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ABSTRACT

Many terms exist within Modeling and Simulation that refer to models consisting of more than one
modeling paradigm, more than one model, or more than one formalism. To providelaofication ths

paper identifies nine terms from the Modeling and Simulation literature and compares them against a
taxonomy of model characteristics including time representation, basis of value, behavior, expression,
resolution, and execution in order to classify the various terminologies and allow for a discussion from a
generalized perspective. Results show #ihnine modeling terminologieshare the characteristic of
resolution, none of the terminologies deal with all six characteristicsthat many of the t@minologies

deal with onlythree or less of the characteristics. Finally, this paper explores challeribessing
multiple models that contain competing characterigkias are not covered in the ligdure.

1 INTRODUCTION

A model is a representation of a real or imaginary system and is used in lieu of the real system in order to
learn about that system (Fishwick 1995; Sokolowski and Banks 2009). Modeling is the process of solving
a problem or answering a question about a real or imagined system through the use of abstraction or
simplification (Bennett 1995; Tolk 2012). Models are approximatiorthefreal system that describes
specific aspects of that system (Sokolowski and Banks 2010). There are numerous ways to classify a
model: physical models represent physical objects; mathematical models represent procedures,
algorithms, and mathematical edions that can be solved discretely; and procedural models represent
dynamic relationships of situations expressed through mathematical or logical processes (Tolk 2010).
Other classifications for models rely on the representation of time, the appedraandomness, and
whether the states within the model change instantaneously or continuously (Fishwick 1995).

Within the Modeling and Simulation (M&S) literature maeymsexist and are used interchangeably
for describing models that use multiplar@adigms, formalisms, or modelsor instance, miti-paradigm
modeling (MPM) applies when a model consists of more than one modeling paradigm (Vangheluwe, de
Lara, and Mosterman 2002), hybrid modeling applies when a model contains more than one model
(Mosterman 1999), and multi-method modeling applies when a model contains multiple modeling
methods (Borshchev 2013). This causes a problem in clearly identifying the difference between the terms
which makes it more difficult tadifferentiate between different types of model Multi-paradigm
modeling shares similarities with several of the other terminologies. Similar to hybrid modeling, multi-
paradigm modeling can consist of both discrete and continuous elements. In this sense, hybrid models
qualify as multiparadigm models; however, not all multi-paradigm models qualify as hybrid models as a
multi-paradigm model does not have to contain both discrete and continuous elements.
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We propose to address the problem of describing models by clarifying the M&S modeling
terminologies through the use of a taxonomy that classifies models with respect to the model
characteristics of time representation, basis of value, behavior, expression, execution, and resolution.
Additionally, we explore a set of challengesaciated with simulations that use multiple models which is
not addressed within the literature. This paper is structured as follows: Section 2 provides background
information on modeling terminologies within M&S. Section 3 presents a taxonomy of model
characteristics for classifying the modeling terminologies. Section 4 presents challengk$ng
simulations that consist a@bmpeting characteristics due to the use of multiple mo8elstion5 presents
conclusions ad identifies future work.

2 BACKGROUND

Single models are not always sufficient for providing the level of depth needed to capture real world
processes; whereas simulations that use multiple models can provide a greater depth into the problem
(Yilmaz and Oren 20Q5Many terminologies exist that provide the ability to capture a problem in greater
depth and involve modeling with multiple paradigms, formalisms, or modetsulAmodelis a model
comprised of multiple modethat collectively serve to represent the bétiasf a systen{Fishwickand

