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ABSTRACT

A variety of metamodelingoncepts, methods, and tools are available to today’'s modeling and simulation
community. The Model Driven Architecture (MDA) framework enable®delersto develop platform
independent model which can be transfmed to platformspecific models. Considering model
development according to the MDA framework, structuretamodelingis simpler as compared to
behavioal metamodeling. In this paper, we stigtt on and introduce behavionaletamodeling for atomic
DEVS model.Behavior specification for an atomic DEVfSodelis examined from the standpoint thie
MDA framework. A thredayer model abstraction consistingraétamodel, concrete mogdahnd instance
model is described from the vantage point of f&/S formalism and theEclipse Modeling Framework
(EMF), a realization of MDAA behavioal metamodelfor atomic DEVSmodel is developed iEMF
Ecore This metamodelis introduced to complement the ENIFEVS structural metamodelingsome
observations are discussegarding behavial metanodeling, modeValidation and code generation

1 INTRODUCTION

A variety of methodamay be usedtrepresentime-baseddynamics of systemsThe behavior of a system

for example, can be modeleding setheory, UML diagrams, and pseudo codacEkind of model serves

certain purposes and musitimately be mapped to programmingode suitable for executiofin one or

possibly multipletarget simulatorsA mathematical model is useful for defining a system’s structure and
behavior independent of software design and simulation technologies. UML Class and Statecharts diagrams,
among othersare useful for designing complemodeling and simulatg engines which may or may not
necessarily have mathematical groundi@gmputer code can be developed and/or partially generated based

on mathematical or certain kinds sfftware specifications.d€h of these methods has its strengths and
weaknesses and nonecigrentlyconsidered to contain all the necessary capabitiétgsred for generating
executable simulation code.

The atomic and coupled models in the DEVS formal{@®igler, Sarjoughian, and Au 199@je
“metamodels From the standpoint of MDA, DEV8asan abstract syntax and an execution semantics
which together define a modeling language for discrete event systems. Theasetic DEVS models are
abstract mathematical artifactsn atomic DEVShas its elements defined, for example, as sets, functions,
and relations. These model eleméntividually and collectivelysatisfy certairgeneralabstraciproperties
and constraints. For exampée model can receive a finite numlzgrinput events within a finite period of
time at arbitrary time instances, process these inputs with state changes within a timanuigenkrate a
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finite number of outpuevents.lt is the responsibilityof the modeler to show that the developed atomic
models for a given target simulator satisfy the properties and conform to the constraints defined for the
DEVS atomic formal specification.

In the MDA framework a concreteatomic DEVS model for a systemcomponent relative to its
metamodel has specific structural (e.g., inputs amsthtes with possible specific values) and behavioral
elementge.g.,state transitionfor specific source and target states with assigned times to next evasts).
metamodeis a language within which concrete models can be developed. Furthermore, a corbeéte mo
may also satisfy constraints such as state variable types and state transitions sanctioned for specific
application domainskull-fledge behavioral DEVS$netamodelingcan support automatic conformance of
concrete models to their metadels This capability can significantly reduce the amount of manual effort
required to show concrete models satisfy their metanmpwdpkrties and constraints.

From a tool’'s perspective, a simulator such as DBUEe (ACIMS 2015)is designed as a collection of
UML classifiers and relations that capture some aspects fetiieeoretic atomiand coupled parallel
DEVS modek. These models can also be collectively referred to as a DBEMBE “metamodél The
inputs, states, and outputnd internal, external, output, and time advance functioihthe modelare
defined abstractly; they by themselves are not executable. For exdneplgata structure for input is
defined as a pair (pertame and inputariable) where port has a stritygpe and input variable has an entity
type. Similarly,the external transition function is defined as a method with specific arguments, but without
any actual implementatienfor the state transitions and conditions under which they are to be performed. As
in its mathematicatounterparta concrete atomic model must have instances of then@aoe and input
variable attributes belonging to the UML s$t&sand interfaces. The realization of the formal DEVS models
as UML specificationss advantageous. UML includes abstractions such as data typing, return types, and
control structures that enrich the abstract atomic DEVS model specificdti@se modelscan be
transformed to partial coder programming languages using professional tools dating baak 1990s.

