SOLPASS
A Simulation Oriented Language
Programming and Simulation System

James Armstrong
Horst Ulfers
USAECOM, Fort Monmouth, New Jersey

Donald J. Miller
Harry C. Page
International Computer Sciences, Inc.
Neptune, New Jersey

Abstract

SOL., A Sirmulation Oriented Language, was described by Messrs. Knuth and
McNeley of Burroughs Corp. in 1964. In 1968 a complete 2-pass compiler
system was developed under Government contract by Messrs. Page and Miller
of Patterson—-Smith, Inc. Since then a number of features have been added to
the SOL language, making it a very powerful tool for discrete simulations.
SOLPASS has found a broad field of applications within the USAECOM Labor—
atories served by the Burroughs B5500 installation at Fort Monmouth, The
Sirmulation System has been implemented to make most efficient use of the re~

mote access system to the B5500 computer for compilation, debugging, test

runs and short production runs.

This arrangement has increased the program—

ming efficiency to the extent that discrete simulation models can now be im—

plemented within a fraction of the time previously needed.

Discrete simula—

tions of large scale communication systems and control systems have been

performed successfully using SOLPASS.

An important goal of the Army is the develop-
ment and production of a lightweight and mobile
battlefield communication network to eventually
link all the field armies and incorporate many
types of messages, including teletype, voice,
and high speed data transmission. Communica-
tion links are to include hardwire, RF, micro—
wave, and satellite relays. Switching modes
will include conventional relay equipment,
switching computers, and store and forward
computers. The Army has devoted considerable
effort to gather the traffic statistics and to sim-
ulate the traffic flow through the various system
configurations to determine component require—
ments of data links and modes. The Advanced
Systems Design Branch of the U,.S. Army Elec—
tronics Command Communication and Automatic
Data Processing Laboratories at Fort Monmouth
New Jersey selected SOL. to be the simulation
language used in the communication traffic sim—
ulation.

24

The SOLPASS simulation system was devel-
oped to enable efficient simulations of large
networks on the Burroughs B5500 computer.
The SOL language, as defined by Mr. McNeley
and Professor Knuth was used as basis for this
implementation. The SOLPASS system con—
stitutes a general purpose simulation package
of wide range applicability and the only one
available for the B5500 computer. Special
complementary language constructs were
added to allow efficient simulations of large
communication systems, with a variety of fea—
tures for preemption and similar control ac~
tions.

SOL is an algorithmetic language used to con-
struct models of general systems for simula—
tion. The model builder describes his model in
terms of processes whose number and detail
are completely arbitrary and definable within
the constraints of the language elements. A

SOL model consists of a number of statements
and declarations which have a character simi-
lar to that found in programming languages
such as ALGOL.. The statements and declara—~
tions in each process define the rules for each
transaction using that process. Each process
may have local variables.and each transaction
for that process will have its own set of local
variables. Thus, a process to describe a mes~
sage in a communication system may be written
and each message would be a discrete trans—
action in the process.

The SOL. language is characterized by several
predefined queuing variables which are global to
all processes in the simulation model. Each
gueuing variable type has discrete disciplines
which relieve the modeler from performing his
own queue management. There are basically
five distinct queuinhg constructs in the SOL
language as follows:

(1) WAIT (N time units)
This construct permits the trans—
action to wait for a passage of time.
() WAIT UNTIL (Boolean expression)
This construct permits the modeler
to define one or more queues based
on relationship of model variables.

FACILITY

A facility is a time—shared variable
which is preemptable on a priority
basis. A facility is either in a state
of busy or not busy. It is controlled
by a transaction seizing it and is
made not busy by a transaction re-
leasing it. The degree to which a
transaction may control a facility

is determined by a control strength
associated with the seize. Trans—
actions attempting to seize the same
facility with a higher control strength
will interrupt the transaction con-
trolling the facility., Transactions
attempting to seize the facility with
less than or equal to the control
strength will be queued on control
strength, transaction priority, and
first-in/first-out basis. The inter—
rupted transaction may be cancelled,
returned to the facility queue or may
branch to a prespecified statement
at the option of the modeler. The in—
terrupt action is a function of each
transaction and not a function of the
overall model,

®

25

(4) STORE
A store is a space-shared var—
iable which has a discrete capacity.
Transactions control all or part of
a store by entering the store and re~
lease control by leaving the store.
They may enter or leave with N
units of space. If a transaction at—
tempts to enter a store with more
units than are currently available,
the transaction will be queued,
based on transaction priority, first—
in/first-out. Multiple transactions
may hold space in the same store.