Zeigler 1992 Fishwick 1995;Fishwick 1998;Tolk 2012) Conducting experimentation with multimodels
allows for the simulation to represent several aspects of re¥litpgz and Oren 2005; Yilmaz et al.
2007).A multi-paradigm modeuses two or more modeling paradigms to address a modeling question
(MQ) (Lynch et al. 2014; Vangheluwe, de Laura, and Mosterman 2002; Villa and Costanza 2000). A
hybrid model consists ofboth discrete and continuous elements (Mosterman 1999; Swiaedd
McNaught 2012;Tolk 2012). Multifacetted modelinguses multiple models to answer a MQ (Zeigler,
1984).Multi-resolution modelingncorporates multiple models from different resolution leteladdress

the problem (Fishwickand Zeigler 1992;Tolk 2012) A multi-formalism modelusesat least two
formalisms Yangheluwe, de Laura, and Mosterman 2002). A coupled numhalists of independent
models connected together through a network (Vangheluwe, de Laura, and MostermarMR0b2).
method modelingises multiple modeling methods, such as system dynamics (SD) anebasgaht
modeling (ABM) to create a simulation (Borshchev 2013). Composite modglpligs a combination of
simulation approaches to addreasproblem (Viana,et al. 2014). A further discussion on M&S
terminologies is presented in Balaban, Hester, and Diallo (2014).

Embedded within the modeling terms are the concepts of methods, methodologies, formalisms, and
paradigms.Paradigms, methodologies, and methods assist in transitioning from the real system to the
model and each term plays a different role in this transition. A paradigm contains a set of “assumptions,
concepts, values, and practices that constitutes a wagwiing reality” that is commonly shared within a
community (McGregor and Murnane 20p@. 1). The selection of a paradigm “sets down the intent,
motivation and expectations” that drives the research process (Mackeni&nipe 2006pg. 2).
Modeling paradigs reflect the ways of thinking about how to represent systems within M&S and contain
the assumptions that generally accompany each way of thinking (Lorenz and Jost 2006). A paradigm does
not need a standard interpretation or a full set of rules in order to guide research (Kuhn 1970). Within
M&S, modeling paradigms encompass various ways to think about representing systems and are
purposefully well equipped to address specific questions from the real system.

Methodologies and methods provide the connectlmtsrveen modeling paradigms and a model’s
construction. A methodology is an approach linking a paradigm to research (MackenKiamn&006)
and deals with the “philosophical assumptions that underlie any natural, social or human science”
(McGregorand Murnane 201(g. 2). A method is the technique, procedure, or tool used to collect data,
conduct research, or analyze data and is based upon the selected methodology (Mackétsjse and
2006;McGregorandMurnane 2010). Formalisms are one method within M&Smplementing models
into a computer executable simulation. Formalisms provide explicit representations of a model necessary
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for the model’s implementation on a digital computer (Zeigler 19Bd¢se concepts show a separation

of focus on the way of thinking about the system (paradigms) and on how to implement a computer
executable simulation (methods, methodologies, and formalisms). However, this does not provide a solid
enough foundation for comparing the differences between MPM and the other modeling terminologies.

A taxonomy provides a means for creating a hierarchical classification of a system that is both
exhaustive and mutually exclusive (Bailey 1998gveral taxonomies have been appliedM&S.
Sulistio, Yeo, and Buyy&2004) provides a taxonomy for designing compbiesed simulations with
respect to parallel and distributed systems. Taxonomies exist to classify multimodel forrhaksth®on
the structure and behavior of the models (Yilmaz and Oren 2004; Yilmaz and Oren 2005; Yilmaz and
Tolk 2008)as well as to classify multimodels based on conceptual, declarative, functional, constraint, and
spatial categories contained within the models (Fishwick 1998).