Simulators such as DEVSuitedo not explicitly account for domagpecific modehg. A modeler can
develop domaispecific models using objeotiented modeling principles and design patteffise
domainneutralcontractsembodied in the DEVS UML modetsan be enforced in andwc manner using
low-level techniques such as checking for data type compatibility and expected values for conariste mod
that are implemented in some specific programming langu@bese contractsannot account for domain
specific knowledge; thesnust be extendedhis approach becomesmplicated and unwieldys scale and
complexity of thesystem to be simulated increase. Such resustinglatordackrich capabilities to support
and develop domaitspecific metamodelsind also areunable to validate basic modptoperties and
constraints such as data typing and legitimate state transitions, for exdipdebased modang,
however,can lenditself to develop and automatically validate behavior of any doespecific DEVS
concrete model against iteetamodeand by extension the genemlrposeatomic DEVS model

Given the above discussionge can make a few observatg\When concrete atomic DEVS models
are developed using programming languages, it is difficult to ensure they conform to their abstract model. A
substantial amount of effort is requireddoncretize behavioral abstractiofitierefore, it is important for
the metaand concrete atomic modetls be systematically related to each other as proposed in the MDA
framework This is especially important given thtae challenging part of developing models of complex
systems is specifying thdiehaviors.Therefore we need an atomic DEVS metamodédich can support
behavioal modeling(e.g., receivingsanctionednput events and legitimatgate transitions with timing)
Toward this goglwe proposdéehavioral metamodelinigr the generalpurposeand domairspecificatomic
modelsusing the Eclipse Modeling Framewdi&teinberg et al. 2008Consistency between these models
can be specified and enforced (referred to as validated) with automation. Concrete modetgenanabed
from theirdomainspecificmetamodelsBehavios contained in these metamodels sggnificantly reduce
the amount oéffort to create concrete modeind improve their qualitysing automated code generation.
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2 BACKGROUND

In this work, our goal is to develop concepts that can enable buddiragmeworkcapable of specifying
metabehavior foratomicDEVS modelghat can be used weateconcreteatomic DEVSmodels Toward
this goal, we employ Modddriven Engineering (MDE) and in particuldhe MDA frameworkwith its
EMF realization Although there are a variety of DEMfased modeling and simulation tools, in this work
we use th®EVS-suite simulator for developing the proposed behavioral DEVS metamodel

21 MDA and Modd Layers

The Model Driven Architecture (MDA) framewoitkas been proposed fdeveloping software systems
(OMG 2003) Its main concept is a folamyer model abstraction hierarchi.key abstraction concept in
MDA is for a classifier and its instances to form a #iager hierarchy. A classifier has an abstract
specification that can have one or more instances. Classifiers can be said to be universal and instances can
be said to be specific. Every classifier is at a higher level of abstraction in relation to its inettanees
arerelated to one or more classifiar® conformance relationship. This implies having complementary
modek each of which having certain role to play and collectively provide a disciplined roadmap for
developing softwaresystems. Each diherlevel layer provides capabilities that are more abstaact
compared to those provided by lowevel layers. Conversely, each layer is built using the elements
providedin the layer above.

A realization of the MDA approach consists Mieta Object Facility (MOF), Unified Modeling
Language (UML), User Model, and User Object modeling lag@€dG 2003). At the ratametamodel
(M3) layer,the MOF has an Eore specification for defining etamodelsn the OMG’s family of MDA
languages. Defined using the UNthetanodel, the M3 layer supports computatindependent metadata
management, metadata services, model management, tag cajeatulitgflective operations among others.
The metamodeM2) layer can havenodelsthat conform to the M3 layeiThe M2 layer is directed at
platformindependent modeling. These models canldmmainspecific. The Ecore at the M2 layer can be
used to define concrete modelstatM1 layer. The MO layer is used define instanceof modes specified
at the M1 layer. The M3, M2M1, and MO layers support incremental development of models for
componenbased systems. It is useful to note that the separation of concerns in MDA is important for
developing software system tools including sirtaris

22 DEVS Atomic Modd

The settheoretic specification of parallel atomic mod€)S, Y, 5.x¢, Sints Scons, 4 ta) is domainneutral.

