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ABSTRACT

We describe a maximum-likelihood type estimator, or M-estimator, for Monte Carlo estimation of rare-event
probabilities. In this method, we first sample from the zero-variance measure using Markov Chain Monte
Carlo (MCMC), and then given the simulated data, we compute a maximum-likelihood-type estimator. We
show that the resulting M-estimator is consistent, and that it subsumes as a special case the well-known
fixed-effort splitting estimator. We give a numerical example of estimating accurately the tail distribution
of the sum of log-normal random variables under a Gaussian copula. The numerical results suggests that
for this example the method is competitive.

1 INTRODUCTION

Suppose we wish to estimate a probability of the form

` = P(S(X) > γ), X = (X1, . . . , Xd),

where: (a) S : Rd 7→ R is the so-called importance function; (b) X1, . . . , Xd are random variables with
joint density f(x); and (c) γ is a threshold, which may be large enough to make ` a rare-event probability.
Such estimation problems arise in various contexts (Asmussen and Glynn 2007). For example, in financial
engineering and under the Black-Scholes model, we may be interested in computing the tail distribution of the
sum of dependent log-normal random variables under a Gaussian copula: S(X) = exp(X1)+· · ·+exp(Xd),
where X ∼ N(µ,Σ), (Kortschak and Hashorva 2013, Asmussen et al. 2014, Laub et al. 2015).

Recently, a number of methods have been proposed for the estimation of ` that use approximate
simulation from the zero-variance measure via Markov chain Monte Carlo (Botev et al. 2011, Botev et al.
2013, Gudmundsson and Hult 2014, Botev et al. 2016). In this article we propose yet another such method.
Similar to the existing approaches we first sample from the zero-variance measure via Markov Chain Monte
Carlo. However, unlike existing methods, our approach then provides a maximum-likelihood-type estimator
of the rare-event probability `, given the simulated MCMC data. The proposed approach has been used in
Bayesian statistics (Kong et al. 2003), but it has not been used in the rare-event simulation context (Huang
and Botev 2013).

The proposed method has one main attraction compared to standard importance sampling. While in
standard importance sampling the density has to satisfy a strict condition on its support and tail, in the
M-estimation case, this restriction is much relaxed. As a result, at least in the examples we consider, it is
simpler to incorporate analytical information, such as the asymptotic approximation of `, into the estimation
procedure.

We give a numerical example of estimating accurately the tail distribution of the sum of log-normal
random variables under a Gaussian copula. Surprisingly the empirical results suggest that the proposed
estimator may sometimes be more accurate than the corresponding tailor-made importance sampling
estimator.
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In addition, we show that this M-estimator is consistent under certain conditions, and that the well-
known fixed-effort splitting estimator can be thought of as a special case of an M-estimator. This suggests
a new approach to the theoretical analysis of such an splitting estimator as future work.

2 M-ESTIMATOR OF RARE-EVENT PROBABILITY

To introduce the idea of a maximum-likelihood-type or M-estimator for the rare-event probability `, it is
convenient to think of ` as a normalization constant `s of the conditional density (here I{·} is the indicator
function of an event)

fs(x) =
ws(x)

`s

def
=

f(x)I{S(x) > γ}
`s

.

It is well known that the zero-variance importance sampling density for estimating ` = `s is the conditional
pdf fs.

The typical importance sampling scheme proceeds as follows. Let f1(x) = w1(x)/`1 be another
reference or importance sampling density whose normalizing constant `1 is known. Then, the standard
importance sampling estimator with n samples is

`∗s =
1

n

n∑
j=1

ws(Xj)

f1(Xj)
, X1, . . . ,Xn ∼ f1 . (1)

For acceptable performance, see (Kroese et al. 2011), we not only need the condition {x : f1(x) > 0} ⊇
{x : fs(x) > 0}, but that the tails of f1 to be at least as heavy as the tails of fs. Now suppose that we use
fs itself as part of a mixture importance sampling density that combines both f1 and fs. In other words,
we simulate n samples from the mixture density f̄ ≡ λ1f1 + λsfs, where λ1 + λs = 1 are some weight
fixed in advance. A plausible importance-sampling-type estimator then looks like:

ˆ̀
s =

1

n

n∑
j=1

ws(Xj)

λ1f1(Xj) + λsws(Xj)/ˆ̀
s︸ ︷︷ ︸

≈fs

, X1, . . . ,Xn ∼ f̄ (2)

where the unknown normalizing constant `s on the right is replaced with its estimator ˆ̀
s. This substitution

gives rise to a nonlinear equation for ˆ̀
s. We thus define the M-estimator in this case with two-component

mixture as the value ˆ̀
s that satisfies the nonlinear equation (2).

