GRAPHS FOR QUEUEING MODELS

B, Helbrough & G, T, Herman
IBM (UK) Ltd.
101 Wigmore Street

London, W,1,

Abstract

We discuss a program whose task is fo produce gra-
phical answers to problems arising in queueing theory,
We consider why such a program is necessary and
describe the situation to which it is applicable, Some
of the statistical and programming considerations for
the design of the program are mentioned, An example
of its application is given,

1, MOTIVATION

Queueing theory is a comparatively recent but
rapidly developing branch of applied mathematics, Is
subject matter is the investigation of various queueing
characteristics, such as the average queue length or
waiting time in a traffic system, e.g. a cafeteria or a
réal time computer system, A collection of techniques
and results in queueing theory and a shorter work on
the more specialist real time system design aspects
will be found in the references 1, 2,

In common with most other branches of applied
mathematics, queueing theory deals with idealised
situations. When applied to a real life problem it will
generally only be able to provide approximate solutions,
Becauge it is a young discipline, solutions are not
available even for cases of great practical importance,
e.g. for queueing models in which arrivals at the queues
happen in a more or less clustered fashion, Such
clustered arrival is typical in certain real time compu-
ter situations,

Even in situations where analytic solutions exist,
their use is often time consuming, A general question
which may arise in queueing situations is the following:
how does the variation of a certain characteristic (e, g.
servers utilisation) affect the variation of a certain
other characteristic(e.g. average queueing time)? To
answer such a question we need a graph which plots the
queueing time against the server utilisation, For pro-
ducing such a graph we may need to work out the
average queueing time for server utilisations from 30%
to 95% at 5% intervals, 14 calculations in all, In all
but the simplest situation such calculations may take a
very long time, If can be argued that such graphs
should be preproduced (and they are indeed available
for the most common cases), but the variety of situa-
tions which may arise make the production of a book
containing all such graphs. of possible importance im-
practical if not impossible,

291

The Graphs for Queueing Models program (GQM
for short) has been developed, so that such graphs can
be produced quickly for each gituation as it arises,.
Because it is based on simulation rather than analytic
techniques it can deal with a large variety of problems
for which analytic solutions are not yet available,

2, THE BASIC MODEL

The GQM program is applicable to situations of
the following type (see Fig. 1).

Queues

Polling station

Servers

Pig, 1. The basic queueing model,

Transactions arrive at a number of queues each
having its own arrival rate, They wait in the queue
until the queue gets polled, then one of the trang -
actions which has waited longest in the queue will go
through the polling station to one of the available
gervers, (Firstin, first out queueing discipline),
At the server it will be serviced for a certain length
of time (depending on the transaction only and not on
the server) after which it will leave the server and
the system,

Polling will take place if, and only if, at least
one of the servers is available, The time taken up
by polling does not depend on which server is avail-

able. In fact, since we are basically interested in
the behaviour of the queues rather than that of the
servers, we do not distinguish between the servers
and-treat them as a pool, If more than one server

is available we do not care which of them will service
the transaction, However, the average utilisation of
this server pool may be of interest,

When somebody wishes to make use of the GQM
program, he will have to provide some data to make
the model specific to his application, The kind of
information that is required from him, and this also
indicates the flexibility and range of applicability of
the program is the following:

i) Number of queues,

i) Number of servers.

iii) Interarrival distribution between clusters
(e.g. time between clusters constant, or
an exponential distribution, etc,),

iv) Cluster size distribution (this could be con-
stant, in fact 1 if there is no clustering, or
it could be any other distribution).

v) Distribution within cluster (e.g. all arriving
together, normally distributed around the
cluster mean, etc,).

vi) Service time distribution (e.g. constant,
exponential),

vii) Polling discipline (e.g. random, sequentialetc),
viii) Polling time distribution,

ix) The characteristic which is to form the argu-
ment of the graphs (e.g. server utilisation,
the spread of clusters) and the number of
arguments for which values are to be
determined,

x) The characteristics which are to form the
values of the graphs (e.g. mean queueing
time at a given queue, maximum queue length
at a given queue),

These definitions are quite flexible, e.g. the
distributions in (iii) -~ (vi) can be made to depend on
the queue at which the transaction originally arrives,
Standard sets of data cards are provided for the most
frequent situations,