Its input and output are defined in terms of pwaitnes and variables. The variables candobitrarily
complex.Atomic models are responsible for handling differences in the input and output variables. From
softwaredesign appropriate /O type consistency is required. For anydefered(and domairspecific)

model, theinternal, external, and confluent, time advarase output functions camavearbitrarylogic as

long as they satisfy the abstract definitions provided in the mathematical atmuéd specification A

restricted specification of parallel DEVS called Finite Deterministic DEVS-EYS) (Hwang and

Zeigler 2009)has been developed. Events and states are defined to be finite sets and external and internal
events are allowed to occur at time intervals restricted to rational numbers. No time interval between one
event and the next can be infinitely small. This is achieved by abstracting time to be rational instead of real
numbers. When states are simple, possible state transitions can be enumerated and unreachable states
identified Theserestrictions can simplifynodel validation fothe EMF-DEVS modeling describetkext.

2.3 EMF-DEVS Atomic M od€

The EMFDEVS (Sarjoughian and Markid 2012 proposed as metamodelingapproach for thearallel
DEVS formalism. The basic ainms to define and validate DEVS metamodetsng the Eclipse EMF
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framework. The EMF validation infrastructure is used to define the elements of DEVS models with a set of
constraintsdefined according to the DEVS formalism and the target DESUBe simulator which is
implemented in thdava programming languagerugturesof atomic and coupled mef2EVS models can
be modeled and validated. The generic capabilities provided in the EMF M3 and M2 layers are extended to
supportconcrete models for thBEVS-Suite simulator. The EMBEVS metamodelcan support input,
output, andstate sets as well as external, interoaltput and time advance function¥hese abstract
functions(8,x¢, Sints Sconsr 4, ta) do not include the logic that necessary tadefine behaviors. For
example, the external transition functiéyy, doesnot definea generic transition frora source state to a
target statevith constraintand the output functioh does not define conditions for generating outputs.

In the context of metamodelings in EMFDEVS, the term validation refers to the Eclipse EMF
validation framework and its execution engine. The Eclipse EMF hadrbuddidation mechanisms such
as reflection for the metamodels the M2 layer Metamodelsat the M2 layer can be validated for
conformance to thmetametamodel at th#13 layer. Concrete models at the M1 layer can also be validated
to conform toDEVS metamodel. Here validation does not refer to executionroétamodelbver some
period of time and determinghether or not it produces behavior per user requirementsxgedtation.
Given a concrete simulation model (M1 layer), it can be verified to be specified correctly both in terms of
M1 and M2 layers. Wen executed over some period of time and its behavior is recogsizeteptable
for some defined experimental condition, the model is said to be valid. With respect to the verification and
validation definitions for concrete models, the EMEVS validation may be referred to as verification
when a metamoddias domain knowledgée.g., external transition function h#fse necessary control
structure and other details to specify next state of a model given its current state and received input)

3 RELATED WORK

In this section, we primarily focus dmehavioal DEVS atomic metamodeling armtiefly considerthe
extentin which detailed specifications can be suppotidadeldriven designapproachebave beemplaying
a greaterrole in developing complexsimulation modelsFocusing our attention othe OMG MDA
frameworkand DEVS, we find some approaches that follow M@F Technology SpacéBézivin and
Kurtev 2005) In (Lei et al. 2009), HEVS metamodels devised fordevelopingSMP2 (Simuléion Model
Portability standard)This metamodelis mappedto SMP2 metamodelusing QVT (OMG 2003) Basic
simple states and state transitions for atomic DEY&del are supportedn (Cetinkaya, Verbraeclkand
Seck 2012), structural DEVS metamodeling can be supported. As iFDBWIS, behaviospecificatiorfor
atomic DEVSmetanodelis not supported (see Section 2.3)

