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ABSTRACT

This work expands the notion of unresolvable uncertainties due to modeling issues in weakly predictive
simulations to include unique implementation induced sources that originate from fundamental trade-offs
associated with distributed virtual environments. We consider these trade-offs in terms of the Consistency,
Availability, and Partition tolerance (CAP) theorem to abstract away technical implementation details.
Doing so illuminates systemic properties of weakly predictive simulations, including their ability to produce
plausible responses. The plausibility property in particular is related to fairness concerns in distributed
gaming and other interactive environments.

1 INTRODUCTION

This paper considers two particular kinds of uncertainties that arise in distributed virtual environments and
their relationship to weakly predictive simulation systems. We provide a review of uncertainties arising
from insufficient knowledge about a system being modeled along with uncertainties arising due to the
infrastructure of the experimental apparatus.

We consider the implementation-oriented aspects of distributed architectures from the perspective of the
Consistency, Availability and Partition tolerance (CAP) theorem (Redmond and Wilson 2012) to abstract
away details. Because the CAP theorem makes a strong statement concerning fundamental trades between
three orthogonal aspects of any distributed system that manages a repository of data, it provides a means
to reason about the quality of that data as a source from which an analysis often begins. Finally, we
conclude with some observations concerning the use of weakly predictive simulated systems to support
analysis-focused experiments.

This paper is organized as follows. Section 2 presents a review of uncertainty quantification and
sources of uncertainty for computer-based experiment. Modeling human behavior in the presence of
insufficient knowledge is the subject of Section 3 which illuminates the motivation to include humans
within the simulation environment. Section 4 reviews how unresolvable uncertainties associated with
modeling concerns fit within a topology of logical uses for simulation; of particular interest is the ‘plausible
outcomes’ branch. Section 5 reviews fundamental tradeoffs made to create a highly interactive, responsive,
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distributed virtual environments and their associated issues with data consistency. We next characterize
these issues as a CAP theorem problem. Section 6 highlights the concept of plausibility in relation to
dynamic state space consistency issues. We conclude in Section 7 by organizing the two major sources of
uncertainty (modeling and architecture) as two sub-branches to ‘plausible outcomes’ that lead to weakly
predictive simulations.

2 UNCERTAINTY QUANTIFICATION

Uncertainty quantification (UQ) is the science of quantitative characterization and reduction of uncertainties
in both computational and real world applications. UQ identifies and categorizes different sources of
uncertainty with domains of interest. A casual literature search for areas of categorization and quantification
of uncertainty reveals active work in finance, economics, manufacturing and even climate change.

The role of simulation is often the identification and modeling of uncertainty to understand its impact
or effect on some aspect of system performance or operation. For the domain of computer-based experi-
mentation, (Kennedy and O’Hagan 2001) categorized sources that have grown into a more exhaustive list
that can be found here (Wikipedia 2016).

e  Parameter uncertainty, which comes from the model parameters that are inputs to the computer
model (mathematical model) but whose exact values are unknown to experimentalists and cannot
be controlled in physical experiments, or whose values cannot be exactly inferred by statistical
methods. Examples are the local free-fall acceleration in a falling object experiment, various material
properties in a finite element analysis for engineering, and multiplier uncertainty in the context of
macroeconomic policy optimization.

e  Parametric variability, which comes from the variability of input variables of the model. For
example, the dimensions of a work piece in a process of manufacture may not be exactly as
designed and instructed, which would cause variability in its performance.

e  Structural uncertainty, aka model inadequacy, model bias, or model discrepancy, which comes from
the lack of knowledge of the underlying true physics. It depends on how accurately a mathematical
model describes the true system for a real-life situation, considering the fact that models are almost
always only approximations to reality. One example is when modeling the process of a falling
object using the free-fall model; the model itself is inaccurate since there always exists air friction.
In this case, even if there is no unknown parameter in the model, a discrepancy is still expected
between the model and true physics.

e Algorithmic uncertainty, aka numerical uncertainty, which comes from numerical errors and numer-
ical approximations per implementation of the computer model. Most models are too complicated
to solve exactly.

o  Experimental uncertainty, aka observation error, which comes from the variability of experimental
measurements. The experimental uncertainty is inevitable and can be noticed by repeating a
measurement for many times using exactly the same settings for all inputs/variables.

e Interpolation uncertainty, which comes from a lack of available data collected from computer model
simulations and/or experimental measurements. For other input settings that do not have simulation
data or experimental measurements, one must interpolate or extrapolate in order to predict the
corresponding responses.

