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ABSTRACT 

We describe basic research that uses a causal, uncertainty-sensitive computational model rooted in 

qualitative social science to fuse disparate pieces of threat information. It is a cognitive model going 

beyond rational-actor methods. Having such a model has proven useful when information is uncertain, 

fragmentary, indirect, soft, conflicting, and even deceptive. Inferences from fusion must then account for 

uncertainties about the model, the credibility of information, and the fusion methods—i.e. we must 

consider both structural and parametric uncertainties, including uncertainties about the uncertainties. We 

use a novel combination of (1) probabilistic and parametric methods, (2) alternative models and model 

structures, and (3) alternative fusion methods that include nonlinear algebraic combination, variants of 

Bayesian inference, and a new entropy-maximizing approach. Initial results are encouraging and suggest 

that such an analytically flexible and model-based approach to fusion can simultaneously enrich thinking, 

enhance threat detection, and reduce harmful false alarms.  

1 INTRODUCTION 

1.1 Purpose 

This paper illustrates how we have used a computational version of an originally qualitative social-

science model for basic research on heterogeneous information fusion bearing on detection of potential 

terrorists. The term “heterogeneous” highlights the diverse character of the information being fused—e.g, 

behavioral observations in an airport, prior-arrest records, and reports from agents of varied quality and 

reliability. The information is often qualitative, soft, conflicting, and even deceptive. The model assists in 

using such diverse and fragmentary information to piece together an estimate of the threat of terrorism 

posed by the individual. With respect to modeling theory, the paper illustrates the potential value of 

causal social-science models, assuming that they are  used with proper respect for both structural and 

parametric uncertainties. The context is assisting uncertain inference about threat, rather than making 

point predictions or issuing firm judgments. Such fusion necessarily includes considerable subjectivity 

and analytic artistry, but it can be given structure and rigor, and it can include extensive and useful 

uncertainty analysis. Such improved fusion methods could increase the probability of detecting the rare 

potential terrorist, decrease false alarms, and increase the probability of exonerating individuals who 

might otherwise be falsely assessed. Future work will determine how much can be achieved. 
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1.2 Background on Social-Science Causal Models 

Earlier work reviewed scholarly social science bearing on terrorism (Davis and Cragin 2009). That began 

a movement toward synthesis and causal analysis by introducing easy-to-understand “factor trees” 

identifying the factors contributing to terrorism and public support thereof, and how those factors relate to 

each other. Social scientists are excellent in identifying such factors even though predicting consequences 

is more difficult. Even initial factor trees can elicit further expression of knowledge. Expert viewers can 

quickly spot omissions and ambiguities. The iterated factor trees can then be useful “thinking models”—

i.e., conceptual models to structure reasoning and discussion. An earlier paper (Davis 2011) provided a 

primer on qualitative factor trees. More recently, case studies were conducted to “validate” a factor tree 

for public support of terrorism. The factor tree (Figure 1) held up well (Davis, Larson, et al., 2012) as a 

general qualitative theory with myriad context-specific specializations. The authors discussed what 

“validation” can mean here and focused on (1) tentative confirmation of factors (e.g., do the tree’s factors 

show up in the new cases as judged from polls, news accounts, diaries, and the writings of insurgent 

leaders), (2) tentative confirmation regarding causality and necessity, and (3) model enhancement (if new 

cases reveal some additional factors or somewhat different relationships among factors, this may best be 

seen as “refining” rather than “falsifying” theory). Humility is important because such models cannot be 

validated as in the physics laboratory. 

 

Figure 1: A factor tree for public support of insurgency and terrorism. 

Subsequently, in a step taken with trepidation because of conceptual challenges and the uncertainties 

involved, a computational model was developed from the factor tree of Figure 1 (Davis and O'Mahony 

2013). In doing so, the authors confronted the challenges of theory and method summarized in Table 1.  
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Table 1: Challenges and issues in moving from a qualitative factor tree to a computational model. 

Challenge Issues Issues 

Define factors and factor values How many values are sufficient (the binary case is too 

crude)? How can soft and fuzzy variables be defined? 

Define the tree’s “and” and “or” 

connections mathematically 

How rigid should the relationship be? How can uncertainties 

be represented? How many alternative functional 

relationships are needed? 

Define ambiguous and conflicting  

influences (+/– signs) mathematically 

What does the ambiguity mean? How can it be represented? 

Represent implications of line thickness 

in factor trees (not shown in Figure 1) 

How should relative importance of factors be understood 

and represented in the model? 

