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ABSTRACT 
We adopt a Bayesian ranking and selection (R&S) model to solve the Second-best Network Pricing Problem 
(SNPP) in transportation. The objective of SNPP is to find an optimal subset of links and toll levels so as 
to minimize the total travel time on the network. It is an NP-hard problem with a large number of candidate 
solutions. We consider every combination of tollable link(s) and toll levels as an “alternative”, and the 
problem’s objective function value is regarded as a “reward”, with uncertainties modeled by normal 
perturbations to the travel demand. We use a linear belief based Knowledge Gradient sampling policy to 
maximize the expected reward, with Monte Carlo sampling of the hyperparameters used to reduce the 
choice set size. Simulation experiments for a benchmark network show the effectiveness of the proposed 
method and its superior performance to a Sample Average Approximation based Genetic Algorithm.  
1 INTRODUCTION 
Network pricing has been widely recognized as an important countermeasure for traffic congestion (Yang 
and Huang1998). One well-known first-best pricing policy involves tolls set at marginal external costs on 
each link in the network and has been discussed in many studies (e.g., Sheffi 1985, Yang and Huang 1998). 
This policy has been regarded as merely a theoretical construct but impractical for real-world 
implementation. Under this first-best pricing scheme, total travel time on the network per modeling interval 
is minimized. Bergendorff et al. (1997) and Hearn and Yildirim (2002) solved the problem of finding the 
first-best pricing scheme that tolls the smallest number of links in a network. They showed  that the first-
best toll may not be unique. Their optimal “toll set”, however, does not account for restrictions for the 
location of the tolled links (e.g., restricting tolled links within a certain cordon). Out of practical 
considerations, most of the recent studies have shifted to solving the second-best network pricing problem 
(SNPP), e.g., tolling only a subset of links that are tollable. There are generally two branches of research 
on SNPP: toll level design for a given set of links and optimizing toll rates and link selection simultaneously.  

For solving the toll level design problem, derivative-based mathematical programing methods (e.g., 
Verhoef 2001; Lawphongpanich and Hearn 2004) and meta-heuristics such as genetic algorithms (GA) and 
simulated annealing (SA) (e.g., Yang and Zhang 2003; Shepherd and Sumalee 2004) have been proposed. 
Due to path selection assumptions and assignment convergence errors, the derivative-based approaches 
encounter deficiencies in finding global optimums (Shepherd and Sumalee 2004).  It is also known that 
global optimum is not ensured in meta-heuristics. Ekström and Quttineh (2014) used surrogate optimization 
method for cordon-based SNPP and achieved close-to-optimal toll solutions with only tens of function 
evaluations. For joint optimization of toll rates and link selection, Verhoef (2001) proposed three iterative 
heuristic strategies based on a “link index” Ia, which represents the welfare gain from  implementing a toll 
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on link a alone. This strategy fully accounts for interactions among tolled links but requires calculation of 
"location indices" for all possible combinations of candidate links. Shepherd et al. (2001) observed that 
such an index-based approach has two practical problems: the potential for negative toll predictions and the 
likelihood of poor initial predictions for parallel links. It was also found that the index-based approach could 
miss out on toll locations that can yield a high benefit if they are tolled simultaneously (Ekström et al. 
2012). Shepherd and Sumalee (2004) linked “location indices” with GA to optimize toll locations and used 
GA to design toll levels given the toll links, due to the “location indices” used, GA often suggested solutions 
with more toll links that were in fact less optimal. Yang and Zhang (2003) used GA for the selection of toll 
locations and SA for optimal toll level design. Several subsequent studies also applied such heuristics for 
SNPP (e.g., Zuo et al. 2009). However, as is the case for the toll design problem, none of these methods 
guarantees global optimality (Ekström et al. 2012). Ekström et al. (2012) instead approximated discrete toll 
location decision variables with a continuous function and formulated a mixed integer linear program that 
can be solved for its global optimum. The method only gives a lower bound of the original SNPP, and its 
computational cost grows rapidly as the accuracy requirement for approximation increases.  

All of the aforementioned studies are for deterministic SNPP. Accounting for inherent uncertainty in 
travel demand, some recent studies (e.g., Gardner et al. 2010; Li et al. 2012; Sumalee and Xu 2011) started 
to develop methods that also consider demand uncertainty in SNPP. Gardner et al. (2010) demonstrated 
better performance of a multiple point inflation/deflation solution method in comparison to that of single 
point approximation using GA and SA, in terms of computational time versus solution quality. The study 
was for first-best toll design. Li et al. (2012) considered demand uncertainty and environmental externalities 
for toll-design problems and used sample average approximation (SAA) and sensitivity analysis to solve 
for the optimal toll levels, given the tolled links. The multi-point approximation method or SAA with a 
local derivative based method requires a large number (depending on the sample size) of objective function 
evaluations; and this computational overhead will be costly when the network size is large. In addition, 
these studies focused on first-best tolling without addressing the more practical second-best toll design, not 
to mention the consideration of toll location selection. When these toll level design methods are 
incorporated into heuristics-based toll location optimization problems, the overhead of expensive objective 
evaluations (simulations) will increase dramatically, making it computationally intractable. 

