T EQi at wall clock time T

′
1, then it goes

to check T EQ j at wall clock time T4, thus we have T1 < T
′

1 < T4. Processing thread j schedules an event
stamped at 10 to thread i at wall clock time T2, thread k schedules an event stamped at 15 to thread j
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Figure 2: An example of simultaneous reporting problem within a worker process.

at wall clock time T3, here T2 and T3 can be in arbitrary order. Suppose these time points satisfy the
order T1 < T

′
1 < T2 < T3 < T4 (this circumstance is possible due to arbitrary order of locking and unlocking

TEQs), then the event stamped at 10 is not accounted for, resulting in an incorrect local GVT value 12.
The key to this problem is that the inter-thread event that is sent during GVT computing in that process

should be accounted for. Fujimoto (Fujimoto and Hybinette 1997) uses a variable GVTFlag to indicate
the number of processes in GVT computing, and a process should trace the minimum timestamp when it
sends out events if GVTFlag is greater than zero.

3.2 Proposed GVT Computing Algorithm in NTW-MT

From figure 1, we can see that NTW-MT runs on a hybrid of distributed memory and shared memory
platform, thus both distributed-memory and shared-memory GVT computing algorithms are used. The
message flow and corresponding data structure is depicted in figure 3. Every worker process holds two
sets of variables for GVT computing, i.e. the set (color, whiteCount, minRed) is to trace interprocess
communication, and the set (GVTFlag, localGVT) along with the minSend and localMin variable in each
processing thread is to find local GVT in each worker process.
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Figure 3: Message flow and data structure of asynchronous GVT computing in NTW-MT.

In Mattern’s algorithm, a process can be in either red or white color, and a red process indicates it
is in calculation of GVT. At the beginning, all of the processes are in white color, and a white process
becomes red when it receives a GVT-CUT message, while a red process becomes white when it receives a
GVT-broadcast message that notifies the latest GVT value. Meanwhile, normal messages are also coloured
by the sender process. A GVT-CUT message is a special control message to notify every worker process
prepare for GVT computing, and it has two fields (tempGVT, count), where tempGVT indicates a temporal
value of the latest GVT and count indicates the number of white messages sent but not yet received since the
last broadcasting of GVT. The controller process triggers a GVT computing round by sending a GVT-CUT
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message (∞, 0) to the first worker process in every TGV T physical second. Upon receiving an external
message, a worker process counts the number of white messages received since the last GVT broadcasting,
and follows the steps in figure 4(a) to prepare GVT computing if the received message is a GVT-CUT
message. In Fujimoto’s original algorithm, a process should check the GVTFlag variable before processing
every event and update its local GVT value if GVTFlag is greater than zero, because it is not aware of
whether there are some other processes computing GVT at that time. In NTW-MT a process is computing
GVT if that process is in red color, then it inserts a GVT-CMP message to the TEQ of each processing
thread. A GVT-CMP message is a special control message to require each processing thread report its
local GVT. Hence each processing thread only modifies GVTflag and updates local minimum timestamp
once in each round of GVT computing.
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Figure 4: Steps for computing GVT by communication and processing threads in worker processes, rt (st)

is receive time (send time) of an event. Control branches that have no impact on GVT are omitted.

A processing thread reports its local GVT value during processing GVT-CMP messages in its TEQ as
depicted in figure 4(b), and records this value by its localMin variable. A local GVT value in a processing
thread is the minimum between the least receive time of pending events in TEQ and the least send time
of RB-messages in the TEQ (note that the current event being processed by this thread is the GVT-CMT
event, thus there is no partially processed normal events in this thread). After that this processing thread
updates the localMin value and decreases GVTFlag by 1. It implies that all of the processing threads in
a process have reported their local GVT value when GVTFlag equals to zero. The processing thread that
decreases GVTFlag to zero inserts a GVT-CUT message into the send buffer of the communication thread
to notify local computing has completed, and the steps are shown in figure 4(b). When a processing thread
schedules normal events to other processing threads within the same process, it should check GVTFlag
and update its minSend variable if GVTFlag is greater than zero, as illustrated in figure 4(c).