Represent uncertainty of factor values  Should this be done by giving ranges of parameter values or 

by using probabilistic methods? 

Represent structural uncertainty of 

combining relationships 

How can this be done? 

Build model for exploratory analysis 

under uncertainty and assessment of 

confidence in estimates 

How should exploratory analysis be accomplished? When 

should probabilistic methods be used? 

Implement model in understandable 

high-level language 

What language? How can the model be made transparent, 

comprehensible, and easy to re-implement for re-use? 

 

The Davis-O’Mahony report documents the solutions found and the rationale that led to them (see pp. 

73-84 for the mathematics). We describe them briefly as they apply to the work reported here. First, we 

define the factors (variables) of the model on an interval scale of 0 to 10, often using the discretized scale 

of 1, 3, 5, 7, 9 with equally spaced values corresponding to very low, low, medium, high, very high. With 

this type of scale (as distinct from an ordinal scale) it is legitimate to perform basic mathematical 

operations, albeit with caution. See, e.g., Carifio and Perla (2007) for a window into continuing debate. At 

the data-interpretation level it is necessary to have protocols defining how observables should map 

consistently into scale values. These will often use concrete examples for calibration so that a new 

observation can be compared subjectively  to those concrete examples before classing them as, say, “very 

high” rather than “high” or “medium.” It is an empirical matter to determine whether the results are then 

consistent. Such work is fuzzy but meaningful. 

The actual functions describing the combined effects at each node of a factor tree may be subtle and 

complex. However, we concluded that much can be accomplished with a combination of a few building-

block functional forms. Two, in particular, have been workhorses. They represent two more or less 

bounding ways to represent nonlinear effects of factors operating simultaneously. We call them 

Thresholded Linear Weighted Sums (TLWS) and Primary Factors (PF).  

The TLWS method is a minimally complex way to generalize from the binary-value concept that, if a 

binary-value node Z depends on binary-value variables X1 and X2 connected by “ands,” then Z is 0 (false) 

unless both X1 and X2 are 1 (true). The generalization is that if Z is determined by a vector of variables X, 

and we say that the elements of X are connected by “~ands,” then—as an approximation—we assume that 

each element of X has a threshold value, implying a threshold vector TH. By a threshold value, we mean 

that if Xi < THi, then threat Z, not just Xi, is as low as possible (0 on a continuous scale or 1 on a discrete 

scale). We then assume relative weights for the elements, defining a vector W. The TLWS algorithm, 

then, is 
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whereτ is a tuning parameter, which we have typically set to 2. The formula exhibits inconsequentially 

odd behavior for small values of P and S, but is otherwise a good heuristic. 

The ambiguous influences denoted by +/- in factor trees can be due either to conflicting underlying 

processes (i.e., those represented by higher-resolution variables) that will be resolved in time or by 

stochastic effects. 

Uncertainties can be represented by varying the factors parametrically, by using probability 

distributions, or both. In most RAND work on analysis under uncertainty the parametric approach has 

been favored because it retains visibility of cause-effect relations and defers assumptions about 

probabilities until the end of analysis (Davis 2012). An additional consideration is that the factors in such 

problems are often probabilistically correlated, which makes probabilistic work difficult.  

To implement the ideas Davis and O’Mahony settled on the Analytica® modeling platform for 

reasons discussed in their report. The most important was that it is a visual-modeling language largely 

understandable to people who are not “real” programmers.. Also, the platform makes it extremely easy to 

conduct exploratory analyses—seeing how outputs change as numerous input variables are changed 

simultaneously. Figure 2 illustrates this. It is taken from their work on public support for terrorism. A 

single display can show the simultaneous effects of numerous factors, allowing the viewer to see good 

and bad “regions” (factor combinations). Such uncertainty analysis can assist “robust decision making” 

for which a considerable literature exists, much of it using a computational search called “scenario 

discovery” to find such regions (Lempert et al. 2006). It is far more sound to identify desirable and 

undesirable factor combinations than to claim to predict precisely what public support for terrorism will 

be given numerous uncertainties.  