In the MOF technology space, some works have empl®dS Natural Language (DNL), XML
Schemaand Extended BNFor defining DEVS models.Thesesupport behaviorahodeling using mostly
the same ideas dmmethods The MS4Me (Seo et al. 2013fpcuses on modelingsingDNL (Zeigler and
Sarjoughian, 2012)The DNL as metéanguage supportSinite-Deterministic DEVSmodels(Hwang and
Zeigler 2009) MS4Me useXtext (Xtext 2013)to enforce DNL ruledor simple inputs, outputs, states, state
transitions, and timingAs amodern Javdike language, Xten@Xtext 2013)supportgddeveloping=D-DEVS
models. The MS4Memodels can be augmented to become Parallel DEVS madéhg the full
expressiveness the Java language. It suppartidingJava code to the modahd thus developinBarallel
DEVS models while maintaining a tight connection with the[MEVS models TheJava code is injected
into slots in a structured manner using tagged code blocks. @ledaserted directly into the generated
source files These tagged code blocks are used to specify additional behavior for initializing, internal
transition, external transition, and output. Compared wittDEYS, classic or parallel DEVSadels that
havethese kinds of code bloclkse difficultto validate. The DEVSML (Mittal, RisceMartin, and Zeigler
2007) is developed to for DEVS simulation models that can be executed-tentrdt computing
environments.

Someworks employSysML (Nikolaidou 2008)and UML (Borland 2003)RiscoMartin et al. 2009)
(Mooney and Sarjoughian 200®asqua et al. 20123 SysML profile is developed for classical DEVS. An
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atomic model is defined as a collection of stereotype blocks. The behavior is defined by States Definition
and Association diagrams. Atomictérnal and kternal diagramsire defined for the internal and extdrna
functions, respectivelyThe time advance and output functions are defined as part of the Atbenial
diagram. Similar to the above approaches, simple statecaviliraintsare defined.The external diagram
follows FSM with control elements such as choice, ,farid join elements. Time allocated to states can
only be defined in the internal diagram. The DEVS SysML profile and DEVS MOF are intrinsically
different due to their technologpaces.There exist other approaches that use “metamodeling” abstraction
(Fard and Sarjoughian 201fghoroje, Maiga, and Traoré 201#& Lara and Vangheluw2004) A survey
discusses uses of solE approaches for DEV@sarredu et al. 2014)

4 ATOMICDEVSMETAMODELING

The mathematical properties and constraints definingammic DEVS model can be applied tony
implementation ofit. Therefore, it is useful to have frameworkthat cannot only capture the atomic
model's formal specificatiolfi.e., a metamodel)but also enforce its syntax and semantics for domain
specific metamodels. Another important advantage is to define models independent of any particular
simulator—i.e., metamodelgan be transformed to concrete models that can be execusiacuiatas that

are implemented in specific computing platforms. This framework must (help) vatielteiorof any
concrete atomic DEVS model against its metdeh. To achieve this, we propose introducing behavioral
metamodelindo structural metamodeling. Thiesultingmetamodelingramework mustlsolend itself to
developingmetamodelsor modelers’domains of interest This framework is also desired to support
defining domairspecific concrete models fdesired systems.

We intuitively define behavioralmetamodelingas a set of concepts realized in a framework that
supports specifying operational details of ifiernal, external, output, and time advance functafreny
atomic DEVS modelThese generioperationscan be used to defingehavior forany donain-specific
DEVS metamodelDomainspecificbehaviorcan be specifiely extendinghe generic DEVS metamodel
behavior. That is, behavior of these functionsdafned independent of computing platforms in which they
can be fully implemented. The properties and constraints in the doewtiral and domaispecific
functionsfor the concrete models cée validated. The properties and constraints of the functibias are
not satisfied in any concrete model are automatically identified and reported.

Figure 1 illustrates the concept of “metaihd “concrete” mathematical and UML modeling. The
structure, unlike behavior, of mathematical atomic and coupled DEVSsraatebe completely specified
both abstractly (as a metaxdel) and concretelyag aconcrete model). In mathematical modeling, a
concrete model has more information relative to its medain In themetamodel$,, §in¢, Scong, 4 @and
ta functionsareabstract mathematical construdibe abstract atomic DEVS model functions do not have
sufficient details, for example, as in Statecharts. Indeed Statecharts also does not capture dhdeéiél
in the functions that an arbitrary atomic aiebcanhave. In contrast, arbitragpncrete atomiodelsmust
have details includindecision logics and control thestate, output, and timing functians

The concept of meta and concrete models in UML are distinct as compared with the ones just described
for a mathematical model. While UML metamodels are independent of computing platforms, concrete-
models are not. Separating models to be platform independent and plgifmific is important (see
Section 2.1). Meta models are technology (simulator) agnostic. Concrete models include details that are
specific to target simulators. The meta and concrete models can be related to one another.