What have we gained by using ˆ̀
s as opposed to `∗s? Compared with the traditional importance

sampling estimator, `∗s, which requires the quite restrictive conditions on the tail and support of f1 (
{x : f1(x) > 0} ⊇ {x : fs(x) > 0} and Efsfs(X)/f1(X) < ∞), the tail and support restrictions on
f1 in the estimator ˆ̀

s are relaxed to the much weaker {x : f1(x) × fs(x) > 0} 6= ∅. In other words,
the supports of f1 and fs need only overlap. For example, returning again to the log-normal probability
` = P(exp(X1)+ · · ·+exp(Xd) > γ), if f1(x) ∝ f(x)I{maxi exp(Xi) > γ}, then this f1 cannot be used
in the standard importance sampling estimator `∗s, but it can be used in the estimator ˆ̀

s, because the sets
{x : exp(x1) + · · · + exp(xd) > γ} and {x : maxi exp(xi) > γ} overlap. The results in the numerical
section suggest that for some problems (2) is a better estimator than some tailor-made schemes.

Before we proceed to show the consistency of ˆ̀
s, we first generalize the method to a mixture of s pdfs,

whose normalizing constants may or may not be known.

3 GENERALIZATION TO MULTIPLE COMPONENTS

Suppose we are given the sequence of densities (typically fs being a zero-variance pdf)

ft(x) =
wt(x)

`t
, t = 1, . . . , s ,
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where `t are acting as normalizing constants. We assume that the supports of {ft} satisfy Vardi’s connectivity
condition (Gill et al. 1988, Vardi 1985). In other words, if we consider an undirected graph with s nodes
and an edge between nodes i and j if and only if

P(wi(X)× wj(X) > 0) > 0, (3)

then the connectivity condition says that there exists a path between any two nodes of the graph. Recall
that we are interested in estimating `s and we assume that `1 is known (we call f1 a reference density),
and without loss of generality, `1 = 1. To estimate `s, we may simulate from each density as follows

Xt,1, . . . ,Xt,nt ∼ ft(x), t = 1, . . . , s ,

and collect the pooled sample as X1, . . . ,Xn, where the first n1 samples are drawn from f1, the next n2

are drawn from f2, and so on. Conceptually, this is not different from sampling n = n1 + · · ·+ns random
variables with stratification from the mixture with s components

f̄(x) =
1

n

s∑
t=1

ntft(x) =

s∑
t=1

λtft(x), λt
def
= nt/n .

We will henceforth assume that the proportions λt are fixed and do not change with the overall budget
value n. If we define the vector of parameters

z = (z1, . . . , zn)>
def
= (− log(1/λ1),− log(`2/λ2), . . . ,− log(`s/λs))

>,

it is clear that estimating ` = (1, `2, . . . , `s)
>, which includes the unknown `s, is equivalent to estimating

z. Then, we define the M-estimator of z as the solution of the optimization (Gill et al. 1988):

ẑ = argmax
z

Dn(z), (4)

where we have the likelihood-lookalike objective function

Dn(z)
def
=

1

n

n∑
j=1

log

(
s∑

k=1

wk(Xj) exp(zk)

)
−

s∑
k=1

λkzk (5)

and D(z)
def
=
∫
f̄(x) log (

∑s
k=1wk(x) exp(zk)) dx−

∑s
k=1 λkzk.

It may not be clear why the solution of this program yields a sensible estimator of the true z or `. The
first reason why this estimator makes sense is the following consistency result. (Here Xn

P→ X means that
for any ε, δ pair we can find a large enough n so that P(‖Xn −X‖ > ε) < δ, where ‖ · ‖ is the Euclidean
norm.)
Proposition 1 (Consistency of estimator) If simulation from f̄ (usually accomplished via MCMC) is such
that a weak law of large numbers applies, Dn(z)

P→ D(z), uniformly in z, then ẑ P→ z as n ↑ ∞.