Also, because the graphs are produced as a result
of simulatjon, and hence essentially experimentation,
the user is given freedom to determine the length of
his experiments, the number of hig experiments and
the degree of confidence he wants to have in his
results, We now turn to the discusgion of these points,

3. STATISTICAL CONSIDERATIONS

In the running of the simulation model, the inter-
arrival time, cluster size, service time, ete, will
generally depend on the random number generator of
the model, Hence there will be fluctuation in all the
characteristics of the system and to calculate some-
thing like the mean queue length (if there is one) we
need an infinitely long run. In practice we should

292

choose our runs long enough to make exceptional
situations insignificant.

In particular, since initially there are no
queues at all, it is better to exclude the beginning of
the simulation run from the calculations, The GQM
program automatically excludes the first third of any
run from its statistics gathering,

Even if we take very long runs and exclude the
first third of each from the statistics, we cannot say
for certain how confident we are of our results, This
is because standard tests of confidence (e.g. t-test,

2 - test) assume independently collected samples,
whereas the queue length at any given time is highly
dependent on the queue length at previous times. The
calculation of the level of confidence for a complicated
queueing model can be a very difficult exercise indeed,

The GQM program eliminates the need for such
calculation in the following way, It carries outa
number of experiments, each starting from scratch,
but generating different random numbers, ignoring
in each experiment the first third of the run, The
results of these experiments are now statistically
independent and t-test can be applied. This is done
automatically be the program, ¥or each graph we
obtain two possible values U and L indicating the
upper and lower limits of the true value within the
user specified degree of confidence, For example,
if the user specifies 99% confidence level and a run
length of 1500 transactions and he requires to know
the maximum queue length, after looking at his two
graphs (for U and L respectively) he can make the
following statement: I am 99% confident that the
average of the maximum queue length in a run of
1000 transactions after an initialisation period of
500 transactions is not more than U or less than L,
He can say this, because the program has worked
out that if the average of the maximum queue length
was greater than U or less than L the kind of simul~
ation runs which have happened could only happen on
the average once out of every 100 cases,

If the difference between U and L is too large
for the user's liking, he can decrease it either by
lowering his level of confidence, or by increasing
the number of runs or the length of the individual
Tuns,

4, PROGRAMMING CONSIDERATIONS

The simulation language used in the GQM pro-
gram is GPSS/360, This was chosen because of the
excellent capabilities of GPSS to describe all kinds
of traffic and queueing situations and becauge of the
graphic output available with GPSS/360,

The data which the user has to provide for the
program (described in Section 2) is put in front of
the program deck in the form of variable cards,
storage definition cards and savevalue initialisation
cards, At thig point definition of certain functions

may also be necessary to describe distributions. References
Cards for standard situations are available, These
cards are followed by the GQM deck, which includeg all 1. SAATY, T.L., Elements of Queueing Theory,

all the necessary GPSS control cards, (Length of run McGraw-Hill, New York, p.423, 1961,

is determined by a variable operand in the terminate 2, Analysis of Some Queueing Model in Real ~ Time

block). Systems, IBM Technical Publications Dept, ,
Although the program is relatively short, its logic (Manual ¥F20-0007), p, 75,

is fairly complicated, and not more than a brief
mention of one of its basic features can be given here,

All the exprriments in the simulation are carried
out in parallel, Hence there are N copies of the model
working in the simulation run simultaneously, where
N is the product of the number of arguments required
for the final graphs and the number of experiments
requested by the user for the determination of values
for any of the arguments, This feature helps us in
satisfying the user's requirement for the number of
experiments and also in the production of the final
graphs which depend on the results of all the experi-
ments, Running N copies simultaneously is achieved
by the use of split blocks at appropriate points in the
program,

The program makes good use of some features
of GPSS/360 which were not available in earlier
versions of GPSS, Features used include graphic out-
put, multiple storage definition cards, Boolean
variables, matrix savevalues, and user chain SNAs,