1.3 Background on Detecting Terrorists with Behavioral and Other Information 

The other background element for our current work was a study surveying critically the science and 

technology base for detecting terrorists with behavioral indicators such as seen by Behavioral Detection 

Officers (BDOs) in an airport, officers at a military checkpoint, or intelligence officers viewing a large 

crowd at a public gathering (Davis, et al. 2013). One of the study’s conclusions was that threat detection 

would continue to be very difficult and that a key element in any future success would likely be the fusion 

of many kinds of information. The study also concluded that the kind of information fusion needed was 

very different from that normally studied and that new research was called for on what the study called 

“heterogeneous information fusion.” This meant fusing uncertain information that might be qualitative 

and quantitative, hard and soft, reliable and flakey, legitimate and bogus (or even maliciously deceptive), 

and fragmentary. Further, the fusion should be expected both to improve the probability of detecting the 

rare terrorist and reducing drastically the false-alarm rates that tend to plague detection efforts and cause 

harm to those incorrectly identified as possible threats.  
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Note: Color indicates estimated strength of public support  from very low to very high. The five independent variables 

shown are personal risks, fear of insurgent victory, countervailing pressures, intimidation by insurgents, intimidation by 

government. Other determinants of the results are held constant in this figure. 

Figure 2: An illustrative multi-dimensional display of public support for terrorism. 

In subsequent research we began studying the fundamentals of such heterogeneous fusion. This is the 

subject of the remaining part of the paper,  but with emphasis here on the role that a model plays.  

2 HETEROGENEOUS INFORMATION FUSION FOR THREAT DETECTION 

We saw our research as addressing how to deal with the disparate classes of fragmentary and uncertain 

information. The challenges are different from those addressed in pattern recognition, machine-learning, 

predictive analytics and other data-rich empirical approaches that increasingly are exploiting “big data.” 

Our approach attempts to add theory, structure, and rigor to inference processes that not only have 

heterogeneous “data,” often sparse, but that must also include human subjectivism and analytic art. Our 

information fusion is perhaps akin to that of a fictional detective who uses fragments of information to 

piece together notions of whether an individual had the desire, means, and opportunity to commit murder. 

Solid empirical data should also be used wherever possible, as in establishing “base rates” for Bayesian 

inferences. 

In the following pages we discuss only one aspect of our research on heterogeneous fusion—the role 

of a causal cognitive/behavioral model, as distinct from an empirical-statistical model. It is fortunate that 

comparatively few terror plots occur in a given year in the US (typically fewer than 10) (Stom et al. 

2010), far less than would be needed to build a complex empirical-statistical model. Although our current 

model is deliberately static for simplicity, the causal models used might in the future be dynamic, perhaps 

incorporating elements of system dynamics and agent-based modeling. Indeed, a factor tree can be seen 

as a simplified snapshot in time of a systems dynamic influence diagram. In more data-rich environments, 

the kinds of issues that we are addressing would also be good fodder for Bayesian-net applications with 

which our approach has interesting although subtle relationships. 

2.1 Objectives for a Causal Model 

In classic text-book accounts of information fusion the signal received includes the information needed, 

although often amidst a great deal of noise. In assessing the threat of terrorism posed by an individual, 

however, the information obtained may be far removed from what we are interested in (is the individual a 

threat?). We do not observe the internal workings of his mind and, only seldom, does intelligence uncover 
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direct information about operational plans. Instead, the information may be about associations with other 

people, travel behavior, courses taken, or troublesome but ambiguous comments made in bars, emotion-

inducing meetings, or social media. It is from such fragmentary information that judgments must often be 

reached. The judgments should not be precise, but rather cautious estimates of relative likelihood. A 

primary objective is to identify those individuals who merit closer attention, whether passive or active, 

cautionary or preemptive. Some of those individuals will turn out to pose no threat at all. The desire is to 

focus resources on those individuals that are relatively likely to pose a threat. A second objective is to 

improve estimates of that threat potential over time so that those who are not threatening are recognized 

as such. To put it candidly, the intent is not just to put individuals on some law-enforcement watch list, 

but to remove individuals from such watch lists when appropriate. 

As recognized in Bayesian-net research, a reasonably good causal model is needed for turning 

fragmentary information into inferences about something larger. Relating this to the familiar, consider 

again the fictional detective who finds information over time relating to intent, means, and opportunity.  

The individual fragments mean little (except in the instance where the act of murder is observed directly), 

but combining the fragments can be very meaningful—so much so that it is a core element of our criminal 

justice system that the prosecution should demonstrate that all elements are present when attempting to 

convict an individual. 