In summary, we feel that there are several important aspects of existing methods for SNPP that need to 
and can be significantly improved. First, due to the multi-modal nature of the objective functions in SNPP, 
derivative-based mathematical programming approaches for toll level design can only achieve local 
optimum. These methods are not suitable for discrete toll location optimization, either. Secondly, heuristic 
methods, although frequently used for simultaneous toll location and toll level design in SNPP, do not take 
advantage of the underlying system correlation structure in guiding their search process. Such heuristics 
generally cannot approach a global optimum within a limited computational budget. In fact, due to the 
combinatorial nature of toll location plus toll level alternatives, we would expect significant correlations of 
system performance across candidate solutions that share a common subset of links or that include links on 
parallel paths for some Origin-Destination (O-D) pairs. Thirdly, in those very limited studies that attempted 
to also deal with uncertainty in SNPP, the number of scenarios/repetitions used for simulation of candidate 
solutions was pre-determined and fixed. This leads to under- or over-simulation, since it foregoes the 
opportunity of adjusting the sampling budget dynamically according to the solution quality and the 
associated uncertainty. Therefore, if we can formulate an SNPP model and design a solution procedure that 
efficiently leverages upon the underlying correlation structure among different toll levels/locations 
combinations and their uncertainties, we would be able to improve both the capability and efficiency in 
approaching or finding the global optimum within limited computational constraints.  

With this motivation, in this study we adopt a Bayesian Ranking and Selection (R&S) model and design 
new solution algorithms to address SNPP for joint optimization of toll locations and toll levels. R&S models 
(Kim and Nelson 2007) have shown superior performance, particularly under a limited sampling budget, in 
analyzing stochastic outcomes across various alternatives. In the Bayesian R&S formulation, we view each 
candidate solution to the SNPP as an alternative, and the objective function values are brained by taking 
“samples" using a Knowledge Gradient policy with Correlated Belief (KGCB) (Frazier et al. 2009). The 
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Bayesian R&S model fits nicely with SNPP due to its discrete formulation, flexible characterization of 
correlation structures, and capability to incorporate prior knowledge and the good performance of its 
sampling policies (e.g., Frazier et al. 2009; Ryzhov and Powell 2009). To adapt the original KGCB 
sampling strategy to SNPP (which typically has a very large number of alternatives), we further develop 
the Monte-Carlo-Linear-Belief-KG algorithm (MCLB-KG) based on a non-perfect additive linear belief 
model to reduce the computational cost for practical SNPP applications.  

The paper is organized as follows. Section 2 introduces the mathematical model of SNPP. Section 3 
formulates SNPP as a Bayesian R&S problem and describes the construction of the MCLB-KG policy for 
SNPP. Section 4 presents results and discusses computational examples. Section 5 concludes.
2 SECOND-BEST NETWORK PRICING PROBLEM (SNPP) 
The SNPP is generally modeled by a bi-level program (e.g., Zuo et al. 2010; Ekström et al. 2012). Let’s 
consider a bi-level program of SNPP with uncertainty. The upper-level problem models the decision 
maker’s objective while the lower-level problem models the network users’ travel behavior. We assume 
the expected traffic demand is known and inelastic to travel cost. The total travel time per time interval on 
the network is a commonly-adopted measure of traffic efficiency (e.g. Yang and Zhang 2003). The decision 
maker’s objective is to minimize total travel time per unit time over the network by identifying and tolling 
a subset of links (selected from predefined candidate links) at appropriate toll levels. Each network user 
chooses the route with minimum cost to travel from her origin to her destination. Assuming homogenous 
unit “value of time” (VOT) among users, the formulation of SNPP is given as: 
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In the upper level problem, we maximize E(Td), the expected difference between the total travel time 
of the no-toll scenario, T0, and the total travel time of the tolled scenario, Σa∈Aza*ta(za*). Link set A={a} is 
the set of all the directed links in the network; za* is the traffic volume per unit time on link a under the 
optimal solution of the lower level problem; ta  is the corresponding travel time on link a, which is a function 
of za*. In the objective function, uncertainty is generally considered by a countable scenario space Ω, the 
probability of each scenario ω∈Ω is p(ω) (e.g., Gardner et al. 2010). Model inputs and parameters such as 
traffic demand can take on different values for different scenarios. Traffic demand plays a fundamental role 
determining network performance. Without loss of generality we use demand scenario space Ω  for 
uncertainty consideration in SNPP. A subset of road links, A’⊆A (|A’|=l) is the set of candidate links for 
pricing. A’ is usually chosen empirically according to congestion level, toll facility installation and 
operation, existing ITS facilities, etc. (Yang and Zhang 2003; Zuo et al. 2009). d = (d1,…,dl)T is an integer-
valued decision vector, i.e., di∈{0,1,…, m} (∀i = 1, ..., l) indicating the possible toll levels to be applied to 
each candidate link. For example, if m=3, then di = 0, 1, 2, 3 represent no toll, low, medium and high toll 
levels, respectively. Link travel time ta(za) is a non-decreasing convex function of traffic volume za, and the 
popular BPR formula (Bureau of Public Roads 1964) is used here: ta=ta0[1+α(za/ca)β], where α>0, β>1are 
empirical parameters, ta0, ca are free-flow travel time and capacity of link a, respectively. ua = e·di / VOT (i 
corresponds to a) is the equivalent time cost of the toll on a candidate link a∈A’, e is the unit toll level. 