Structural and interpolation uncertainty are of particular interest in relation to this work. We consider
the modeling of human behavior as analogous to the lack of understanding of the ‘underlying true physics’
of the system. In other words, we don’t completely understand how humans make decisions; because of
that, modeling them is an issue.

Uncertainties that arise in distributed virtual environments closely mirror interpolation issues. For our
purpose, interpolation has less to do about modeling concerns, but is driven by fundamental trades associated
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with the simulation infrastructure that provides the experimental apparatus to conduct an experiment. We
contend that both sources of uncertainty contribute to prediction outcomes that are classified as weak.

3 MODELING ISSUES

In modeling and simulation, abstraction is used to determine how details of a system are represented, while
maintaining validity with respect to some purpose (Frantz 1995). Despite careful choices by the analyst to
mitigate uncertainties, unresolvable uncertainties arise due to insufficient knowledge about a system being
modeled (Bankes 1993). While these uncertainties are common across both distributed virtual environments
and traditional self-contained discrete-event-based simulations; the implementation of a distributed virtual
environment for analysis yields new sources of unresolvable uncertainty.

One particular modeling concern is representing humans and their behavior. Human behavior remains
difficult to duplicate reliably; so in traditional simulations, modeling human behavior is often based on
probabilistic draws from a defined or known distribution. This modeling approach is problematic when
human behavior is not well understood, or if the purpose of the simulation experiment is to study that
behavior.

Including humans within the simulated world is one of the key benefits of a distributed virtual
environment. The goal of these systems is to create a shared sense of a represented world in which to
interact. This leads to higher realism, as the human(s) are no longer models, they are real; but they risk
adding noise to the system, especially if they are not clearly within the bounds of the system under study. As
anyone with a family can attest, no two humans are exactly alike and even a reliable humans behavior will
surprise you. This may be acceptable at family gatherings, but is an unfortunate occurrence for the analyst
trying to draw conclusions from data collected from a distributed virtual environment used to conduct a
study.

Introducing real humans into a simulation experiment presents challenges; if they are not directly part
of the system under study, they can introduce unwanted noise, and if they don’t know ‘how they should
act,” their very presence is considered to be an ‘unresolvable uncertainity’ or a modeling ‘unknown.” This
is a very real concern, especially if the system of interest is hypothetical - maybe representing the future
or simply does not exist.

4 LOGICAL USES

In light of the fact that our simulations are not perfect reflections of reality, it must be determined how
they might be useful. Considering only the types, sources and perceived magnitudes of uncertainty with
a given simulation is not enough to make this determination. Only after considering the analytic purpose
alongside simulation uncertainties can and educated opinion be formed regarding fitness for analytical use.

In (Dewar et al. 1996), a topology of logical uses for Distributed Interactive Simulation systems is
presented (Figure 1). This topology divides the domain of logical uses into two subspaces; the first being
experimental stimulus and the second as an analytical aid. The differentiator between these branches is
defined by this question; for whose benefit is the study being executed (Dewar et al. 1996)? If a human-in-
the-loop is the beneficiary, then the simulation is considered an experimental stimulus. Common examples
of this type of simulation can be found in the training and education community where the purpose is to
enhance three types of skills (i.e., motor, decision making, and operational skills) or entertainment (Topgu
et al. 2016). Additional detail on simulation as experimental stimulus can be found in (Dewar et al. 1996).