In particular, Sulistio, Yeo, anBuyya (2004) provide a simulation taxonomythat characterizes
simulations in terms of presence of time, basis of value, and behavior simdulation execution
taxonomythat characterizes simulations in terms of execufldrese characteristics provide asbline
for describing a modelolk, Turnitsa, DialloandWinter (2006)describes models through their atomic,
aggregated, and composite levels of resolution while attedels are described in terms of their
mathematicalFishwick 1995; Sokolowski anBanks 2010) or logical representatiofWoolridge &
Jenrings 1994) We combine these characteristics to describe models as follows:

e Static and dynamictime representation characteristics refer to the dependency between the
progression of the model and the advancement of time (Birtéidoet 2007; Law 2007;jung
and Glad 1994; Sulistio, Yeo, anBluyya 2004). In a static model, the model's state does not
depend upon a representation of time; whereas, a dynamic model’'s states are dependent upon the
advancement of time.

o Discrete andccontinuoushbases of value characteristics refer to the change in values that variables
can take (Chung 2003;aw 2007;Tolk 2012). A discrete model produces variable values at
specific points during the model’s execution; whereas, a continuous model can produce values for
the varidles at any point during the model's execution (Bennett ;188&olowskiand Banks
2012). Therefore, discrete models can be envisioned as producing a finite number of values over
a specified range while continuous models produce an infinite number of waleiea specified
range (Aburdene 1988; Sulistio, Yeo, @yya 2004).

¢ Deterministic andstochasticbehavioral characteristics refer to the notion of uncertainty and
randomness (Bennett 1995; Law 2007). A deterministic model always produces the game out
for a given input and system state (Aburdene 1988). A stochastic model produces potentially
many outcomes for a given input and system state; therefore, a specific output cannot be known
with certainty in advance of running the model (Ljung &idd 1994; Northand Macal 2007,
Sulistio, Yeo, and Buyya 2004; Tolk 2012).

e Serial andparallel execution characteristics refer to the execution of the model (Law 2007). A
serial model is generally executed on a single processor and the simulation execution proceeds
sequentially Simultaneous events can still occur but each event is calculated in a sequential order
(Fishwick 1995). Generally, a model constructed for serial execution cannot be executed in
parallel fashion (Sulistio, Yeand Buyya 2004). Parallel models are executed over multiple
processors either within a single computer or distetbidicross multiple computers (Fishwick
1995; Law 2007).

o Mathematicaland logical expression characteristics refer to the notional development of the
model (Sokolowski and Banks 2012). Notional expressions help in expressing the structure of a
language and establishes a “common ground” for assigning truth to cdréepta(d Krifka
2008 pg. 124). The assumptions associated with communication form the common ground
through which the communication process is enhanced (Stalnaker T8@é7perception of the
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modeler forms the wrds and relationships that create #imstract representation of a system
(Bennett 1995). kpressiong(logical or mathematicalpallow for the translation of ambstract
representation into an executable simulation. Logical models capture causality and decision
processes and result in defined sequeradesvents (Tolk 2012). Mathematical models use
equations to provide quantitative or analytical representations of systems (Fiskwick 1995
Sokolowski and Banks 2010).

Atomic aggregated, andompositaesolution characteristics refer to the level of detail, scale, or
abstraction used by the modébstraction is the level of detail needed to construct the model
assists in the modeling process by directing focus to features of the objectsthdtlsystem

being modeled that are relevant to addressing the problem (Fishwick 2&€8&r 1984. An

atomic model cannot be decomposed into a smaller eldmeanything else within the model

(Tolk et al. 2006) An aggregated model exists when a cdibec of individually represented
componentsvithin a simulation are merged to form a higher level object (Tolk 2012). Composite
models are comprised of elements at varied resolution levels. A composite simulation may consist
of entities which can changes@utionlevels during a simulation run (Davis and Hillestad 1993).

A model that contains multiple atomic level resolutions becomes a composite resolution model
unless all of the atomic resolutions are the exact same atomic level. Figure 1 shows tlik adapte
taxonomy.