2.2 An Example: the Propensity for Terrorism Model (PFT)  

2.2.1 Basic Structure and Definitions 

For our study we developed a variant of the model described in Section 1.2. As the name suggests, the 

Propensity for Terrorism (PFT) model focuses on the factors influencing an individual’s propensity to 

commit terrorism, and, thus, the threat posed by the individual. Although it has not been separately 

validated by social-science research, it builds heavily on the earlier work (Davis and Cragin (2009); 

Davis, Larson, et al., 2012; Davis and O’Mahony, 2013). Thus, it seemed to us a reasonably credible 

example to use in our research. The PFT factor tree is shown in Figure 3, albeit in a somewhat truncated 

form. In practice, we used only the top layer that asserts that the threat T posed by an individual is a 

function of that individual’s motivation (M), perception of terrorism’s legitimacy (L), capability-

opportunity (CO), and acceptability of costs (A). The model asserts that the threat posed is driven 

primarily by M, which could be for a cause, activity, adventure, etc. Moving rightward, we encounter an 

important but subtle concept.  

 We define L as the degree to which the individual sees terrorist violence (attacks on noncombatants) 

as legitimate if motivation is at or above its threshold level. This doesn’t mean that he is motivated. 

Rather, it is a definitional trick to improve the probabilistic independence of variables. With this 

definition, the magnitude of L reflects reasons for seeing legitimacy that hold even if there is no 

motivation (the reason may be sociopathy and a love of violence) and will approximate legitimacy if 

motivation is even higher than threshold. Errors in the approximation are irrelevant for motivation below 

threshold because they will not affect the estimate of T. There will be no error if the individual rejects the 

terrorist violence independent of M. The error that may exist is for the individual whose sense of 

legitimacy is motivation dependent. Our approximation assumes that the sense of legitimacy will not be 

much different if motivation is very high rather than medium (the usual threshold setting). Or, more 

precisely, we assume that the threat estimate T will not be sensitive to such differences. Similarly, we 

define CO is a measure of capability-opportunity for an act of terrorism, assuming threshold motivation 

and legitimacy. And, finally, A measures the degree to which the individual sees the costs and risks of his 

terrorist action as acceptable, given that he is reasonably motivated and has at least threshold levels of 

capability-opportunity and legitimacy. 
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Figure 3: A truncated factor tree of propensity for terrorism. 

The innovation of this unusual set of definitions simplified the problem: the definitions mean that the 

factors of the model are approximately mathematically and probabilistically independent. Thus, if 

  
Pr( M , L,CO, A)  is the joint probability for the four variables defined in this way,  

   
Pr( M , L,CO, A) ≈ Pr( M )Pr(L)Pr(CO)Pr( A)  (3) 

This is because, as defined, L, CO, and A do not depend on each other (although they depend on the 

thresholds). In practice, the quality of the approximation depends primarily on whether the values of M, L, 

CO, and A are estimated within the sprit of the factors’ subtle definitions. A given source of information 

on M and L might, instead, estimate L as being high because that source believes that motivation implies 

legitimacy. If so, the data will be correlated even though the theory depends on it not being. Because of 

such possibilities, our method includes mechanisms for over-riding Eq. (3) to insert specific correlations 

where they are recognized. Also, our method includes adding parameterized correlation functions to see 

how strongly threat assessments depend on the assumption of independence. At a meta level, we are 

working on methods accounting for correlations across reports, as when they stem from sources with 

shared biases. 

2.2.2 Beyond the Rational Actor 

Another innovation was that the model structure of Figure 3 is deliberately not that of the rational-actor 

model. A rational actor would merely compare costs and benefits of different actions, focusing on their 

subjectively assessed “expected value” as implied by a utility function and notions about the 

consequences of options. That approach does not adequately capture important aspects of human decision 

making. In particular, individuals are often driven by emotions to do things that in retrospect they regard 

as unwise. Individuals also make numerous judgments based on wired-in heuristics that incorporate 

cognitive biases reviewed in Daniel Kahneman’s book for a broad audience (Kahneman 2011) and his 

M: Motivation for
Cause, Activity...

L: Perceived legitimacy
of violence

CO: Capability and
opportunity

A: Acceptability of
costs and risks

~ands

T: Threat Posed

Attractions Duty, honor Rewards Religious, 

ideological, 

ethical beliefs; 

intolerance

Revenge, 

necessity,

desperation

Cultural 

propensity 

for or 

acceptance 

of violenceIdentity

Personal risks 

and opportunity 

costs

Countervailing 

social costs and 

pressures

Assessments

Talent, skill, 

weapons…

Access, 

mechanism…

(personal or through

organizaton)

Grievances, 

aspirations

Unaccepatable 

group behavior

Impulses, emotions, social psycholgoy

Other environmental factors

ors ors
ors

ors

--
+/- +/-

+/-

-
Lower-Level Influences

Notes

1. “ands and ors” apply strictly only to binary case

2. (+),-, +/-: influence is positive, negative, or a mix

3. Lower-level influences may affect multiple nodes
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earlier Nobel Prize speech (Kahneman 2002). In contrast, other important sources discuss the benefits of 

intuitive or naturalistic decision making despite human “biases” (Gigerenzer and Selten 2002; Klein et al. 