Simulations where the beneficiaries are others beyond the participants in the simulation, then the system
is categorized as an analytic aid (Dewar et al. 1996). This class of simulations will be familiar to most DoD
analysts as this is where most constructive analysis tools fit within the topology. The key discriminator
among the subclasses of analytic aids is the degree to which they are useful for prediction. Non-predictive
uses of DIS do not require a high confidence fit between the simulation output and the real world, these
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Figure 1: Topology of Logical Uses (Dewar et al. 1996).

uses include bookkeeping activities such as recording events and logic tracing. Predictive models place a
higher requirement on the fit between simulation output and the real world system.

Strongly predictive models have a demonstrated capacity to forecast outcomes with a high degree of
accuracy (Dewar et al. 1996). Weakly predictive models suffer from moderate to high levels of parametric,
structural or unresolvable uncertainties, yet the model still describes some elements of the real system. This
category is likely the most populated within the analytic aid class of simulations. Care should be taken to
not overstate the predictive credibility of the analysis when using this type of simulation. Often the analyst
is forced to use a weakly predictive model due to lack of data resulting from restrictions or nonavailability.
Arguably, these system can play a supporting role in relation to experimentation, by generating hypotheses
to investigate. In other words, use of weakly predictive simulations will not necessarily generate correct
outputs, but might support a research strategy to understand and investigate the dynamics of a system.

Of particular interest is the ‘plausible outcomes’ branch in this topology, as it relates to unresolvable
uncertainties due to modeling unknowns. One source of unknowns can be humans inserted into a virtual
environment that really don’t know ‘how they should act or behave’ to fairly represent a system of interest.

5 ARCHITECTURE ISSUES

It is fair to say that UQ is related to understanding known knowns and being tangentially aware of and
accounting for, known unknowns. For a distributed virtual environment, this type of unknown or uncertainty
arises from the software and/or hardware architecture that provides the experimental apparatus used to
conduct an experiment. It is fair to say that we have known unknowns, but how those unknowns impact
and influence outputs is not well understood.

Unresolvable uncertainties arise as a result of fundamental trades that must be made when the architecture
of a distributed virtual environment is designed. Because these simulations by definition, include, interface
and interact with humans and/or hardware, these systems are classified as real-time systems. Real-time
systems define performance requirements in terms of timeliness; for example the time it takes to process
new inputs to yield outputs is referred to as a response time. As an example, a human operator flying a
simulated aircraft would expect (i.e., require) the system to respond to stick and throttle inputs by updating
displays within a short period of time (e.g., 100ms).

This requirement is fundamentally at odds with the desire to maintain a consistent representation of
the virtual world across all nodes in the distributed simulation. The challenge becomes problematic in
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Figure 2: Latency and jitter affects (Armitage et al. 2006).

the presence of significant network latency and jitter. Latency is defined as the time required to deliver a
network packet from a sender to receiver, and jitter measures the variation in that delivery time. As Figure
2 shows, latency and jitter affect the reliable delivery and timeliness of state data between nodes in the
simulation. If the distributed nodes are connected via a network infrastructure with a relatively high latency,
data being used by one simulation might be out of date or ‘old” when compared to its current correct value
as managed by another node. This inconsistency or error in state data is a distinguishing characteristic of
distributed virtual environments and must be recognized and managed (Hodson and Baldwin 2009). The
fundamental trade between state consistency and responsiveness is not new, it has existed since the advent
of distributed interactive simulation; sometimes it is referred to as the consistency-throughput trade-off
(Singhal and Zyda 1999). In the online gaming community, this issue manifests itself as an unfair game
(e.g., a dead person shooting). How the concept of ‘fairness’ is defined, is an area of research, and relates
to ‘plausibility’ or plausible responses which we discuss in Section 6.

If the purpose of the simulation is to serve as an analytical aid to support system study and understanding,
then the system itself will most likely be derived from a conceptual model that defines what to represent.
The conceptual model is mapped to entities which are created and managed by different simulation nodes
(Hodson and Hill 2013). To illustrate this approach, Figure 3(a) presents a notional conceptual model that
includes two interacting entities that exchange information related to an interaction. As shown in Figure
3(b), a possible architecture for the virtual environment might be two different simulations or simulators
interconnected by a network. Given this arrangement, entity data created and locally managed will need
to be shared using a network so that interactive environments can be created for each of the human
participants. Figure 3(c) highlights the influence of network latency and jitter on the state data managed by
each simulation. For this case, the state data associated with the location of remote entity(s) (i.e., dynamic
shared state) most likely will not match their true position as managed by their local hosting application.