MODEL

|
I ] ]

Basis of Value \ ‘ Expression Execution
Time . Behavior Resolution
Representation

[ Discrete l C'onlinuous] [Malhematica!” Logical l Senal I [Pﬂrallell
[ Static ] [ Dynamic ] [Delerministic] [chhusticl [Ammic ] [Aggrcgalcd Compositc]

Figure 1. Taxonomy of Model Characteristics adapted from Sulistio, Yeo, and Buyya (200d)
characteristics of time representatidrasis of valug behavior execution expressionand resolution
provide a mutually exclusive description for categorizing models. The batimshievel of this hierarchy
provides an exhaustive description by further describing each sifxtbategoies

The addition of the expression and resolution categories tmuhecategories provided by Sulistio,
Yeo, and Buyya’'s (2004) simulati@ndsimulationexecutiortaxonomies provides a mutually exclusive
classification for describing models and the -sategorization of each characteristic provides an
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exhaustive description of the model. The next section presents the classifafateons against the
taxonomy.

3 CLASSIFYING THE M&SMODELING TERMINOLOGIES

We examine the literature to identify the characteristics that are explicitly mentioned with each of the
modeling teminologies. Any characteristic that is referenced with respect to a terminology contains an
“X” and any characteristic that is not specifically mentioned contains a blank space within Table 1.
Multimodels capture multiple aspects of realifyesolution) Fishwick and Zeigler 19920ren 1987;
Yilmaz et al. 2007)Oren (1987) classifies multimodels in terms of continuous, discrete, and memoryless
types; however, these classifications do not appear in the later multimodel taxonomy presented in (Yilmaz
and Oren 2004; Yilmaz and Or@®05) and basis of value is therefore not includéditi-paradigm
modelsdeal with levels of abstraction (resolution) (Lorenz and Jost 2006; Vangheluwe, de Laura, and
Mosterman 2002) as well as the characteristics included in the assumptions of the paradigm itself, such as
differences in time representation, basis of value, behavior, and exprbssiggen the discretvent
simulation and system dynamics paradigms. Hybvidlels contain feedback between simulation models
(resolutin) (Swinerd and McNaught 2012) and deal with continuous and discrete elements (basis of
value) (Mosterman 1999). Multifacetted models consist of integrating multiple perspectives (resolution)
to produce the whole picture of reality (Zeigler 1984; Zeigled &ren 1986)Multi-resolution models

allow for entities to be represented at different levels of resolution within the same simulation
environment (Tolk 2012)Multi-formalismmodelscan be grounded in predicate logic or mathematical
theory Balaban, Hester, and Diallo 2Qldlealing with time representation, basis of value, and
expression as well as handling parallel executions (Chow 18%fjpled modelgonsist of multiple
models connected together (resolution) in a graph or network layout (Vanghelaweaura, and
Mosterman 2002)Multi-method modeldeal with implementing paradigms (therefore, contain the same
characteristics as paradigms) amiize couplings between models (resolutiongi@an, Hester, and
Diallo 2014). Composite models involve the use of multiple simulation methods or techniques (Viana et
al. 2014) and contain the same characteristics as-mettiod models. Table 1 provides a visual mapping

of the terminologies to their characteristics.

Table 1: Mapping of model terminologies aigst the taxonomy of model characteristi€alumn 1
provides the terminology. The remaining columns represent the characteristics from the taxonomy in
Figure 1. Blank cells represent that the characteristic is not mentigtieespect to the terminology.

M&SModeI|ng Time . Basis of Behavior | Expression | Execution | Resolution
Terminology Representation Value

Multimodel X
Multi -paradigm
Model X X X X X
Hybrid Model X X
Multifacetted Model X
Multi-resolution X
Model
Multi-formalism
Model X X X X X
Coupled Model X
Multi-method
Model X X X X X
Composite Model X X X X X
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Resolution produces the greatest driver within the list of characteristics witmalterminologies
relying on it; therefore, a maimotivator behind the use of multiple models, formalisms, or paradigms
within a model appears to beetdesire to capture multiple aspects of reafitynodel fitting under any of
these terminologies contains some combinatioresblutions (atomic, composed, and aggregated), but
does not necessarily contain all three at once. Multimodels, multifaceted modelsesulittion models,
and coupled models have the same characteristics and are only associated with resolutiom with th
literature. Likewise, multmethod models, composite models, and npdtiadigm models have the same
characteristics and are associated with all of the characteristics except execution. This leaves hybrid
models and multi-formalism models in the positimhhaving unique descriptions with respect to the
characteristics. From the perspective of the characteristics, exestainois out as being the only one that
maps to only a single terminology.