Focusing on behavioral modeling, the line arrows from the concrete model and metamodel are
conceptual. For mathematical modeling, one may construct relationships to show, for example, state
transitions in an external transition function in a concrete model conform to the abstract external transition
function specification. In UML modeling, one can include rules that can be applied to concrete models. The
block arrows at the metamodahd concrete model levels involve complex modeling and software
development tasks, requiring detailed design and code development.
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Considering the distinct roles mathematical and UML modeling offer, a desirable goal is to support
both. The EMF framework (Steinberg et al. 2088 strong candidate as it already supports UML meta
and concrete modeling and it can support developing specific metamodels as-DEM3FIn particular,
the relationship between meta (M2 layer) and concrete models (M1 layer) is formalized. Furthermore, the
EMF includes the metametamodel (M3 layer) and instance models (MO layer). Given these, we extend the
EMF-DEVS (Sarjoughian and Markid 2012fructural metamodeling to enable behavioral (functional)
metamodeling.Generic and domaigpecific metamodels with builh and usedefined properties and
constraintsfor the external, internal, output, and time advance functoassupported. Modelers may
develop metamodels in a structured setting, thus leading to automation of metamodel vakddgifimed
in EMF. (We note that validation is not referring to simulation validatioondgaints defined for the
generic and domaispecific atomic DEVS metamodels enable validating concrete atomic models.

41  Meta-behavior Modelingin EMF

We begin by sketching the badietailsof the M2, M1, and MO layersor the atomicDEVS model shown
in Figure 1. At the M2 layer, theEcoreis aninstance of the Ecore at the M3 lay@the M3 Ecore
metamodelis at a higher level of abstraction with respect to the at@&WS metanodel. That is, the
DEVS metamodekxtends the instance of the M3 Ecdrbe role ofthe M2 layer is to support developing
concretemodels at the Miayer.

EMF Model Layers q
| Ecore |
General DEVS meta-model |
Mathematical umML
:
]
E:) meta Domain-specific DEVS meta-model |
|
structure ¢
confarms ra
3 T I
| [
1 | Concrete domain- -
1 i specific model =
. 1
Mathematical > [ uUML ] concrete conforms o
I
Model instance g
e o

Figure 1: From mathematical to UML to EMF modeling.

As noted earlier, the DEV,Suite simulator is developed in Java, a strongly typed language. The kernel
of the modeling engine contains data structures and operations that satisfy the DEVS modeling formalism.
Thus, at the M1 layer, usdefined models can be generated from the DEM&moda. Suppose we want
a Processomodelwhich can receive bags of input, process one of them, and generate one or more outputs.
Assuming we havan eProcessometanodel,it can be used to create tbencrete Processor mode&his
concrete model at thell layer can be created for a platfegmecific simulator such as DEV&iite An
instance of the concrete model at kh@ layer can be executed by the DESSite simulatar

In MDA, the MO layer refers tdhe instances of the user models. These can be physical objects or
executable software objects (e.g., compiled code). Such instances can be modeled as UML Object diagrams.
As software objects, they can exist at execution time and their states may be stored, for example, as XML or
byte code. In contrast, for simulatictme MO layer refers to the user's parameterized atomic and coupled
modek. Therefore, at this layer, we have not only parameterized models but also their instances as part of
othercoupled nodelinstancs (see Figure 1)
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Although metamodeng is notasexpressive as programming languages such asitla/ahown to be
useful, for example, as e Graphical Modeling Framewor{Gronback 2009). The metamodethaior
specification for DEVS functions @chievable using Statechaftdarel 1987) The elements of a parallel
atomic model at M1 can be arbitrardpgmplex An example is the external transition function. It can have
any attribute type expressionsand control structurethat a target computing platform supporihie
signaturedefinitions for the atomic model external and internal transition functiansbe defined using
structuralmetamodehs in EMFDEVS. The abstract definitions for these two functions must include some
operations needed to result in scappropriate state chandggatechangesn these functions can loefined
as transitionemongst source and target stafegansitionmayhave input eventondition,and actionsA
prototypicalstate transitiors defined to transition from a source state target state. Sudaconstraint for
state transitions can be defined and validated at the M2 Hyeroutput and time advance functions can
also be defined using operations and control structures. An operation can have attributes and statements
(McNeill 2008). Ametamodebehavior specification requires identifying abstractionstate transitions in
the external, iternal, and confluent transition functior@milarly appropriate abstractions are needed for
the output and time advance functi@ighe M2 layerThebehavior of all DEVS functions as just described
can be validated using EMFhe definitions for the atomic model functions must be consistenttiagth
abstract DEVS simulation protocol