Proof. First, note that under the connectivity condition (3), Vardi et al. (Gill et al. 1988, Vardi 1985)
show that Dn is almost surely concave as n ↑ ∞. Next, we have by the assumption, Dn(z)

P→ D(z), that
for any z̃ 6= z (the first component is also z̃1 = ẑ1 = z1):

Dn(z̃)−Dn(z) =

P→0︷ ︸︸ ︷
Dn(z̃)−D(z̃) +

P→0︷ ︸︸ ︷
D(z)−Dn(z) +D(z̃)−D(z)

P→ 0 + 0 +D(z̃)−D(z)︸ ︷︷ ︸
α(z̃,z)

,

361



Botev and Ridder

where we have denoted the last expression by

α(z̃, z)
def
=

∫
f̄(x) log

(∑s
k=1wk(x) exp(z̃k)∑s
k=1wk(x) exp(zk)

)
dx−

s∑
k=1

λk(z̃k − zk)

Since f̄(x) =
∑s

t=1 λtft(x) =
∑s

t=1 exp(zt)wt(x), we can apply Jensen’s inequality:∫
f̄(x) log

(∑s
k=1wk(x) exp(z̃k)∑s
k=1wk(x) exp(zk)

)
dx =

∫
f̄(x) log

(∑s
k=1wk(x) exp(z̃k)

f̄(x)

)
dx

Jensen’s inequality ≤ log

(∫ s∑
k=1

wk(x) exp(z̃k)dx

)

≤ log

(
s∑

k=1

exp(z̃k)`k

)
= log

(
s∑

k=1

λk exp(z̃k − zk)

)
Therefore,

Dn(z̃)−Dn(z)
P→ α(z̃, z) ≤ log

(
s∑

k=1

λk exp(z̃k − zk)

)
−

s∑
k=1

λk(z̃k − zk).

Next, another application of Jensen’s inequality with the distribution {λk} yields

β(z̃, z)
def
= log

(
s∑

k=1

λk exp(z̃k − zk)

)
−

s∑
k=1

λk(z̃k − zk) ≥ 0.

Since the logarithmic function is strictly concave, equality is achieved if and only if all the exp(z̃k − zk)
are equal. In other words, equality is achieved if and only if z̃ = z + c, where c is an arbitrary constant.
In our case c = 0, because z̃1 = z1 by construction. In other words, β(z̃, z) > 0 for z 6= z̃.

It follows that if z 6= z̃, then with increasing probability as n ↑ ∞, Dn(z̃) − Dn(z) will be upper
bounded by a strictly positive constant β. That is, as n ↑ ∞ and z 6= z̃ we have P(Dn(z) > Dn(z̃)) ↑ 1.

Hence, using the fact that Dn(z̃) ≤ Dn(ẑ) for all z̃, because ẑ is, by construction, a global maximizer
of the (almost surely) concave Dn, we have as n ↑ ∞ and any ε > 0,

P(‖ẑ − z‖ > ε) = P(‖ẑ − z‖ > ε,Dn(z̃) ≤ Dn(ẑ), for all z̃)

≤ P(‖ẑ − z‖ > ε,Dn(z) ≤ Dn(ẑ))

≤ P(ẑ 6= z,Dn(z) ≤ Dn(ẑ))

≤ 1− P(Dn(z) > Dn(z̃), z̃ 6= z)→ 0

A second way to see that estimator (4) is sensible is to solve for the gradient of Dn being zero:
∇Dn(ẑ) = 0. Rewriting this nonlinear system explicitly in ` gives the system of moment-matching
equations:

ˆ̀
t =

1

n

n∑
j=1

wt(Xj)∑s
k=1wk(Xj)λk/ˆ̀

k

, t = 2, . . . , s, (6)

which appear to be the sample versions of the identities:

`t = Ef̄
[

wt(X)∑s
k=1 wk(X)λk/`k

]
.
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The moment-matching equations (6) also suggest an iterative method for solving the nonlinear system
∇Dn(ẑ) = 0, namely, via the following iterative procedure.