Due to thepotentially many paradigms, models, or formalignmduded within these models, there
can be challenges in constructing and runriimg simulationsdue to competinghild-characteristics
within a singlecategoryof the taxonomyFor instance, oitimodelsallow for a system to be represented
at multiple evels of resolutionhowever, thisbrings in the challenge of how to properly constriet
model so that the simulation runs correctly when invohdngombination of atomic, composed, and
aggregated resolutiondVe explorethe challenges that ariswith respect toeach ofthe model
characteristics in thisllowing section.

4 CHALLENGESWITH SIMULATIONS CONTAINING COMPETING MODELING
CHARACTERISTICS

The use of multiple modeling paradigms and models results in a number of challenges for simulations.
Each category within lhe taxonomy provides a number of challengesdosiderwhen constructing a
modelusing any of these terminologies as there exists the possibility of having competing characteristics
within the model Thesechallenges make the verificatipnocess crucial to the development of the model
sincethe model's components can exist in potentially many specificati@misieed to be checked to
ensure that they are correct regarding each formahspotential consequence of not verifying a multi-
paradigm model is that an error produced during model validation may be a result of (1) a conceptual
error (i.e. something missing from the model structure or model paramete)) aw {mplementation

error (i.e. something is missing from the simulation that is supposed to be there). Without conducting
verification first,the process of identifying whether the error was conceptual or implementation related is
much harder to determine. Thinking that the model is programmed correctly when analyzing an
unexpeatd outcome from a multi-paradigm model can lead to the conclusion that the new behavior is a
result of the multparadigm model when the unexpected outcome is really caused by an implementation
error. The followingsix itemsexplore the challenges that t#n to each of the model characteristics
within the taxonomy as well as challenges involving the use of more than one model.

e Challenges with Multiple Time Representations: Combining static and dynamic time
representations requires determining how togirgee a dynamic time models with static time or
eventdriven models. Standards such as lthé\ exist to dealwith issues otime management
(IEEE 15152010). Fujimoto and Weatherly (1996) identify that the simulations within a
federation may deal with varied event ordering requirements, time flow mechanisms, real and
scaled time data, and combinations thereof. The synchronization of events must account for
differences in the use of time steps and events between simulations. Two simulations running in
paralel may consider the use of a least common denominator instaps-to ensure
synchronization of time. The combination of continuous and discrete time requires a mapping of
real numbers and integer numbers. The set of real numbers is uncountable whereas the set of
integer numbers is countable; therefore, the set of integers used by a discrete time simulation is
able to map all of its possible values to the set of real numbers that the continuous time simulation
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uses; however, this relationship does not worteverse (Hein 2010). For simulations running at
different time scales, there must be a way to ensure that the faster simulation can recover from
changes in the slower simulation that occurs after the fast simulation has already passed that time
step.

Challenges with Multiple Bases of Values: Multiple bases of values provide challenges with
respect to cardinality and computability. Bijective functions provide a means for observing the
input and output relationship in a model. A function or model is thiedf there is a onés-one
mapping from the input set to the output set (Hein 2010). A countable set has a bijective relation
to a subset of the natural numbers and a countable infinite set is bijective to the set of natural
numbers. The union of coullla sets is also countable; however, if both sets were bijective the
union of the sets may be surjective (Hein 2010). Uncountable sets are not computable.
Computability deals with the computational complexity or the amount of real time required to
solve a problem. Issues involving computability deal with the ability to solve problems in
polynomial (P) time using a ortape deterministic Turing Machine or to solve problems in
polynomial time on a nondeterministic (NP) Turing Machflarp 1972). Combining a model

that is not solvable in nodeterministic polynomial (NP) time with a model that is solvable in P
results in a NP problem.