Given candidate link set A’, number of toll levels m and incremental unit e across toll levels, the key 
inputs to this upper-level maximization problem of SNPP is the traffic flow assignments z* ={za*} to all the 
directed links on the network resulting from the solution of the lower-level problem. The lower-level 
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problem is to find a user equilibrium (UE) flow pattern with potential equivalent time cost ua considering 
link travel time and toll;  under UE no user has incentive to change route. The UE problem has well-
established solution methods like Frank-Wolfe algorithm (Sheffi 1985), but the computational cost grows 
significantly with the network size due to the shortest path subroutine involved. Since the lower- and upper- 
level problems in SNPP are hard to be integrated as one objective due to intrinsic difficulty of the problem 
(e.g., Yang and Zhang 2003), the SNPP can be regarded as a “black-box” discrete optimization problem. 
This nature of SNPP is at the heart of its Bayesian R&S formulation. 
3 SNPP AS A BAYESIAN R&S PROBLEM WITH LINEAR BELIEFS 
3.1 Bayesian R&S Formulation of SNPP 
In a Bayesian R&S framework, we have M alternative decisions X ={x1, x2,…, xM} whose rewards (e.g., 
the values of objective functions for different pricing schemes in SNPP) are random with unknown 
meanθ=(θ1,…,θM )T and unknown variance λ=(λ1,…, λM)T. Our goal is to identify the alternative with the 
maximum expected reward through limited sample measurements. We have a prior belief about θ with 
mean μ0 ={μ01…μ0M} and covariance Σ0 (an M×M positive semi-definite covariance matrix). For SNPP, we 
have network performance under different pricing schemes as θ = (E(Td1),…, E(TdM)]T~ N(μ0,Σ0). Assume 
that we can evaluate N sample decisions, x0, x1,…, xN-1. At stage n, we make a measurement or evaluation 
of decision xn, with measurement noise, εn ~ N(0, λxn), independent across samples conditional on xn. This 
yields sample observation (i.e., objective function evaluation in SNPP) yn+1 = θxn+εn. Let Fn be the sigma-
algebra generated by {x0…xn-1} and {y1…yn}.  It is a well-known result that the conditional posterior 
distribution of θ is also multivariate normal. Let μn = E(θ|Fn) and Σn =Cov(θ|Fn) be stage-n conditional 
expectation and covariance of θ, respectively, then μn and Σn can be calculated recursively using standard 
results based on Bayes’ Rule (Gelman et al. 2004):  
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where exn is a column vector of 0s with a 1 at position xn. Σnxnxn is the (xn, xn) diagonal entry of matrix n. 
λxn  is the performance variance corresponding to decision alternative xn. 

After N measurements through a sampling policy π = {x1π…xNπ}from the policy space Π , we choose 
the alternative that yields the largest posterior mean of objective function value (rewards) as the optimal 
solution: supπ Π Eπ[maxx(μ0x)], where Edenotes the conditional expectation under . In Bayesian R&S 
SNPP, as we evaluate pricing alternatives dx1,…dxN, we obtain measurements of the random “rewards” that 
represent total network travel time reductions Td1,…,TdN in comparison to the no-toll scenario.  
3.2 KGCB Sampling Policy 
The Knowledge Gradient policy with Correlated Belief (KGCB policy) is originally introduced in Frazier 
et al.(2009). It samples alternative x that maximizes the incremental value (knowledge gradient) of the 
objective function:   
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where Sn = (μn, Σn) is the state of our posterior beliefs at measurement n. The KG-factor vKG,n(x)  represents 
the incremental value (i.e., the expected improvement in posterior optimal value) obtained from measuring 
x at stage n. It is shown that the KGCB policy is almost-surely optimal for  N=1 or N∞, and has sub-
optimality bounds when N is finite ( Frazier et al. 2009).  