Algorithm 1 : Jacobi fixed-point iteration

Require: Initial ˆ̀ = (1, `2, . . . , `s)
>

Set ε =∞ and `← ˆ̀

while ε > 10−5 do
for i = 2, . . . , s do

`i ← 1
n

∑n
j=1

wi(Xj)∑s
k=1 wk(Xj)λk/`k

ε← maxi
|`i−ˆ̀

i|
`i

return The vector of estimated probabilities ˆ̀← `.

In the case of iid sampling from f̄ , we can deduce from the multivariate delta method the maximum-
likelihood-type asymptotics

√
n(ẑ − z)

d→ N(0,F−1), where F = Ef̄∇2Dn plays the role of a “Fisher”
information matrix. Since the ` equals z on a logarithmic scale, this suggests the estimator, F̂/n, of the
relative error of ˆ̀. In practice, we have to use MCMC for simulation from f̄ , and for this reason, we
estimate the relative error using the batch means method (Kroese et al. 2011, Algorithm 8.4) without any
burn-in. We will give an example in the numerical section.

In the next section we consider the relationship between the fixed-effort splitting (Botev and Kroese
2012, Botev and Kroese 2008, Botev 2009) and the M-estimator, and in particular show that the splitting
estimator is an analytical solution of the moment-matching equations (6).

4 SPLITTING AND M-ESTIMATOR

Consider the special case in which all the densities ft(x) are of the form:

ft(x) =
f(x)I{S(x) > γt}

`t
,

where −∞ = γ1 < γ2 < · · · < γs = γ (note that fs remains the same and indeed `1 = 1). It is not difficult
to see that these densities satisfy Vardi’s connectivity condition (3) , because P(S(X) > γj , S(X) > γi) =
P(S(X) > max{γi, γj}) ≥ ` > 0. Recall that simulation from f̄ with stratification is asymptotically
equivalent to simulating n1 samples from f1, n2 samples from f2, and so on.

The next result shows that we can solve the system (6) exactly, obviating the need for Algorithm 1.
Proposition 2 (Splitting and M-estimation) Let I be an s× n matrix with entries Ik,j = I{S(Xj) > γk}.
Then, the unique solution of (6) is:

ˆ̀
t = `1

t∏
k=2

∑n1+···+nk−1

j=1 Ik,j∑n1+···+nk−1

j=1 Ik−1,j

, t = 2, . . . , s . (7)

Proof. We use induction. The formula is true for a matrix I of size 2 × (n1 + n2), because the only
solution to (6) is (dropping the hat accent from all ˆ̀)

`2 = `1

∑n1
j=1 I2,j∑n1
j=1 I1,j

Now assume it is true for I of size (s− 1)× (n1 + · · ·+ ns−1), that is, we have

`t = `1

t∏
k=2

∑n1+···+nk−1

j=1 Ik,j∑n1+···+nk−1

j=1 Ik−1,j
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for t = 2, . . . , s− 1. Expanding the size of the matrix to s× (n1 + · · ·+ ns) gives that (6) is identical to

`s =
n∑
j=1

Is,j∑
k
nk Ik,j
`k

=

∑n
j=1 Is,j∑
k
nk
`k

,

from where we have ns + `s
∑

k 6=s
nk
`k

=
∑n

j=1 Is,j = ns +
∑n1+···+ns−1

j=1 Is,j and hence the only solution
to (6) is:

`s =

∑n1+···+ns−1

j=1 Is,j∑
k 6=s

nk
`k

= `1

s∏
k=2

∑n1+···+nk−1

j=1 Ik,j∑n1+···+nk−1

j=1 Ik−1,j

,

because a direct calculation from left to right shows that

n1

`1
+
n2

`2
+ · · ·+ ns−1

`s−1
=
n1

`1

∑n1+n2
j=1 I2,j∑n1
j=1 I2,j

+
n3

`3
+ · · ·+ ns−1

`s−1

=
n1

`1

∑n1+n2
j=1 I2,j∑n1
j=1 I2,j

∑n1+n2+n3
j=1 I3,j∑n1+n2
j=1 I3,j

+
n4

`4
+ · · ·+ ns−1

`s−1

=
n1

`1

s−1∏
k=2

∑n1+···+nk
j=1 Ik,j∑n1+···+nk−1

j=1 Ik,j
=
n1

`1

∏s−1
k=2

∑n1+···+nk
j=1 Ik,j∏s−1

k=2

∑n1+···+nk−1

j=1 Ik,j

=
n1

`1

∏s
k=3

∑n1+···+nk−1

j=1 Ik−1,j∏s−1
k=2

∑n1+···+nk−1

j=1 Ik,j
=

1

`1

∏s
k=2

∑n1+···+nk−1

j=1 Ik−1,j∏s−1
k=2

∑n1+···+nk−1

j=1 Ik,j

While not pursued here, this connection between splitting and M-estimation could be used to derive
the asymptotic distribution of the splitting estimator using maximum likelihood results.

5 NUMERICAL ILLUSTRATION

Sums of Dependent Log-Normals. To illustrate the method, we consider the widely-studied log-normal
tail distribution estimation mentioned in the introduction. We compare the accuracy of our M-estimator
with that of the importance sampling vanishing error algorithm (abbreviated ISVE) proposed by (Asmussen
et al. 2011) . Recall that the probability of interest is ` = `s = P(exp(X1) + · · ·+ exp(Xd) ≥ γ), which
is the normalizing constant of the density (s = 2)

f2(x) =
f(x) I{S(x) ≥ γ}

`2
,

where S(x) = exp(x1) + · · ·+ exp(xd), and f is the density of the multivariate normal distribution with
mean µ and covariance matrix Σ = (Σi,j).

We now estimate `2 via the estimator (2) with s = 2 and reference density

f1(x) =
f(x)

∑d
j=1 I{exp(xi) > γ}

`1
, `1

def
=

d∑
j=1

P (exp(Xi) > γ) , (X1, . . . , Xd) ∼ N(µ,Σ) .

In our numerical example we use the same parameters as (Asmussen et al. 2011), namely, a correlation
coefficient

Σi,j√
Σi,iΣj,j

= ρ, for all i 6= j ,
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where the rest of the parameters of the density are set to: d = 10, µi = i− 10, σ2
i = i for i = 1, . . . , d.

Simulation from f1 and f2. Sampling iid copies from the reference density is straightforward using
the mixture representation

f1(x) =
∑d

j=1
P(Xj>log γ)

`1

f(x)I{xj>log γ}
P(Xj>log γ) .

In other words, we select component J with probability P(J = j) = P(Xj > log γ)/`1; then given J = j,
we sample from the truncated normal pdf f(xj)I{xj > log γ}/P(Xj > log γ); and finally we draw from
the conditional multivariate normal f(x |xj). Sampling (approximately) from f2 is accomplished using
the Gibbs sampler (Gudmundsson and Hult 2014, Botev et al. 2016), whereby a single cycle of the Gibbs
sampler consist of sequential draws (i = 1, . . . , d) from the truncated normal densities proportional to

f(xi |x−i)× I{xi > ln(γ −
∑

j 6=i exp(xj))}

We do not use any burn-in the Gibbs sampler and the initial state of the Markov chain is a sample simulated
from f1.

Note that while there are no problems using the reference density f1 in our proposed M-estimator
(2), it cannot be used as an importance sampling pdf in the standard importance sampling estimator (1)
due to the lack of support on {x : S(x) > γ,maxi exp(xi) < γ}. This is one of the advantages of the
M-estimator over the standard importance sampling estimator.

Solving Nonlinear System. To proceed with the implementation of the M-estimator, we simplify
the moment-matching equation (2) as follows (note that S(X) > γ always under this simulation scheme):

ˆ̀
2 = 1

n

∑n
j=1

w2(Xj)

λ1 w1(Xj)/`1+λ2 w2(Xj)/ˆ̀
2

= 1
n

∑n
j=1

1

λ1
w1(Xj)

f(Xj)
/`1+λ2/ ˆ̀

2

=
p0

0n1
`1

+ n2
ˆ̀
2

+
p1

n1
`1

+ n2
ˆ̀
2

+
p2

2n1
`1

+ n2
ˆ̀
2

+ · · ·+ pd
dn1
`1

+ n2
ˆ̀
2

,

where pk is the number of Xj’s, which yield
∑d

i=1 I{xi > log γ} = k. Hence, our estimator ˆ̀
2 solves

the equation:
p0 +

p1

ˆ̀
2
n1
n2 `1

+ 1
+

p2

ˆ̀
2

2n1
n2 `1

+ 1
+ · · ·+ pd

ˆ̀
2
dn1
n2 `1

+ 1
= n2 .