Challenges with Multiple Behaviors. Combining multiple behaviors in a model results in
challenges of composition pertaining to the injective, bijective, and surjective nature of the
models. Every model has a set of possible input values (domain) and a set of possible outputs
values (codomain), in the same fashion as a function (Hein 2010). MPM produces a feedback
setup between padigms and as a result the output of a model (i.e. codomdioavl replace the

input set of another model (i.e. domairg)MThe set of values comprising codomain Must

match or be a subset of domai df there will be an error in consistency for modeJ). M the

set of input values is only a subset of the total input set that the model can have, then the input
relationship may result in an injective model which restricts the total set of outputs that the model
can produce. This effect can potential cascade through all of the models and alter the injective,
bijective, and surjective functions of each model. Constraints may need to be added to explicitly
reinitialize state variables when they are fundtiofithe final values from another configuration
(Mosterman 1999). Inconsistent units of measure between models can lead to contradictory
outcomes if the conversion functions are not accounted for properly. Additionally, combining
models with multiple behdors can disrupt the homomorphism relationship of the model.
Homomorphic functions can preserve the behaviors of the reference system by mapping lower
level models to higher level models (Fishwick 1995).

Challenges with Multiple Expressions. The combination of logical and mathematical
expressions, specifically when the combination contains both discrete and continuous elements,
can result in a very large state space of possible state changes within the model (Mosterman and
Vangheluwe 2004). This can potiatiyy lead to an issue in computability and cardinality (refer to
challenges with multiple bases of valuédditionally, the works of Mosterman (1999) and
Mosterman and Vangheluwe (2004) identify four potential issues that result from combining
executabldormalisms.Event detection and locatiateals with continuous variables that cause
events to occur once they cross over specific thresholds and both the time of occurrence of the
cross and the level of the threshold needs to be detected (MostermanMt@®&rman and
Vangheluwe 2004). Sequences of discrete transitleats with known events that will occur due

to time reaching a specific value and can be planned for in advance to help maintain
synchronization of the simulation (Mosterman 19%8pstermanand Vangheluwe 2004).
Consistent semantics of formalismeals with maintain consistency of meaning of elements
contained within multiple formalisms to ensure that the formalisms communicate properly
(Mosterman and Vangheluwe 2004). Sensitivity to initial conditideals with the input
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parameters of the model being sensitive to alterations when combining formalisms (refer to
challenges with multiple behaviofsr a discussion of model composition effects) (Mosterman
and Vangheluwe 2004).

Challenges with Multiple Executions: Multiple models executed in series need to be configured

in a manner that events occur sequentially between all of the models. The field of Parallel and
Distributed Simulation (PADS) deals with challenges in executing simulation inlgbaral
Fujimoto (1999) identifies several challenges with parallel simulation, including synchronization,
local causality constraint (running a simulation in parallel should produce the exact results as
running the simulation sequentially), and increased memory requirements for maintaining
synchronization of the simulation. The crucial component of running a simulation in parallel or
distributed over multiple computers is ensuring that all of the events within the simulation
execute in the correct order (Rmbk 1995; Law 2007). Gnservative and optimistic
synchronizationsseek to prevent violations of the local causality constraint or to provide a
method for recovery to handle violations of the local causality constraint (Fujimoto and
Weatherly 1996).