By calculating the conditional predictive expectation of maxiμin+1, we can forecast the performance of 
all alternatives without taking actual samples of them. Therefore, one key step in KGCB policy is to 
compute conditional predictive distribution of μin+1 given information at stage n. This conditional 
distribution is multivariate normal, with mean En[μn+1] = μn and covariance Tnnnn xx ),(~),(~ ΣσΣσ , where 

),(~ xΣσ  = Σnex/ (λx+Σnxx)0.5,  details of this calculation can be found in Frazier et al. (2009). Thus the stage-
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n conditional distribution of μn+1 is the same as μn+1 =μn+ Zx nn ),(~ Σσ , where Z is scalar standard normal 
random variable. This allows us to compute xKG,n in (4) as:  
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where function h: RM×RM  R is defined as h(p, q) = E[maxi pi + qiZ] - maxi pi, p and q are deterministic 
M-dimensional vectors. Frazier et al. (2009) provides a method to compute h(p, q), where the entries of p 
and q are firstly sorted and then only the distinct ones retained to define a vector c with cj = (pj- pi+1)/(qi+1-qj). These quantities are then used to calculate h(p, q) = ∑i=1~|p|-1 (qi+1- qi)f(-|ci |), where f(z) = φ(z) + zΦ(z), 
φ and Φ are standard normal PDF and CDF, respectively. We call this method “Subroutine-h”, by which 
we can compute h( ),(~, xΣσ ) for any prior belief μ and ),(~ xΣσ . Then we are able to compute vKG,n(x) 
for each alternative x, and the largest vKG,n(x) gives the measurement of decision xKG,n.  

In the standard setting of KGCB, the dimensions of q, p and μn are the number of alternatives, M. 
Therefore, the Subroutine-h is executed M times for obtaining xKG,n. Since the sorting step dominates the 
computational cost of Subroutine-h, so the overall complexity of the standard KGCB algorithm is 
O(M2logM).  Thus for large number of alternatives, say M>105 (which is usually the case for SNPP due to 
large number of link/toll combinations), the computational demand of the standard KGCB is prohibitive. 
This leads us to the modification of KGCB as follows. 
3.3 Linear Belief Model for SNPP 
In SNPP, the compounding effect of tolls on multiple links at their respective toll levels is not simply 
additive, i.e., summation of individual “link indices” of links a and b, Ia+ Ib, will not simply be equal 
“location index” Iab, the effect of simultaneous tolls on links a and b (Verhoef 2001). In fact, the interaction 
effects among tolled links, although hard to quantify, can be remarkable, especially among links on parallel 
paths for the same OD pair (Shepherd et al. 2001). Therefore, we propose a non-perfect additive linear 
belief model to consider such joint effect from tolling multiple links. This approach is inspired by the linear 
belief model used by Negoescu et al. (2011) in their study of sequential experimenting for drug discovery.  
3.3.1 Model Structure and Priors on Model Coefficients 
For our Bayesian R&S SNPP, we assume the marginal effect (on the final objective value) from one unit 
increase in toll rate on a link varies significantly across different toll levels. Thus we have m×l attributes (l 
candidate links, each with m toll levels). This leads to a new binary column decision vector de of size ml, 
expanded from the original l-dimension decision vector d. By assigning m entries for each candidate link j 
in set A’ and placing these m-entries across the links in the order of j=1,2,…,l, we have: 

th1     [ ( 1)]  toll level on link   ,   (1,..., ), [ ( 1), ]0    otherwise
e
i

i m j jd j l i m j mj        .     
For example, consider a toy example with only two candidate links (dimensions) and two toll levels 

(attributes), i.e., l=|A’|=2, m=2, j∈{1,2}. Using the notation above, the no-toll alternative can be represented 
by de(00) = (0,0,0,0)T, where the first two zeros correspond to first link and the last two for the second link. 
The alternative of applying toll level 2 on link 1 and toll level 1on link 2 is represented by de(21) = (0,1,1,0)T.  

We now assume a non-perfect linear additive model for the effect of a SNPP pricing scheme dx: 
 

1
0 x
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i i
e
xix d    ,                                                          (6) 

where η0 is the value for the no toll case (i.e., all entries in dex are 0); coefficient ηei represents the marginal 
effect per unit change in attribute dei (here it is the [i – m(j-1)]th  toll level on link j); ζ is the deviation term 
from perfect additive structure, which is alternative specific as labeled by subscript x. 