5.1 CAP Theorem

The complexities associated with the design and implementation a distributed virtual environment are well
known. The underlying issues that create shared state inconsistencies are implementation specific and
include the architecture of the software, such as single or multi-threaded, processing priorities, model
execution/time advance assumptions, networking latency and jitter, model representation (fidelity), the
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Figure 3: Entities, implementation, and dynamic shared state (Hodson and Hill 2013).

selection of various error threshold parameters, etc. To reason about these complexities, we leverage the
CAP theorem - a useful abstraction from the domain of distributed databases.

The CAP theorem holds that you can create a distributed database that is consistent (writes are atomic
and all subsequent requests retrieve the new value), available (the database will always return a value
as long as a single server is running), or partition tolerant (the system will still function even if server
communication is temporarily lost - that is, a network partition), but you can have only two at once
(Redmond and Wilson 2012).

In other words, you can create a distributed database system that is consistent and partition tolerant, a
system that is available and partition tolerant, or a system that is consistent and available (but not partition
tolerant - which basically means not distributed). But it is not possible to create a distributed database that
is consistent and available and partition tolerant at the same time (Redmond and Wilson 2012).

Our use of CAP hinges upon viewing the virtual environment in the same light as a distributed database
system that attempts to keep its replicated data in sync (Millar et al. 2016). From this viewpoint, models
are the consumers of state data that produce outputs. If inputs to the model(s) include dynamic shared
state, then outputs may differ.

6 PLAUSIBLE RESPONSES

The CAP theorem has an important consequence for distributed virtual environments related to the plausibility
of interaction outcomes as observed at the server and clients. Since virtual environments typically prioritize
availability and partition tolerance above consistency, state divergence between the server and client is
virtually guaranteed. In the main, this divergence is of little consequence. However, when the server
and client must independently compute some result based on the same input variables at the same time,
problems with the plausibility of outcomes can arise due to state divergence. For instance, if the interaction
of interest is collision detection and the positional state of involved entities is not consistent, the server
may detect a collision while the client does not. This problem is exacerbated when the server completes
its outcome arbitration — the client’s version of the state may well be overwritten by a completely different
result, yielding an implausible outcome. Steed and Oliveira refer to this as joint plausibility, i.e., the notion
that two or more users accept that they are viewing the same simulation of a shared space (Steed and
Oliveira 2009).
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Note that plausibility does not imply that the server and client compute identical interaction results.
Rather, joint plausibility requires that the computed results be close enough that users are willing to
accept the arbitrated results and not reject them out of hand as nonsensical. That is, dead men must not
keep shooting (Mauve 2000) due to a divergence in states between client and server. Minimizing state
inconsistency between nodes in a distributed virtual environment is a well-studied problem; Delaney et
al provide an excellent overview of consistency maintenance algorithms (Delaney, Ward, and McLoone
2006a, Delaney, Ward, and McLoone 2006b).

The maximum tolerable state divergence resulting in plausible outcomes is interaction dependent (Itzel
et al. 2010). None of the commonly employed consistency maintenance algorithms explicitly account
for outcome plausibility, preferring instead to schedule state updates in a fashion designed to minimize
inconsistency. However, minimal state inconsistency between nodes does not necessarily imply a plausible
outcome.

7 CONCLUSIONS

The main contribution of this research is the unification of two well understood, but separately considered
drivers that cause distributed virtual environments to produce at best plausible outcomes which lead to weak
prediction. The first relates to modeling aspects of a system that are unknown, the second is a result of the
simulation architecture or experimental apparatus used to perform the experiment. The first contributor to
plausible outcomes might consistently yield the same agreed upon incorrect result; the second will most
likely yield a range of results depending upon which node within the distributed system computes it.
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