In order to model the content of EOperation, we need to extend the EMF Ecore metamodel (McNeill
2008).Therefore, we will extend the Ecore metamodel to model DEVS functions that have been defined as
EOperations (i.e., interface definitions) in ENDEVS. Our goal is not just to validate domairetamodels.

We also aim to execute these functiafter concrete models are generated fgpexific simulator, DEVS

Suite for instanceThe code generation creates the corresponding code for the defined elements in the
metamodel. In EMF, the generator model plays a significant role in how the resulting code could be
generated and organized via some settings that may differ based on the targeted platform. Those settings can
be configured separately to ensure that the model maintains its platform independency. The process can be
manipulated in a way that will lead to producing coreecrabdels.

Thus, the general metamogdshown in Figure 2extends the EMF Ecore metamodéth some
definitions for state transitions, actions, and conditions, basic elements of the atomic DEVS model. The
metamodelextends Ecore elements with DEVS funeioand also others for defining behavior. By
extending Ecore, we are enabling EOperation (which is used to define DEVS functions) to include some
content which can be transformed into concrete code rather than just having operation signatures. The
extended=Operations will be contained in the extended EClass (eAtomic in our case) since they cannot be
contained in EClass itself. This is a reason for extending EClass and EPackage since the Ecore elements
themselves (EClass and EPackage) will not allow adding the extended ones (Extended EClass and
EOperation)McNeill 2008) Therefore, we first extend EOperation as a basic step to support behavioral
DEVS metamodeling. Second, we extend EClass to allow adding the extended EOperation. The third step is
extending EPackage to allow adding the extended EClass

The second part of the metamodel (shown in the middle of Fiyisesgecializing eDEVSOperation to
represent external transition, internal transition, output, and time advance functions. All of these can include
operations that have statements and local variables. They also may have return values. The eDeltExt and the
eDeltint represent external transition and internal transition functions. Both compose transitions defined to
capfure the concept of state transition. State transition has a name defined as an EString, source and target
defined as an ETypedElement, input defined as an optional reference of type elnput to be used in the
external transition function. It can also haeene actions and conditions. We also added two specialized
state transitions for the phase and sigma primary states. Source and target phase are added to the state phase
transition (StatePhaseTransition) and defined as an EString. Source and target states for sigma are added to
the state sigma transition (StateSigmaTransition) and defined as an EDouble. Any other specific state
transition can be also defined in the same manner for domain specific models. The bebanistsntly
captured at the generahdh domainspecific metamodehg at the M2 layer The genericbehavioral
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metamodels predefined for the modeler. The domain specific hetavior can be defined by the modeler

as needed. The same approach is followed for the actions and conditions that are defined abstractly and then
specialized to provide the support for developing the behavior at the concrete model. The eOutput and eTA
elements refer to the eState in addition to the inherited composition feature from eDEVSOperation to
support having other operations for more functionalities.

# GEnEraIBeha\rinr‘ 8 DEVSStructure | =
- =pT— - H Edass E EPackage
T & i ot
- e | L. | |
| J E estomic | { [E| eDEVSPackage |
| EOperationImpl [ J | J
[0..*] eoperationimpl ¥
-
[0..*] localvariable b
[0..*] inputs
[0.1] returnType [ etoData e
[0.1] output [L..1] state

[ statement

H Localvariable [0..1] localvariable oy
[0..%] statement H estate
[3.1] input [1.1] state

m [i.1] state | [1.1] state
N N T
$DEV'SBehavior| | | |
[ eDEVSOperation

IE] [ [#] [#]

[ stateTransition

0. actions : E] eDeltext | ‘ E] eDeltint | g et E eoutput
= name : EString [2..*] extTransitions | ‘ |
IEd £}
|" [2..”] infTransitions ?