This non-perfect linear additive model is similar to that in Negoescu (2011). It is generalized from the 
perfect linear-additive model, Free-Wilson model (Free and Wilson 1964), by adding the deviation term ζ. 
Since only one toll level is to be implemented for each candidate link (as we focus on static network 
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optimization), i.e., ∑m(j-1).i≤mj dei ≤ 1, so the requirement of the Free-Wilson model that “at most one attribute 
is associated with each dimension” is automatically satisfied. Based on this linear belief model, if we sample 
dex (corresponding to dx), the sample value would be: 

 
1

0 xxd x   
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i i
e
xix dyT ,                                              (7) 

where εx ~ N(0, λx) is an independent measurement noise for dx. λx =0 models the deterministic SNPP, and 
λx >0 addresses SNPP with uncertainty (due to stochastic demand in this study). 

Suppose we have independent priors of normal distributions η0 and ηi, η0~N(μη0, ση02) , ηi ~ N(μηi, σηi2). We can also use independent normal distributions with mean 0 and variance σζ2 as priors for ζ1, …, ζM  (for 
any ζ with non-zero mean, it can be added to η0). ζ1,…, ζM are independent from other model coefficients. 
Then the prior belief about the mean value of decision  dx is: 
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The prior belief of the covariance between the performance of  dx and dx’ is (Negoescu et al. 2011):  
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3.3.2 Posterior Distributions on Model Coefficients 
Maintaining and updating posteriors on linear belief model coefficients (marginal effects of different 
attributes) is a key step in solving the Bayesian R&S SNPP. Let the column coefficient vector η denote (η0, η1,…, ηml)T and DM×(ml +1) be a matrix comprised of rows each representing the attribute values of an alternative 
plus a “1” in the first entry corresponding to baseline (no-toll scheme) constant η0. Thus a row in D is a “1” 
followed by the attribute values of de. We also use a column vector ζ to denote all the deviation terms (ζx). With these notations, the true value vector is θ = D·η+ζ by (6). Even though the number of ζx is M, which 
is generally very large in SNPP, we only need to maintain a mean vector and covariance matrix of ζx  for 
alternatives that have already been measured. If we have not measured a alternative x by stage n, then the 
posterior of ζx will stay the same as its prior. ζx remains independent of ηi’s, and all other deviation terms.  

Toward this end, we define column vector ηn that contains η and ζx  terms for an alternative x in (x0,…, 
xn-1). Let an and Cn be the mean and covariance of our stage-n posterior of ηn. Note that before the first 
measurement, the initial values are η0 =η, a0(ml+1)×1 ={μηi}, and diagonal matrix C0(ml+1)× (ml+1) with diagonal 
entries {σηi2}. There is a recursive expression for an and Cn (Negoescu et al. 2011): 
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where 1~ na and 1~ nC  are defined as below: if xn  has been previously measured by stage n,  1~ na =an, 1~ nC =Cn; 
otherwise, let 1~ na  be the column vector formed by adding a 0 to an-1, and 1~ nC  be the matrix formed by 
adding a row and a column after the last row and column of Cn-1, where all the entries of the new row and 
new column are 0 but the diagonal entry is σζ2. Then the posterior of ηn in stage n-1 is N( 1~ na , 1~ nC ). nxd~ is a 
column vector consisting of 1’s at indices of ηn+1 for which alternative xn contains the corresponding 
baseline term, toll level attributes and deviation term, and 0’s elsewhere. (10) is a linear square recursive 
model (e.g., Powell and Ryzhov 2012) modified by incorporating the deviation terms from our non-perfect 
linear additive model for SNPP. These updating equations allow us to track and update our beliefs about ηn in a computationally efficient way. The prior beliefs of the model coefficients, parameterized by μη0, ση02, 
μηi, σηi2, σζ 2 can be estimated from initial sampling or prior information.  

Based on the updated beliefs of the hyperparameters, we can construct the posteriors of the alternatives’ 
values. Noting that any multivariate normal belief on ηn induces a multivariate normal belief on θn 
(Negoescu et al. 2011), we have θn ~N (μn, Σn) from ηn ~ N(an,Cn). μn and Σn are calculated from an and Cn 
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using the same method as (8) and (9). However, to use KGCB algorithm, we only need to retrieve  partial 
information without computing the whole Σn matrix, which is prohibitive in SNPP.  
3.4 KGCB Algorithm for SNPP with Linear Beliefs and MC Sampling for the Hyperparameters 
Now we can compute the KG factors from a belief on ηn parameterized by an and Cn. By (5), we can obtain 
vKG,n(x) using Subroutine-h when μn and ),(~ xnΣσ  are available. Independent of x, μn = Dna, where Dn is a 
M×|ηn| indexing matrix of 0’s and 1’s, each row corresponds to an alternative and has 1’s for the baseline 
term, toll attribute terms and the deviation terms from an that are contained in the alternative. To compute 