Becauge of our aim to provide an upper and lower
limit for each value to be calculated (see Section 3)
two graphs have to be produced for each characteristic
under investigation, Since it appears advantageous to
have both these graphs within the same axes (a task

which is impossible for GPSS) and also in a way which fn‘;izi‘i?fm ueue length
is visually clearer than the GPSS/360 graphic output, during a d:y

we have additional feature of producing our graphs on
the TBM 1130, using the Data Presentation System

which is capable of plotting several graphs within the
same axes, An example of this type of graphic output

is discussed in the next section, 120 |
110
5. AN EXAMPLE 100
920

It is predicted that the traffic rate for a multidrop

data communication line will increase by approximate- 80
ly 10% per month, We are anxious that the queue of 70
mesgages waiting to be transmitted by the operator 80
does not become unmanagably long, After investiga- 50
tion of the situation (method of message arrival, 40
transmission time, polling discipline) we obtained

by the help of the GQM program the following graph, 30
This shows us, with 95% level of confidence, the 20
limits within which the average of the maximum queue 10

length during a day for the next year will lie,

] 1 2 3 4 56 7 8 91011 12 13
Time of months

293

VARIABLE MESH SIMULATOR

M. J. Kelly

IBM Electronics Systems Center
Federal Systems Divigion
Owego, New York 13827

The Variable Mesh Simulator is an experimental
program running on S/360 under MVT OS. It is so
named by analogy with the numerical solution of differ-
ential equations where finite difference approximations
are systematically evaluated at discrete intervals of
their variables. The largest infervals consistent with
the aceuracy of these approximations are used in order
to minimize the amount of computation. In areas where
greater precision is required, smaller intervals must
be used and so we get a picture of an n-dimensional
grid whose mesh-size varies according to local needs.
In VMS, different language-levels of description of the
system (to cater for different objectives) are our ap-
proximations, and these levels imply the degree of

‘. detail required -~ our interval sizes. Also, by divid-

ing the system into parts, independently described at
different levels, we can concentrate our computer
power on those areas needing the most intenstive study.
Each such "part" is called a region, and each level of
description of a region is called a cut. Our overall
objective is, then, to be able {o simulate economically
any or all parts of a system, no matter how large, at
any levels of description and for any purpose the user
has.

A region of a system is represented as a con~
nected set of "black-boxes" (called blocks) and the
basic simulator is a program which takes them, after
suitable preparation, and schedules events which re-
flect their behavior in simulated time. The descrip-
tions of the blocks tend to be highly application ori-
ented, and, therefore, special languages would be ad~
vantageous to the user. However, we have employed
only Assembler macros and PL/1 to date although any
other language can be used if a suitable compiler ex~
ists. As new blocks are defined, significant features
are noted so that its compiled description can be made
reasonably general without performance degradation,
Gradually, a library of useful block descriptions is
built up, which can be uged in subsequent system
studies.

Cuts are assembled so that the transfer of data
during simulation does not require table searching.
Each block is stored as a value, plus a list of ad-
dresses which are of four types -- data sources, data
destinations, subroutine entries, and successor blocks.
The value of a block denotes the current state of that
part of the system; the values of other blocks, used as
input data, constitute the block's environment since

294

there are no other connections to the system. The
state of a block changes at discrete points in simulated
time and is considered steady between these points.

When control is given to a block, its subroutines
process the input data and store the results as block
values before exiting to a standard routine which sch-
edules events for the successor blocks. Depending on
what a block's function is, the value it generates, if
any, may be its own or another block's. An example
of the latter is a storage block which has value but no
function, the transfer of data being due to a separate
control block.

When ablock's function has been simulated and
any new values stored, it is common to require the
operation of other blocks at the same or later points in
simulated time. Each such event is entered in a queue
for the required timing point. The number of such
queues will vary during simulation as will the numbers
of events in them. A simple technique is used to al-
locate space for these queue entries dynamically such
that after execution, the space is made available for
new entries.

The structure of these queues is essentially a
two~dimensional linked chain. Events in a queue are
linked forward; i.e., each entry contains the address
of the next one. Each queue has a header which ad-
dresses the first and last events in the queue., The
headers themselves are a forward and backward linked
chain and contain the time value at which all events in
their queue are to be executed. Although all events
occurring at one time are, ostensibly, simultaneous,
the computer can handle them only consecutively, so
some attention has to be paid to the order in which
they are scheduled. In practice, a binary priority
scheme suffices. Two priorities, high and low, are
recognized. Events scheduled high are entered in the
queue on a LIFO (last in, first out) basis, and these
low are FIFO. The system user has control now, since
he can specify special ordering between closely re-
lated events. .