Since this is not a splitting estimator, there is no simple analytical solution for the M-estimator and we
have to resort to a numerical solution. Here we used fzero.m in Matlab to solve the equation without
difficulty.

Comparison between M-est. and ISVE. Tables 1 and 2 show the estimates of ` for various values
of γ and ρ. In all cases the algorithmic parameters are set to be λ1 = λ2 = 1/2. Table 1 was created using
n = 5× 105 samples for both the M-estimator (M-est) and ISVE. Table 2 was created using n = 5× 106

simulation runs. We did not use any burn-in for the Gibbs sampling. To estimate the relative variance of
ˆ̀ (which is asymptotically the variance of ẑ), we use the batch means method with 10 batches. In other
words, the variance is estimated using 10 approximately independent sample averages of size n/10.

The final column of both tables shows the estimate for the work normalized relative variance (WNRV),
which takes into account the computational time for each method. The WNRV is defined as τ ×Var(ˆ̀)/`2,
where τ is the CPU time.
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Table 1: Empirical performance of M-estimator and ISVE for various values of the threshold parameter
γ = 5×10c+3, c = 1, . . . , 14 with ρ = 0.999. Both algorithms use a sample size of n = n1 +n2 = 5×105.

relative error % WNRV
γ `1 M-est. ISVE estim. M-est. ISVE M-est. ISVE

5× 104 0.000355 0.000409 0.000406 0.23 1.71 0.00044 15248
5× 105 1.794× 10−5 2.212× 10−5 2.177× 10−5 0.23 3.09 0.00043 50267
5× 106 5.586× 10−7 7.156× 10−7 6.807× 10−7 0.23 5.32 0.00042 1.4× 105

5× 107 1.057× 10−8 1.384× 10−8 1.444× 10−8 0.23 11.74 0.00042 7.2× 105

5× 108 1.205× 10−10 1.590× 10−10 1.254× 10−10 0.23 2.35 0.00042 29064
5× 109 8.230× 10−13 1.086× 10−12 3.781× 10−12 0.23 76.90 0.00040 3.13× 107

5× 1010 3.347× 10−15 4.372× 10−15 3.346× 10−15 0.22 0.10 0.00040 56.12
5× 1011 8.087× 10−18 1.046× 10−17 8.083× 10−18 0.22 0.024 0.00039 2.99
5× 1012 1.158× 10−20 1.483× 10−20 1.158× 10−20 0.22 0.0018 0.00039 0.016
5× 1013 9.827× 10−24 1.245× 10−23 1.641× 10−23 0.22 40.12 0.00039 8.38× 106

5× 1014 4.930× 10−27 6.170× 10−27 5.028× 10−27 0.22 1.94 0.00039 19790
5× 1015 1.462× 10−30 1.804× 10−30 1.462× 10−30 0.22 0.00037 0.00038 0.00073
5× 1016 2.562× 10−34 3.123× 10−34 2.563× 10−34 0.22 0.00020 0.00038 0.00020
5× 1017 2.651× 10−38 3.198× 10−38 2.652× 10−38 0.22 0.00010 0.00037 5.21× 10−5

Table 2: Empirical performance of M-estimator and ISVE for various values of the threshold parameter
γ = 5× 105 with ρ = 1− 0.5c c = 1, . . . , 10. The asymptotic approximation here is `1 ≈ 1.7948× 10−5.
Both M-estimator and ISVE use a total simulation effort of n = n1 + n2 = 5× 106.