0. canditions [ 1))

| [ stateSigmaTransition | | [ statePhaseTransition |
H Condition
= spurce_sigma: EDouble = 0.0 = source_phase : EString
o target_sigma : EDouble = 0.0 o target_phase : EString

Figure2: A metamodefor atomic DEVS Model with state transitions.

4.2  Constrained Meta-behavior Modeling

The metamodekhown in Figure 2s based otthe parallel atomic DEVS model. This model has an infinite
statespace and therefore model validation (as in model checking) is impractical.-dasslof DEVS
called FiniteDeterministic EVS (FD-DEVS) (Hwang and Zeigler 200%as finite statespace which
makesit attractive for behavior modeling at the M2 layer. The total state aitdineic DEVS metamodel
can be defined dprimary} X {secondary} X R[p ]. An atomicFD-DEVS model restricts theange of
values for the timadvance function t®,.). Model validation is computable when thalues for inputs,
outputs, and states (including time to next eventfiaite. These constraints can be validated for having
legitimate output, time advance, and internal and external transition functions. Constrainistefor s
transitions(belonging to both external and internal transition funcjiaas bevalidatal. For example,
states in any state transitioan be validated to include only tetates defined in the modebsate seand
there are no unreachable states. For the external event, its input event can betcherkeduded irthe
input set. State to output mappings can also be validated by checking whether or not every output belongs to
the output set. We can also check if outputs are computed usinglstatedong tothe state set. Time to
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next evenfor every state transition must alselong to ;. Whenthetime interval is infinity,three isno
output.Validation of behavior domaiknowledge can be augmenteih userdefined constraints.

Consideringa domainspecific metamodelthey mayhavetheir own constraints on the input, output,
and state sets as well as the atomic méditions. These constraints must be defined byuswes, for
example, by extending the EMPEVS metamodel Users may specify domaspecific constraints using
the EMF Eclipse framework and tool. Of course, wdefined constraints cannot contradict those that are
defined for thegeneric metamodelWe note that the restrictions in the atomic-BBVS model and its
dynamics may require complex control structures. State trarssitiothe external (or internal) transition
function may have to be synthesized in complex patterns. Transitioning between external and internal
transition functions can have many configuratidsimilarly, the output and time advance functionsy
have complex structures. Tde& considerations restrict the behavioral metamodeling describe above.
Nonetheless, the capabilities afforded by MDA is advantageous as compared with model development
where there is little or no means to start froratamodehg and reach executable models. Specific state
transitions can be individually validated at the M2 layer. Behavimetamodehg developed in this
research aids model validation before transforming them to an M1 model and MO simulation. Once concrete
FD-DEVS models are generated fronetamoded, they can be validated usingsting techniques and tools
(Dill 1990, Hwang, and Zeigler 2009)

5 A PROCESSOR EXAMPLE BEHAVIORAL METAMODEL SNIPPET

In this section, we will demonstrate the process of developing a domain specific model (eProcQ as shown in
Figure 3), which represents a simple processor with a queue. The processor metardedeloped using

the definition provided at the atomic DEVfBetamodel The root element is eDEVSPackagdiich can

contain the eAtomic models such as eProcQ and any other EClass such as Entity and Queue. Entity and
Queue EClasses are defined similarly to their definitich&DEVS-Suite GenCol library ACIMS 2015)

Figure3.a shows all the model elements in the EMF editatFigure 3.b depicts the corresponding Class
Diagram for the eProcQ Ecomodel. Detailed specifications are provided for the external transition
functionrelativeto other modeled elements such as metiesand variables.

We created two transitions and gave the values associated with each one. The first transition is for the
phase and the other one is for the sigma. Figure 3.c shows the specified properties for the state phase
transitionthat compies with the state phase transition definition. The phase transition has a condition and an
action. The condition is modeled as inequality for the queue size and the action is modeled as a method
call for add operationyhich is defined in Queue EClass. The action allows specifying the objextti@am
name that can be any operation associated with that object, and parahtiedéithem have been defined
as EReferences to their targeted model elements (see Fidur€igure 3 shows an inequality condition
specified based on the queue size. It has a left hand side which is specified as an action (queue.size() as
shown in kgure 3.f) and righthand side which is specified as an integer value of type ElInt in this case.
Currently, themetamodels limited for only those scenarios since they are the only scenarios defined within
the atomic DEVS metamodelhe implementation is done on a Windows 7 Computer. The models are
created using Eclipse Mars Milestone 6 with Eclipse Modeling Tools and EMF Ecore 2.11.