A communication thread follows the steps in figure 4(d) to compute local GVT when sending interprocess
messages. For normal messages, it counts the number of white messages sent and received since the last GVT
broadcasting and updates the minimum among receive time (send time of RB-message) of red messages
sent since the latest round of GVT computing. The final value of local GVT in a process is calculated when
the communication thread sends out a GVT-CUT message. The localGVT value is the minimum among
the received localGVT and localMin, minSend in each processing thread. Then it forwards a GVT-CUT
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message (localGVT, count) to the next worker process, resets count to zero and localMin, minSend in each
processing thread to ∞.

GVT-CUT messages are passed from one worker process to another, traverse all of them, and finally
return to the controller process. The controller process checks whether the count field in the received
GVT-CUT message equals to zero, if it dose a new GVT value tempGVT in the received GVT-CUT message
is obtained and the controller process broadcasts this value to all of the worker processes; otherwise (some
transient messages were missed in this round) the controller process forwards this GVT-CUT message to
the first worker process and triggers a new round. In the example in figure 3, a GVT-CUT message arrives
at worker process i in the wall clock time T , the message stamped at 13 is in red color, while the white
message stamped at 10 is sent before T thereby a transient message. The count field in The GVT-CUT
message that returns to the controller process should equal to 1 (implying one transient message is out of
consideration), thus another round is needed and then triggered. Since the underlying communication is
reliable, all transient messages should be received finally.

A worker process becomes white when it receives a GVT broadcast message, then it updates present
GVT value to the received value, resets minRed to ∞, whiteCount to zero.

3.3 Correctness Proof

We use the definition of GVT in (Fujimoto 1999).

Definition 1 GVT at wall clock time T is defined as the minimum time stamp among all unprocessed and
partially processed messages and anti-messages in the system at wall clock time T .

Definition 2 An event e can be observed by a process at wall clock time T if e is already in the pending
events sets in that process at T or e was sent by that process prior to T .

Theorem 1 At any wall clock time T , this asynchronous GVT computing algorithm can determine a GVT
value G that meets definition 1.

Suppose p processes numbered by 0 to p− 1 participate in a simulation, process 0 is the controller
process, and each worker process contains m processing threads. Each worker process can be viewed as a
subsystem that employs the shared-memory algorithm in (Fujimoto and Hybinette 1997) to compute local
GVT (note that a worker process satisfies the observability condition in (Fujimoto and Hybinette 1997).),
the unique difference is that this subsystem can exchange normal messages with other worker processes,
which breaks down the closure of this subsystem.To prove theorem 1, we first show lemma 1. The controller
process triggers a round of GVT computing at wall clock time T , and assume a new GVT value comes
out at wall clock time Tlast .

Lemma 1 Suppose process i determines a local GVT value GV Ti at wall clock time Ti by this asynchronous
algorithm, then any message or anti-message sent by process i after Ti must have a timestamp greater than
or equal to GV Ti if no LP in process i would roll back to a time point prior to GV Ti after Ti.

PROOF Proof by contradiction. Assume there is one or more messages or anti-messages with timestamp
less than GV Ti that were sent by process i after Ti. Among all such messages, let M be the one containing
the smallest timestamp, T S(M)< GV Ti, where T S(e) refers to the timestamp of the event e. According to
Lemma 1 in (Fujimoto and Hybinette 1997), GV Ti is the minimum timestamp among unprocessed events
and anti-messages that can be observed at wall clock time Ti, and no LP in process i would roll back to
a time point prior to GV Ti after Ti, then for any LP j in process i LV Tj ≥ GV Ti, where LV T is the Local
Virtual Time of a LP, the inequality T S(M)< GV Ti indicates a LP scheduled an event to its past, which
violates Time Warp protocol.