),(~ xnΣσ , we set xn =x and get the corresponding ηn+1 and nC~ . Let nD~  be a M×|ηn+1| matrix that is similar 
to Dn, except that it maps alternatives to component of ηn+1 instead of ηn. Note that the beliefs on those ζx  terms that are not included in ηn+1 will not change as a result of measuring xn. In addition, ),(~ nn xΣ  is not 
affected by such deviation terms. So we can ignore the left-out deviation terms, by Frazier et al. (2009), 

),(~ xnΣσ  = Σx,·n/(λx+Σnxx)0.5, where the xth column of Σn is:  
Tn

x
nnn

x )~)(~~( ,,   DCDΣ .                                                            (11)  
However, when M is large,  computing vdKG,n for all decision vectors d as required in standard KGCB 

algorithm is very expensive. Inspired by Ryzhov and Powell (2009), we propose a Monte Carlo (MC) 
sampling step to substantially reduce the size of the choice set.  But instead of sampling θ from N(μ, Σ) 
as used in Ryzhov and Powell (2009), we directly sample from hyperparameter space and generate 
realizations of θ according to the linear belief model, which in the first place permits significant savings. 
Suppose we generate K sample realizations of θ’n  based on the non-perfect linear additive models and the 
posterior beliefs of the model coefficients at stage n. Let η’n(ωk) be the kth sample realization of model 
coefficients from the posterior distribution N(a n, C n). The M-dimensional column vector ζ ’n(ωk) has 
entries of 0’s for sampled alternatives, and each entry of ζx’n(ωk) corresponds to unmeasured alternatives 
is separately drawn from the prior distribution N(0, σζ 2). Then the mean θ’n(ωk) of the kth sample realization 
will be an M-dimensional column vector for each k: 

)(')(')(' k
n

kn
n

k
n  ζηDθ  .                                                 (12) 

Let tk = argmaxt θ’tn(ωk) be the toll alternative that appears to be the best from sample k and let K0 be 
the number of such distinct alternatives from all K samples. The number of alternatives in SNPP is much 
larger than that encountered in Ryzhov and Powell (2009), so as a remedy, in iteration n, we propose to 
randomly sample K1 distinct alternatives s1, …, sK1 from the complete alternative space and use the final 
choice set S={t1, …, tK0 }∪ {s1, …, sK1}. Then vKG,n can be computed over set S. We call this the Monte 
Carlo linear belief KG policy (MCLB-KG), which is adopted for our challenging SNPP. So the complexity 
of MCLB-KG algorithm in vKG calculation becomes O(|S|2log|S|), much less than O(M2logM) in the 
standard KGCB policy. Also we only need to sample a |ηn|-dimensional vector (|ηn| ≤ n+lm+1) from 
multivariate normal distribution N(a n, C n) at iteration n, the complexity of the MC sampling step is 
O(K|ηn|3) when the Cholesky factorization of Cn is used (which is very efficient in modern computing 
package). So this implementation is << O(M2logM), Note that recognizing those unmeasured alternatives 
by stage n can be done efficiently by keeping a list of sampled alternatives rather than looping over tags 
for M alternatives. So the other overhead of the MCLB-KG algorithm mainly comes from the 
multiplications of high-dimension matrices in (11) and (12), which have only linear dependency on M. 
Therefore, the computational cost can be significantly reduced compared to the standard KGCB policy.  
3.5 Updating the Unknown Variances 
For the SNPP under demand uncertainty, the variance for each alternative x, λx (i.e., the variance of 
measurement noise εx in (7)) is usually unknown. With very limited sampling budget, this variance affects 
the belief update of the hyperparameters in (10) and the characterization of conditional distribution of μn+1. 
Therefore, an estimation updating procedure of λx is needed to improve the performance of MCLB-KG 
policy. We use an approach inspired by the Bayesian normal model with known mean and unknown 
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variance (Gelman et al. 2004). We start with a prior belief λx0 that is constant or varying across alternatives, 
it can be simply the best guess based on the information available. As the learning progresses in 
implementing the solution algorithm, we can collect more samples for a certain dx and update our estimate 
of that λx. In iteration n where alternative x is sampled, we use: 
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xx  , x ∈{x1…xN},     (13) 