6 CONCLUSIONS

Thetermmetamodel invokes different understandings since it refexsne model abstracted to another. It
can encompasstheories, methods, tools and domains of discoumstuding simulation As such,
“metamodehng” is used by theorists, developers, and practitiomes®ftware and simulation engineering,
among otherdn this paper, we considerédte modelingormalisms and in particular asked at what levels

of abstraction can the behavior of a prototypical atomic DEVS model be specified. Our inquiry is to
distinguish meta concrete, and instance madgllayes from the standpoint of Model Driven Architeatur
These layerganform a basis for building a new generationrabdeling and simulation frameworks and
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toolsthat can help move from metamodeling to simulation cbeleby-step It is helpful to have modeling
methods with tools that can not only represent mathematical abstractions within the MDA layers, but also
introduce capabilities to enforce verification and validation as much as possible in the M2 before resorting

to the M1 ad MO layers.

4[] plafform:f'resourcea'EMFD EVS_Processor/model/eProc.ecore

4 4 eDEVS Package ProcPack

[T Properties &3

- . Property Value
4 [ eAtomic eProc)
Input 4 elnput Job
4 4 eDelt Ext deltEsxt ¥ =5
ame =
=3 e: EDouble
! : Source = phase: EString
<3 t: Ent
Input: Entity - Source phase '= passive
4 ¢ State Phase Transition £l =R e EStri
: arg phase : EString
4 Action = o
Target ph = act
4 4 Inequality LESS_THAN AL silids
4 Action

¢ State Sigrma Transition t2
= processing_time : EDouble
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(b) A class diagram for the processor

(f) Left handside for the less thanequalityfor Transition t1
Figure 3: Ecore for a processor with primary state transitions for the external transition function.

One of the challenges facing building such ideal modeling and simulation tdbks dficulty of
specifying behavior of models. We focused our attenticin@@tomic DEVS model. We proposed defining
metabehavior for general and domaspecific modeling using the concept of state transition from
Statechartfor external and internal transition functiofsee Figure 3)We then extended tHeMF Ecore
operationwith the external, internal, output, and time advance functions. These functions, unlike the
mathematical counterparts, can have some of their behaviors defined. Thesesuantaiso be validated
to a limited degree. To validateve described the necessity of restricting DEVS to FDé@gerministic
DEVS. We developed an example to show beitalymetamodehg for the atomic DEVS model. We
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focused this paper on the platferndependent metamodeliagd briefly discussed its rofer developing
platformspecifictools

Looking further into metamodeling, we obsethat a target simulator must lend itself to the behavior
defined in terms of statiansitiors, output, and time advance functionsick function can have parts that
are arbitrary and specific to the system being mod@leds, mapping behaviot a higheflevel abstraction
(as in the M2 layer) to lowdevel abstractions (as in M1 and MO laydrsjolves execution semantics (e.g.,
simulators may handle simultaneous event and communication differently despitedrsisgent with the
abstract simulation protocolfhus, it is desirable tlift behavior modeling as much as possible to the M2
layer with support to checkirgyntax and semantics with as little dependexscgossible on thd1 and MO
layers, it is necessary to accountgomulator desiglimplementatiorchoices.

Knowing the high degree dDEVS expressivenesand the MDA frameworkit is easy to see
approachethatsuch as FEDEVS should simplify development gérification and validation methods and
tools The degree to which the behavioral mmiadel may be applicable to other kinds of modeling
formalisms alsaemains as futurevork. In particularfor models that cannot be represented as DEVS, our
approach for specifying metahavior mayturn out to be usefuFinally, we believe exciting, challenging
theoretical, methodological, developmental, and practical research remain to be formulated and answered
for achieving general and domaipecific multilayerbehavioral modeling including metaodeling.
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