Corollary 1 In lemma 1, any message or anti-message sent by process i after Ti must have a timestamp
greater than or equal to GV Ti if no LP receives an message with timestamp less than GV Ti after Ti.

Corollary 1 is direct result form lemma 1, since a LP rolls back to a time point prior to t if and only
if it received an event with timestamp less than t and t is less than its local virtual time.
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Lemma 2 In lemma 1, process i sends an event with timestamp less than GV Ti after Ti only if at least one
LP in process i received an external event with timestamp less than GV Ti after Ti.

PROOF Proof by contradiction. Assume no LP in process i received any external event with timestamp
less than GV Ti, process i sends an event M with timestamp less than GV Ti. According to lemma 1 at least
one LP LPx rolled back to a time point prior to GV Ti, according to corollary 1, LPx received an internal
event M

′
with timestamp less than GV Ti (say it is sent by LPy). According to Lemma 1 in (Fujimoto and

Hybinette 1997) and the above assumption, GV Ti is the minimum timestamp among unprocessed events
and anti-messages after Ti, again for any LP j in process i LV Tj ≥ GV Ti, LV Ty ≥ GV Ti > T S(M

′
), that is

LPy scheduled an event to its past.
Obviously, Any event sent after Ti and before Tlast is in red color, its timestamp has been included in

minRedi.
Assume process i receives an external event Ex with timestamp less than GV Ti after Ti, T S(Ex)< GV Ti,

then event Ex can be in either red or white color.

• If it is in red color, T S(Ex) has been included in minRed of the sender process;
• If it is in white color, it is a transient message, then the count value must be greater than 0 when

the GVT-CUT message arrives at the controller process, and a new round would be triggered. Note
that the underlying communication is reliable, and all of the processes are in red color after the
first round, thus no white message would be created after the fist round, then there must exit a wall
clock time Tx after which all of the transient messages are received, thus there is no this case in
the round after Tx.

Finally, in the round after Tx, G=min(GV Ti, minRedi), i = 1,2, · · · , p− 1, is a valid GVT value that
satisfies definition 1.

3.4 Cost Analysis

As GVT computing is a frequent operation during the whole simulation, it has direct and profound impact
on performance, here we analyse two major metrics, computational cost and delay, of our algorithm.
According to the number of worker processes in a simulation and the number of threads in each worker
process, there are three cases:

Case 1: one worker process and m(m > 0) processing threads in the worker process
This case regresses to the shared-memory algorithm, there are no normal messages between processes,

GVT can be calculated in one round. Assume a GVT-CUT message arrives at the worker process at wall
clock time T , then the m threads begin to report the minimum timestamp in their respective TEQ (the cost
is no more than X ·O(cmp), where X is the maximum number of events in the TEQs at that time, O(cmp)
is the overhead of comparing an event in TEQ), then update GV T Flag (the cost of updating is O(1), the
principle overhead is due to contention, in the worst case the m threads update GV T Flag in series, the cost
is ∑m

i=1 i ·O(CAS) = O(m2)O(CAS), where O(CAS) is the cost of a single lock operation), and compute
local GVT by comparing localGV T and localMin,minSend in each processing thread (O(m)). Hence the
total cost is no more than m ·X ·O(cmp)+O(m2)O(CAS)+O(m). Another cost comes from updating
minSend in each thread when a thread sends internal events, and the cost of updating minSend is O(1),
whereas the principle overhead is due to contention for reading GV T Flag. Since GV T Flag can change in
the wall clock time interval [T1, T2], where T1 is the wall clock time at which the communication thread
receives a GVT-CUT message, T2 is the wall clock time at which this process complete computing local
GVT, using a read-write type lock on GV T Flag can highly decrease this overhead.