relative error % WNRV
ρ M-est. ISVE estim. M-est ISVE M-est. ISVE

1− 0.51 1.8251× 10−5 1.8212× 10−5 0.063 0.14 0.00028 10270
1− 0.52 1.9336× 10−5 1.9377× 10−5 0.066 0.66 0.00031 208055
1− 0.53 2.0478× 10−5 2.0355× 10−5 0.069 0.91 0.00033 395812
1− 0.54 2.1246× 10−5 2.1305× 10−5 0.071 1.09 0.00035 566699
1− 0.55 2.1680× 10−5 2.2332× 10−5 0.072 1.37 0.00037 874993
1− 0.56 2.1928× 10−5 2.2075× 10−5 0.073 1.22 0.00037 707993
1− 0.57 2.2041× 10−5 2.2091× 10−5 0.073 1.26 0.00037 746153
1− 0.58 2.2099× 10−5 2.2339× 10−5 0.073 1.25 0.00037 733213
1− 0.59 2.2122× 10−5 2.2208× 10−5 0.073 1.30 0.00038 790156
1− 0.510 2.2134× 10−5 2.1972× 10−5 0.073 1.23 0.00038 709821

Sensitivity to correlation ρ. We know that an accurate and reliable algorithm will yield a different
probability estimate ˆ̀ for different values of ρ, and in particular, as the correlation coefficient ρ increases
and the dependence amongst X1, . . . , Xd increases in strength, the corresponding probability `(ρ) has to
become larger and larger, reflecting, for example, the increased risk of bankruptcy of an insurer who holds
a portfolio of highly interdependent (positively correlated) loans with little diversification.

With the last comment in mind, note the second column of Table 1, which shows the normalizing
constant `1 of the reference pdf. Although, the reference value has the property that `2 ↓ `1 as γ ↑ ∞,
(Asmussen et al. 2011)[Proposition 1 and Theorem 1], the numerical experiments suggest that it does not
capture well the effect of the correlation coefficient ρ for finite γ. This is because the M-estimates (see
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third column) are significantly larger than `1 for large values of γ. Further, the ISVE estimates are not
much different from the asymptotic approximation `1. In fact, the lack of sensitivity of the ISVE estimator
to ρ deteriorates as γ becomes larger as the next experiment illustrates.

The figure below shows the effect of increasing ρ from 1 − 0.5 to 1 − 0.510 on the value of ˆ̀ for
γ = 5× 1015. The empty circles are the estimates obtained by the proposed method and the filled red dots
lying on a line are the estimates obtained by the ISVE algorithm, both using the same simulation effort of
n = 106. The proposed algorithm behaves as expected: a higher correlation ρ increases the probability `.
The ISVE algorithm on the other hand does not capture the effect of the correlation parameter very well.
In fact, the ISVE estimator yields the same value as the asymptotic approximation `1 (we observed the
same phenomenon regarding the estimation of the tail of the maximum of correlated Gaussian densities
(Botev et al. 2015)).

1 2 3 4 5 6 7 8 9 10

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

×
10

−
3
0

− log2(1− ρ)

ISVE estimate

proposed estimate

Figure 1: Effect of the correlation parameter ρ = 1 − 0.5c, c = 1, . . . , 10 on the rare-event probability
`(ρ). The empty circles represent the M-estimates and the dots lying on the line are the ISVE estimates.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we described a maximum-likelihood type estimator for the Monte Carlo estimation of
certain rare-event probabilities. The M-estimator has the advantage over the standard importance sampling
estimator in that the support and tail conditions on the proposal densities are much relaxed. Interestingly,
the well-known fixed-effort splitting estimator can be viewed as an M-estimator.

We gave a numerical example of estimating the tail distribution of the sum of correlated log-normal
random variables, in which the M-estimator is competitive. Space considerations permit us to consider
only a limited number of numerical examples in this article, and a number of other successful applications
of the method are documented elsewhere in (Huang and Botev 2013).

As future work, we plan to exploit the possibility of providing error estimates for the splitting estimator
using maximum likelihood theory. A proper analysis of the error will have to take into account the error
from using (approximate) MCMC sampling from the mixture density f̄ .
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Another issue, which requires further exploration, is the optimal choice of the mixture components
{λi}. So far, we have assumed that these are equal in our numerical experiments, but this choice is most
certainly not optimal. Recent work on optimal design and MCMC sampling may provide clues as to the
optimal choice of these weights (Doss and Tan 2014).

Finally, beyond numerical experiments, we have said nothing about the theoretical efficiency of the
estimator ˆ̀ with respect to the rarity parameter γ. Future work must address the possibility of bounded
relative error estimators in line with the results in (Gudmundsson and Hult 2014).
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