where nsnx is the xth entry in the M-dimensional vector nsn used to record how many times each alternative 
has been sampled up to stage n; iteration nx(i) is the iteration when alterative x is sampled for the ith time ; xn(i) is the posterior mean for x at iteration nx(i); and weight w≥0. The idea behind (13) is to estimate λx as 
a weighted average of the prior belief and the information observed by the samples. To marginalize the 
impact of inaccuracy from posterior means, we require n ≥3 before (13) is applied. As the number of 
samples increases, the variance estimates will gradually converge to their true values. 
4 NUMERICAL EXPERIMENT AND DISCUSSION 
We apply the method to the benchmark Sioux Falls network, which is used in recent SNPP studies (e.g., 
Ekström et al., 2012). It has 24 nodes and 76 links and 576 OD pairs (see Fig. 1(a)) with detailed network 
date given in Bar-Gera (2013). Due to budget constraints, 10 candidate links A’={16, 19, 29, 39, 48, 49, 52, 
66, 74, 75} based on initial congestion levels are of interest, 3 toll levels are proposed with unit toll level 
e=$2. The homogenous VOT = $1/min. The total travel time under base demand is T0 = 8×106 min per unit 
time. In the implementation of MCLB-KG policy, we set the number of random samples K=100 and 
K1=200. We use non-informative priors for most of the parameters in the belief model: σζ 2 =105, σηi2 = 
4×105, μηi = 400, 800, 1200 for toll levels 1, 2 and 3, respectively, and σζ 2 =106. Although the prior means 
of the toll attributes’ marginal effects are positive, large uncertainties are attached to these coefficients as 
well as to the deviation terms. We have almost complete information about the baseline no-toll alternative, 
so we set μη0 = 0 and ση02 = 10 for deterministic tests and ση02 = 104 for stochastic case. We use a non-
informative prior to demonstrate the effective learning capability of the MCLB-KG policy for SNPP. 

We examine the performance of Bayesian R&S SNPP model solved via MCLB-KG algorithms in 
comparison to the GA (which is usually used for SNPP) for deterministic setting (λx=0) and SAA-GA for 
stochastic (λx>0) setting. We use the standard GA (Deep et al. (2009)) with population size |A’| and elite 
size 1 (optimized by grid search). SAA is used for GA to evaluate individual solution (e.g., Gardner et 
al.(2010)) with sample size 5 for stochastic setting (performs best among 2~6). The simulation budget N is 
100 and 300 for the deterministic and stochastic tests, respectively. Because in stochastic case, evaluation 
of one solution contains 2 simulations under the same demand realization, one for the toll alternative and 
the other for the non-toll one, and the SAA sample size is 5 for GA, so this means 100 and 150 iterations 
in R&S and ⌈100/|A’|⌉ and ⌈30/|A’|⌉ generations in GA (or SAA-GA) for the deterministic and stochastic 
cases, respectively. In stochastic test, each OD demand qrs in (2) is subject to a common p% ~N(0, v2) 
perturbation, qrs is set to 0 if it drops below 0. Two cases v=0.01 and 0.05 are tested, with λx0=105 and 4×105, 
respectively. We run 10 independent sample paths for each algorithm in both deterministic and stochastic 
tests. The main performance measure is the Relative Opportunity Cost (RelOC), defined as the relative 
difference between the objective value of the true optimal solution (the best solution possibly known) and 
the objective value of the “best” alternative proposed by the algorithm.  

Note that normally distributed perturbation in traffic demand does not necessarily results in normally 
distributed objective value Td, as shown in Fig. 1(b). We can see the travel time reductions under two toll 
alternatives are not affine in demand with markedly different patterns. This is due to the nonlinear function 
ta(za) and complicated system response of underlying UE flow assigment. We use this deviation from 
normality to show the robustness of the normality based Bayesian R&S algorithm for practical problems 
such as SNPP. This also indicates that the objective value evaluated at base demand may not be the true 
value of an toll alternative.  So the mean of 1000 Monte Carlo samples is used as this "true" value.  
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                       (a) Network layout                                  (b) Travel time reduction under two toll alternatives 
Figure 1: Sioux Falls test network and non-normality of alternative values. 

Fig. 2(a), (b) and (c) compare the RelOC between Bayesian R&S SNPP solved by MCLB-KG  and 
solved by GA or SAA-GA (point estimate of each RelOC with its ~95% confidence interval (CI) plotted). 
In all three cases, the MCLB-KG algorithms outperform GA or SAA-GA, approaching the best solution 
within fewer simulations and has a constantly better RelOC within the simulation budget. In fact, in 
deterministic case, MCLB-KG finds the true optimum within 80~100 iterations in most sample paths, while 
GA often stays in local optimum with RelOC values above 0.1 after reaching the 100 sampling budget. Fig. 
2(d) shows how many times of alternatives in each region j are measured (j=1,…,10) by each algorithm in 
three typical sample paths. As can be seen, GA tends to spend most time around certain area (near local 
optimum) while the MCLB-KG algorithm explores across the decision space more evenly. In fact, The 
global exploration of the MCLB-KG algorithm happens in earlier iterations accounting for larger 
uncertainties in the hyperparameters and then the algorithm quickly identifies promising regions to spend 
more iterations in.  In the stochastic setting, our algorithm also explores across the decision space while 
SAA-GA’s searching is much more localized, similar to the observation  in the deterministic case.  