Since the processing threads calculate local GVT in parallel, the GVT delay is enslaved to the last
thread which completes reporting local value. The delay includes four parts: (a) GVT-CMP events have
higher priority than normal events, then the delay of processing GVT-CMP events is T (e)+X ·T (compare),
where T (e) is the time of processing a normal event, T (compare) is the time of comparing an event in TEQ;

1122



Lin and Yao

(b) delay of waiting for updating GV T Flag, it is no more than m ·T (CAS), where T (CAS) is the time of a
single lock operation; (c) delay of computing local GVT, i.e. finding minimum among received tempGV T
and localMin, minSend in each thread; (d) delay of transferring GVT value between the controller and
worker process. The sum of the maximum of these four parts gives an upper bound of GVT delay.

Case 2: n(n > 1) worker processes and one processing thread in each worker process
This case regresses to the distributed-memory algorithm. There is no inter-thread messages within a

worker process, then the cost and delay of computing GVT is proportional to the number of rounds of
GVT-CUT message passing. A new GVT value can be computed only if all of the transient messages sent
after last updating of GVT are received, whereas it entirely depends on the underlying communication.
Hence in the worst case, it needs a few rounds until all of the transient messages arrive at receiver. However
it is not worse than Mattern’s original algorithm.

Case 3: n(n > 1) worker processes and m(m > 1) processing threads in each worker process
This case is a hybrid of case 1 and 2 (and also NTW-MT designed for), according to the analysis in

case 1 we know a worker process can calculate a local GVT value in a bounded period, while analogous to
case 2 a new GVT value can be computed only if all of the inter-process transient messages are received,
thereby it may take several rounds of GVT-CUT message passing.

Assume the total number of processing threads is a fixed value, there is less inter-process communication
in case 3, thus it is promising to compute a GVT value in fewer rounds of GVT-CUT message passing,
compared to case 2.

4 EXPERIMENTAL STUDY

We simulate the intracellular Ca2+ wave (a brief introduction can be found in (Neymotin, McDougal,
Sherif, Fall, Hines, and Lytton 2015)) in an unbranched apical dendrite of a hippocampal pyramidal neuron
(length: 1000 μm, diameter: 1 μm) as shown in figure 5(a). The neuron is partitioned into mesh grids,
and each grid is taken to be a sub-volume. We select 14749 sub-volumes with a distance of less than
50 μm from the middle, and the length of each sub-volume to be 0.5 μm. The sub-volumes are evenly
distributed among the processing threads. As the real Ca2+ wave model is complex we simplified it by
assuming (a) a IP3 receptor opens when the concentration of IP3 and Ca2+ are both higher than some
respective threshold (b) an opening IP3 receptor channel will close in a period of time determined by an
exponential distribution. The reactions are shown in figure 5(b), where Ca2+

er refers to Ca2+ in Endoplasmic
Reticulum (ER), Ca2+

cyt refers to Ca2+ in cytosol, [•] refers to the concentration of the corresponding species

•, m = [IP3]/([IP3]+ kIP3
), n = [Ca2+

cyt ]/([Ca2+
cyt ]+ kact), kIP3

, kact , νIP3R, νleak, νSERCA and kSERCA are given
constant parameters, the value can be found in (Neymotin, McDougal, Sherif, Fall, Hines, and Lytton
2015). Ca2+

er can only diffuse within ER, while cytosolic Ca2+ and IP3 can only diffuse within cytosol.

 

(a) Geometry.

ER Release: Ca2+
er

krelease−−−−−→ Ca2+
cyt,

krelease = νIP3R m3 n3 ([Ca2+
er ]− [Ca2+

cyt])

ER Leak: Ca2+
er

kleak−−−−→ Ca2+
cyt,

kleak = νleak ([Ca2+
er ]− [Ca2+

cyt])

SERCA Pump: Ca2+
cyt

kpump−−−−→ Ca2+
er ,

kpump =
νSERCA [Ca2+

cyt]
2

k2
SERCA

+[Ca2+
cyt]

2

(b) Calcium wave reactions.