Challenges with Multiple Resolutions. Some paradigms and their associated formalisms exist at
specific levels of resolution, such as System Dynamics taking a high level view of a system while
ABM takes a low level view of a system. Davis and Hillestad2©8) work identifies a number

of issues pertaining to multiple resolutions. Do the assumptions and operations hold across all
levels of resolution? Is the representation of time maintained across all resolutions? Are spatial
representations maintained across levels of resolution? Are aggregation and disaggregation
relationships maintained? When combining models at different levels of resolution, a common
information exchange model can establish a common view of entities and properties of the
problem. In order to establish a common exchange between models, the higher resolution models
need to aggregate their views or lower resolution models need to disaggregate their views (Tolk
2012). Inconsistencies can occur when transitions occur for an entity acroisg) Vavels of
resolution such as a leading an entity into a state that it could not have reached through the
normal time span of the model due to transitions between resolutions (Reynolds, Natrajan, and
Srinivasan 1997). Challenges with multiple resolgiaiso occur when all of the models use the
same resolution level. An example involves the use of ABM agents and DES entities where the
model requires that the agents move through a DES process (Borshchev 2013). This requires that
the agents and entities have semantic and syntactic compatibility to enable correct movement
between the model components.

Challenges with Multiple Models: Running multiple models in series results in increased time
required to generate results. However, this time may not scale linearly as removing repeated
functions between the models can serve to reduce the run time of the overall model (Mosterman
1999). Constructing a multi-paradigm model using multiple models involves challenges of
communication between models and falls within the domain of interoperability. The models need
to share relevant information and use the shared information (Diallo, Paddi@plk 2010). A
common goal of both interoperability and MPM is to achieve effectiveness, efficiency, and
correctness and timakss of exchanged information between systems (Tolk 2B#f2ctiveness

is achieved when all of the exchanged information is delivered to the correct simulation elements.
Efficiencyis achieved when only the required information is delivered to thet tairgelation
element.Correctness and timelinesse achieved when the delivery of the information occurs at

the correct time. Additionally, there can also be challenges pertaining to polymorphism
(simulations interpret the same information differently)l amcapsulation (hiding information
within the simulation)pertaining to issues of data misalignment and misrepresentation (Diallo,
Padilla, andTolk 2010).Overall, all of the models need to maintain consistency and be non-
contradictory with respect to @aother and the reference system.
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These challenges represent some of the main roadblocks that may occur in constructing and executing
simulations that contain competing characteristics due to the use of multiple models. The following
section presentgreas for future work based on these challenges.

5 CONCLUSION AND FUTURE WORK

We construct a taxonomy to describe modeling terminologies with respect to the characteribiiis of
models. Interestingly, we find that none of the modeling terminologies e#plideal with all six
categories of model characteristics, that all of the terminologies deal with rescdmibthat severaif

the terminologies only care aboutultiple resolutions. Whilenultimodeling, MPM, hybrid modeling,
multifaceted modelingmulti-resolution modeling, multi-formalism modeling, coupled modeling, multi-
method modeling, and composite modeliag used by the M&Scommunity, thechallenges with
building and verifying thesmodels hae not been addressed by the literaturan in-depth mannefhe

M&S community needs a&erification framework to assist modelers in ensuring that the challenges
associated with competing model characterisdosnot cause errors within their simulatiofighis
framework should be generalizable so thatan be applied to the models based on the model's
characteristics which would allow for the framework to be applicable to any of the modeling
terminologies.This taxonomy can potentially be applied to a problem during the conceptual modeling
phase of the project in order to identify the characteristics that are needed to answer the MQ. This can
help to identify the paradigms or types of models needed to address the problem.

Future works involves extending this research to tie the taxonomy of model chstiasteto the
simulation design phase in order to (1) guide modelers in the process of selecting paradigms or
formalisms to use in constructing simulations that use multiple md@gldluminate possible challenges
that may arise in constructing thiensilation, (3) help in selecting the best tool to use for implementing
the simulation, and (4) assist in verifying the simulatiddditionally, future work involves exploring
different modeling formalisms and classifying them with respect to the taxonomy to provide another
option for determining how to handle simulation implementation based on the desired characteristics for a
simulation.
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