2006a; Klein et al. 2006b). After years of sometimes acrimonious debate, scientific closure is occurring 

between those who emphasize watching out for cognitive biases and those who emphasize the virtue of 

intuitive decision making. The answer is that “both are right,” but that the balance depends on context 

(e.g., deliberate decision making in peacetime versus the heat of battle). Some of this is reflected in 

Kahneman’s 2011 book, but an earlier review written while the debate was still hot draws implications for 

decision-aiding that are still valid (Davis et al. 2005). 

Another fundamental problem with the rational-actor model is that it depends on the individual 

having a stable utility function, with the actor not changing what he or she is trying to optimize over time. 

In reality, de facto utility functions often emerge from the course of events. As a result, they may be path 

dependent and temporally unstable as new events occur and context changes.  

It is sometimes noted that more nearly realistic results can be obtained with the rational-actor model if 

the utility function captures such individual values as altruism and religion. For example, some terrorists 

truly believe that martyrdom will mean a bliss-filled eternity, will serve a deity, and will advance the 

cause of which the individual is part. That, however, does not address the instability problem. Suppose 

that an individual acts in the moment believing that his action is appropriate, but—a month later— 

realizes that it was foolish, wrong, or even evil. Yes, one could say merely that his utility function has 

changed, but is that useful? Is it not better to acknowledge that such individuals do not have stable utility 

functions? That said, the PFT model incorporates  rational-analytic decision making  as a special case.  

Such issues are discussed in a recent National Academy report (National Research Council 2014, 

35ff) to which one of us (Davis) contributed on this subject. It points to a significant literature (page 36), 

including a thoughtful book on deterrence theory (Morgan 2003) that discusses how political leaders often 

do not even know their values and utility function until after engagement, debate, negotiation, and 

iteration. This is closely related to the phenomenon described in the literature on “wicked problems,” 

which notes that solutions often emerge rather than being the predictable solution to the original problem 

conception (Rosenhead and Mingers 2002).  

2.3 Alternative Fusion Methods 

Because our application is so different from that in more usual data-driven work and because of the 

heterogeneity of information, we had to develop a number of alternative fusion methods. These drew, of 

course, on the classic literature of Bayesian analysis (Gelman and Shalizi 2010) and Dempster-Shafer 

theory (Shafer 1976), and also the more recent Dezert Smarandache theory (Smarandache and Dezert 

2009a; Smarandache and Dezert 2009b), and several others as surveyed briefly in our earlier work (Davis, 

Perry, et al., 2013).  

We considered five types of fusion method: (a) purely subjective, (b) nonlinear algebraic, (c) 

Bayesian, (d) quasi-Bayesian, and (e) a new entropy maximizing method (MEMP), which actually 

optimizes a weighted sum of entropy-maximizing and penalty functions. We also paid considerable 

attention to Bayesian-net methods, although we did not employ them because most related research 

focuses on data-rich circumstances rather than those of our study. Nonetheless, the literature is highly 

relevant and some Bayesian-net approaches also emphasize the core importance of underlying causal 

models (Pearl 2009).  

We had to derive novel features for methods (a)-(e) because of our context. Our nonlinear algebraic 

methods make use of the TLWS and PF methods discussed earlier. Our Bayesian method required us to 

concoct alternative “generic” likelihood functions and to demand that analysis experiment with the range 

of such functions because the “real” likelihood function, to the extent that it exists, is often unknowable.  

Our quasi-Bayesian approach is a variant in which the fusion analyst is urged to construct a subjective 

context-specific likelihood function. A “sticky” variant of the Bayesian methods allows the analyst to 

hedge by sticking—to some extent—with the prior assessment rather than replacing it with a Bayesian 
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update. This is a special case of how our fusion methods have to account, yet again subjectively, for the 

credibility, salience, and ultimate reliability of the various reports on an individual. Finally, we introduced 

a new approach that pivots from the perspective of information-theory entropy. Technically, the approach 

(developed by Hollywood) uses nonlinear programming for fusion. It maximizes an objective function 

that includes a weighted sum of entropy-maximization terms and terms minimizing contradictions with 

reports, such as a claim that a person’s motivation is in the medium-to-high range, but no lower or higher. 