The mechanism described belongs to one cut.
Every cut having its own queues, the complete system
is simulated by exercising the cuts individually until
no further activity at the current time is scheduled,
and this may involve resimulating cuts at that same
time if instantaneous feedback oceurs. It is at run

time that the system model is put together. Not all
the existing cuts need be used -- only those necessary
for the immediate purposes. Up to this time, a cut
has many dangling connections which are its undefined
interface with the rest of the system, and only now
need the connections be hooked up. This delayed speci-
fication permits great flexibility in system design
since incomplete or alternative designs can be handled
without trouble. The cut interfaces are specified by
tables stating the line names and data formats of each.
These interconnections are then agsembled to form
the internal linkage structure, which comprises spec-
ial IN and OUT blocks, plus address lists for data
transfers and successor scheduling. At a later date,
when user intervention via a terminal is implemented,
it will be possible to modify the intercut connections
dynamically and, therefore, to switch in and out alter-
native descriptions of cuts. For example, if an eng-
ineer is simulating a machine and he locates an exror
in one part, he can continue simulating other details

of his machine by using a higher level "functional"
description of the faulty part. In a multiprogrammed
computer, he can reassemble the corrected cut con-
currently and then switch it back into his running model
for further checking.

Address of Next Event Eniry Event
Address of Block Entry
Address of Subroutine

Address of Input Values .
Address of Destination Values Block in Cut
Address of Successor Blocks

[Block 1 Value
Block 2 Value Biock Values
in Cut Data
Area

Figure 1. Standard Block Linkage

A problem with previous simulators, in spite of
their relatively limited scope, has been capacity limi-
tations due to core requirements. This is an inherent
problem so we have planned a roll-out/roll-in capa-
bility to solve it, albeit at some cost in performance.
To reduce quantities, block values and outstanding
queues are the only data rolled out; and, to facilitate
this, the cut assembler keeps block values separate
from the address lists. On roll-in, both the rolled
out data and a fresh copy of the remaining cut material
is required. Since different cuts occupy different
amounts of core, it is impossible to keep every cell in
use, but the user can attempt to define his cuts with
approximately equal assembled sizes. In addition, it
is planned to permit fragmented cuts; i.e., subdivided
cuts which have few interconnections between subdivi-
sions and which are re-linked together at roll-in time
if necessary. Here, as in aspects treated earlier, the
on-line user and dynamic change capability are con~
sidered key concepts whose value will far outweigh
their cost.

The program, while still undexr development, is
being used to simulate computers described at logic
block and register levels and modeledin2-or 3-valued,
unit or variable delay modes.

Address Time for This Queue
Address of Prior Time-Header
" Address of Next Time-Header
Address of First Event Entry
Address of Last Event Eniry

Time
Header

Address of Next Event Entry
Addres of Block

Address of Next Event Entry

Address of Block

Event
F Entries

Figure 2. A Typical Time Queue

Out Block Table of input
Bl OBI Values Value Addresses
E?gek » Out » OB1 Value |« ©B1)
ocl In Edge
‘——J-—— (OB 2) Block [Block
B2 OBZ L OB2 Vulue
Edge .
Block Out
B3 OB3
»1 ‘OB3 Val < OB 3
Edge Out [- ©83) \ In Edge
Block - v Block [” .Block
Cut 1 Area Connect Area Cut 2 Area
Figure 3. Cut 2 Accessing Block Values as Defined by the Connect Area
Cut 1
Tables of .
TAG Addresses TAG Table Time Header
12
T2 o T2 _ Next Event In Edge
5 i 12 Address Block Block
Block Block 5 _ Next Event In Edge
o " I5 Address Block Block
I8
» =1 Next Event dn Edge
15 T8 g 18 Address Block [~} Block
Edge™ Out i
Block Block /
Cut 1 Area Connect Area Cut 2 Area

Figure 4. Cut 1 Stimulating Cut 2 By Pagsing Control Via the Connect Area

296