Figure 5: A three-dimensional view of the pyramidal neuron and the calcium wave reactions.

We use two platforms. One machine (PEPI) is a cluster with 4 Intel(R) Xeon(R) E7 4860 2.27 GHz,
10 cores per processor, 1 TB memory, with Linux 2.6.32-358.2.1.el6.x86 64, Red Hat Enterprise Linux
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Server release 6.4 (Santiago). The other is the SW2 node (of Guillimin at McGill HPC center), consisting
of two Dual Intel(R) Sandy Bridge EP E5-2670 2.6 GHz CPUs, 8 cores per processor, 8 GB of memory
per core, and a Non-blocking QDR InfiniBand network with 40 Gbps between nodes. The node runs Linux
2.6.32-279.22.1.el6.x86 64 GNU/Linux.
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Figure 6: Execution time and roll-back of simulating the calcium wave model in the PEPI machine.

In figure 6(a) and 6(b), all processing threads are placed in one process, which is the case 1 in section
3.4. A valid GVT can be computed in a bounded duration by one round of GVT-CUT message passing
as analysed above.
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Figure 7: Execution time and roll-back of simulating the calcium wave model in the Guillimin machine,

ppn refers to process per node.

The within one process mode in figure 7(a) and 7(b) is the case 1 in section 3.4 (same as the PEPI
scenario). The execution time is the shortest along with the lowest roll-back due to short communicational
latency compared to the other modes. As pointed out above, a GVT value can be computed in a bounded
duration, which also contributes to shortening the overall execution time.

The data point with 4 processing threads in the pure remote process mode in figure 7(a) and 7(b) is the
case 2 in section 3.4, in which each worker process hosts only one processing thread. Only the distributed
memory algorithm is used in this scenario, and a valid GVT value can be computed until all transient
message sent since last GVT broadcasting arrives at the receiver, thus it may takes more than two rounds
of GVT-CUT message passing.

The other curves in figure 7(a) and 7(b) belong to case 3 in section 3.4, in which both the shared and
distributed memory algorithm is used. Since inter-process communication is used, it may take several rounds
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of GVT-CUT message passing to compute a GVT value. Considering the data points with 16 processing
threads, we can conclude placing more threads in the same process results in better performance, and this
is reasonable for less interprocess communication is used. As analysed in section 3.4, fewer rounds of
GVT-CUT message passing are used, which also improves the overall performance.

5 CONCLUSION AND FUTURE WORK

We introduced multi-threaded extension to NTW (Patoary, Tropper, Lin, McDougal, and Lytton 2014) to
produce a high performance PDES simulator for reaction and diffusion simulation in NEURON project
(Carnevale and Hines 2006). To avoid overhead of blocking threads in a worker process, it is intended
to compute a local GVT asynchronously among threads within a process, which gives the probability of
simultaneous reporting problem. We combine the shared-memory algorithm in (Fujimoto and Hybinette
1997) (to compute a local GVT value in each worker process) and Mattern’s (Mattern 1993) algorithm
(to trace inter-process messages) to compute GVT in NTW-MT. GVT is computed asynchronously both
within and among processes, which is the first try in multi-threaded PDES as far as we know. We proved
that our proposed GVT computing algorithm can determine a valid GVT value G that meets definition
1 at any wall clock time during simulation. We also analysed the computational cost and delay of this
algorithm: (a) it can compute a GVT value in a bounded period if all of the processing threads are in a
single process; (b) it may take more time to compute a GVT value if more than one worker process are
used, and the overhead and delay highly depends on the underlying communication.

Our future work on the this GVT algorithm is to have larger scale experiments. As far as the project
goes, we are planning to implement a more detailed calcium wave model and develop load balancing
algorithms for NTW-MT. A hybrid (deterministic-stochastic) model is another future effort.
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