The method yields estimates of threat level that are as conservative (i.e., uncertain, in an information-

theoretic sense) as possible given what has been reported, but with recognition that the reports’ assertions 

may not be correct (i.e., they imply “soft” constraints. The method has no difficulty fusing directly 

conflicting assertions and does not depend on the order in which reports are processed. Further, its 

complexity grows rather slowly with the number of assertions rather than exponentially, as with other 

fusion methods.  

Another significant aspect of our approach was to design for analytic flexibility. For example, we 

recognized that, depending on the information available, it may be better to fuse first at the factor level 

(improving estimates of factors across reports), to estimate threat in each report and then fuse those threat 

estimates across reports, or some mixture. Further, we sought an approach encouraging competitive 

streams of analysis with different causal models, assumptions, and analyst judgments. Fusion across 

streams might be needed occur early, along the way, or only at the end. Thus, the approach and the 

software platform for experimentation had to allow for and facilitate analytic artistry.  

3 ILLUSTRATIVE RESULTS SUGGESTING A VISION FOR HETEROGENEOUS FUSION 

To pursue our basic research on heterogeneous fusion we constructed synthetic data reflecting the kinds 

of fuzzy, ambiguous, conflicting, and sometimes misleading information that might be available in a real 

application. This served a function analogous to scenario spinning in other fields. Figure 4 illustrates 

results for one cases. Figure 4a shows the probability densities obtained after fusion across reports in 

Stream A of analysis of the threat posed by an individual named Harry. Results are shown as a function of 

fusion method used to fuse across reports. Figure 4b shows an aggregate summary: the mean probabilities 

that Harry is a threat (T between 6 and 10), in the gray area (T between 4 and 6), or a non-threat (T 

between 0 and 4). The “slicer bars” at the top indicate major contributors to the result beyond the choice 

of fusion method. For the example, the TLWS method was used to estimate threat by combining factor 

values, factor values were fused first before estimating threat, nominal threshold values were used in the 

TLWS calculation, the reports were processed in the order received, Bayesian calculations were 

accomplished with Quasi Bayesian likelihood functions, report weights were entered factor-by-factor for 

each report, and the primary-factors calculation ignored reports with quality factors below 0.5. Such 

parameter values can be changed interactively by clicking through their menus (note arrows). This is 

exploratory analysis, i.e., viewing results as a function of numerous variables as they are changed 

simultaneously. Other inputs are also uncertain, but are suppressed for the example. In some of our 

synthetic cases, the threat assessments are even more starkly different as a function of fusion details. It 

sometimes even matters in what order reports are processed because of heuristics and simplified 

likelihood functions. Such details are irrelevant here but the examples illustrate how in our work 

uncertainties are highlighted, rather than suppressed. For the example, there are substantial differences in 

result across method (and the values of the other variables). When that occurs, the analyst needs to go 

back into details and judge which of the methods and assumptions are likely to be most and least reliable, 

or most apt, for the specific context.  
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a. Probability Densities b. Probabilities of Being Threat, Non-Threat, or in 

Gray Are 

Figure 4: Illustrative results from prototype experiments.  

4 CONCLUSIONS 

Our initial experiments were gratifying. The methods were falling into place, the prototype analytical 

platform was operating, and we saw significant and useful consequences of going about heterogeneous 

fusion in different ways. This was “good,” not “bad,” because in this domain it is necessary to experiment 

with different ways to process information and different assumptions within the process of doing so. In 

our domain, analysis would be different in a context of trying desperately to identify individuals most 

plausibly posing a threat, so that resources could be immediately allocated to look into them, and in a 

more usual context of attempting to objectively assess the threat posed (or not posed) by an individual. In 

the former case, one would be “looking for trouble” and interested in distributional tails; in the latter case, 

one would concerned about characterizing knowledge as fairly and soberly as possible. In still other 

cases, the analysis might be about identifying what fragment(s) of information have been pivotal in 

identifying someone as a threat. With knowledge of that, it might be easier to spot inappropriate leverage 

of very dubious information or to identify what new information might lead to exoneration.  

Although we are still speculating about what may be possible, our initial theoretical work and 

experimentation has been encouraging. Perhaps needless to say, much remains to be accomplished. Most 

obviously, we need to experiment using “real” data and interacting with “operators.” We are merely at the 

beginning of what should be years of research into heterogeneous fusion. 
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