Take case v=0.01 as an example, Figs. 3(a) shows the entries of posterior mean vector aN and diagonal 
entries of covariance matrix CN resulting from MCLB-KG. We see that the absolute values of the posterior 
means of model coefficients for most attributes are well above that of the sampled deviation terms, and the 
posterior variances of the deviation terms are smaller than those for the coefficients of toll attributes. This 
explains why the non-perfect additive linear models are useful for SNPP. They are also true for v=0.05 
(although the absolute values of aN entries decrease) and the deterministic case. Under larger v=0.05, the 
relative ranking among the posterior means of different model coefficients remain almost unchanged , and 
posterior variances of the toll attribute effects increase, which is not surprising. Based on these posterior 
means and e=2$, we compute and plot the marginal effects of toll rates for each tollable link, as shown in 
Fig.3 (b). The results suggest that most links have positive expected marginal effect on travel time reduction 
at all toll levels, but interestingly, the expected marginal effect of link 66 and 75 are positive at toll level 1 
and 2 but negative at toll level 3. Link 16 and 19 have negative expected marginal effect at all toll levels, 
indicating that the initial congestion level may not always be a good criteria for selecting candidate links. 
The notable variations of the marginal effects across links and toll levels justify the belief model used.  

We also note in the test that measurement decisions xKG,n are usually from the set {t1, …, tK0} by MC 
sampling, which is a bigger set in earlier iterations (n≤ 20). However, in later iterations (after enough 
observations that make the belief upon those hyperparameters relatively stable and outweigh the effect of 
non-informative priors), the MC step often selects only one alternative t1 (i.e., K0 =1). Interestingly, this t1 then often stalls for several iterations before a change is invoked by a relatively significant refinement of 
the belief in the linear model coefficients after sampling a new “promising” alternative from the set {s1, …, 
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sK1}. This shows the effectiveness of MC sampling as well as the necessity of including extra alternatives 
in the candidate set S in each iteration, particularly when the number of alternatives is large.  

          

     
Figure 2: Performance comparison between two algorithms. 

 
 
 
 
 
 
 
 
 
 
   

 
(a) Posteriors on model coefficients (the lines on the left: posteriors of ηi ’s with   (b) Marginal effect at three toll levels 
 ~95% CI,  the lines on the right: posterior means of ζx ’s under 3 typical trials)        (the link number is beside the line) 

Figure 3: Posterior distributions on hyperparameters and marginal effects of toll attributes (v = 0.01). 
Finally, Table 1 shows the average per iteration computation time of each algorithm over 10 sample 

paths, the MCLB-KG spends most time on sampling decision  (MC step included), almost 103 times as that 
of the GA (or SAA-GA). This is mainly due to computing the KG-factor over the whole choice set 
especially during the earlier stages when candidate alternatives {t1, …, tK0} are more diversified with larger 
K0. Besides the doubled simulation time per iteration (due to evaluating T0(ω) in addition to Tx(ω)),  another 
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significant difference of the stochastic case compared to the deterministic case is that the average time spent 
on the MC sampling step increased by ~30%  under v=0.05. This is because during earlier iterations more 
candidate alternatives are generated due to bigger uncertainty on the hyperparameters. Such uncertainty 
decreases significantly as measurements accumulate, but with K0  drops in a slower rate compared to that in 
the case v=0 or 0.01.  However, although the total computational time by MCLBKG is bigger in this test 
network, it considerably reduces the total number of simulations needed for reaching a satisfactory RelOC 
compared to the SAA-GA. This will bring us substantial time savings for large networks when each 
simulation takes hours even days, which is usually the case for SNPP in practice (e.g., Zuo et al. 2009).  

Table 1: Average computational time per iteration. *: KG-factor computing (MC sampling) 
v Algorithm Simulation (s) Sampling decision (s) Update (s) 
0 GA 17.1 0.13 < 0.01 

MCLB-KG 16.5 41.4 (57.5)* 0.81 
0.01 SAA-GA 33.6 0.07 < 0.01 

MCLB-KG 33.4 39.5 (62.4) 0.79 
0.05 SAA-GA 34.0 0.05 < 0.01 

MCLB-KG 33.6 37.8 (76.4) 0.67 
5 CONCLUSION 
We have proposed a Bayesian R&S model for the Second-best Network Pricing Problem (SNPP) choosing 
toll locations and rates simultaneously. The large number of alternatives, combinatory nature and random 
demand make the problem challenging. We adopt a linear belief KG policy to solve the SNPP. As an 
extension of Ryzhov and Powell (2009) to the linear belief setting, MC-sampling of the hyperparameters is 
proposed to reduce the choice set. Experiment results on a SNPP with 410 alternatives show good 
performance of the method and its superiority to the SAA-GA benchmark. We believe this is a promising 
tool for real-world SNPP under limited sampling budget. The successful application of the parameterized 
belief model tailored to SNPP also sheds lights on the underlying features of the problem itself. 
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