TRUNK

The trunk is a space-shared var—
iable which may be interrupted in

a fashion similar to that of the fac—
ility. The trunk was implemented
to facilitate simulation of large corm—
munication trunk lines which may
handle a variety of message types
simultaneously. The interrupt
capability permits high priority
messages to pre—-empt parts of a
data link for message transmission.
The transaction or transactions
which are interrupted from a trunk
are predicated on a priority basis.

G

The first four queuing constructs are a part of
the basic language. The trunk is an extension
which was defined for this implementation.
There are several other extensions to the SOL
language which will be defined later in this
paper.

The implementation of the SOL compiler sys—
tem was performed under Government contract
by Patterson-Smith, Inc., a subsidiary of In-
ternational Computer Sciences, Inc. The pro-
ject was started in the Fall of 1967 and was
completed in early 1968. Additional refine—
ment of the SOLPASS system was performed
after the completion of the initial implementa—
tion.

Because of the anticipated simultaneous pro-
cessing of up to 10,000 messages through the
network, SOLPASS was designed to operate
with virtual memory, making full utilization

of the on-line disk storage of the Burroughs
B5500. The number of transactions which may
be simultaneously in process is a function of
the disk memory availability and not the core
storage capability. Further criteria was the
capability to define and run models from re—

mote on-line terminals without significant sac—~
rifice of large scale simulation speed. It was
further required that the number of queuing
variables and number of simultaneous queues
be virtually unlimited to facilitate implementa~
tion of large scale networks.

Since SOL. is an ALGOL~-type language, it was
decided to implement SOL in ALGOL and pro—
vide a complete ALCOL capability as a sub—set
of the SOL. language. Toward this end, the
complete Burroughs extended ALGOL has been
included in the SOLPASS system, The SOL~
PASS system has three basic components:

(1) a SOL translator which syntaxes
SOL source statements and gen—
erates an ALGOL program,

() a simulation control module which
is appended during the ALGOL
compilation,

(8) and a post-simulation statistical
ahalysis system which performs
calculations necessary for re—
source usage documentation.

This structuring of the SOLPASS system into
three discrete modules permits considerable
flexibility and provides some unique capabilities
which are desirable in a simulation system.
The system flow involves writing the model in
SOL with ALGOL language inserts as required,
compiling the model in SOL to generate an
ALGOL. program, compiling the ALGOL pro—
gram with the automatic insertion by the system
of the control module queuing algorithms and
intrinsics; running the model; and, finally,
performing statistical analyses after the simu-
lation has been run. The separation of the sin—
ulation model from the statistical routine is ac—
complished in a rather unique fashion. Sta-
tistics on the queuing variables are not re—
tained in memory during the simulation run,

but rather the events upon which the statistics
are based are placed on an external file as the
events occur. As a normal byproduct of any
simulation, the occurence of each event and the
time of each event for all queuing variables are
placed on the external file. Additional informa-
tion on the external file may be specified by the
modeler by defining tables for gathering sta-
tistics on non—queuing variables and arithmetic
expressions, The capturing of the events
rather than the statistics during the simulation

run provides the modeler with considerable flex—

ibility for analyzing the statistics. The event
file may be retained by the modeler for as long

as desired and multiple analysis runs of the
statistics may be made. With an event log file
it is possible to do an analysis of discrete
vapriables as a function of time and to select
discrete time spans for analyses. Available
in the SOLPASS implementation are tabular
printouts of queuing variables and tables,
graphic displays via bar charts, and plot func~
tions with the ability to plot multiple variables
on the same graph with different scaling fac—
tors. These capabilities simplify preparation
of reports and presentation of the simulation
results as well as analysis of the simulation
run. The separation of statistics from the sim—
ulation run simplifies the problem of defining
the model because upon successful completion
of & given model one may then determine what
statistics are significant rather than attemp—
ting to predefine statistical output prior to the
runnhing of the model.

A prime consideration in the implementation
of SOLPASS was the requirement for pro—
viding convenient debugging tools and the abil—
ity to analyze and identify errors in the phys—
ical aspects of the model as well as the logical
aspects of the model. Several levels of de—~
bugging and error analysis have been incorpor—
ated into the SOLPASS system. The first
such level is during the compile phase., All
SOL statements are thoroughly checked for
syntactical correctness and error messages
generated at compile time describe any er—
rors which might occur. The ALGOL compila~
tion provides a secondary level of source lang-
uage checking on the ALGOL statements which
may be included in the SOL program. A third
level of error detection and analysis occurs
while the simulation is in process to ensure
proper management of arithmetic and queuing
variables. Error termination conditions in—
clude invalid array indexing, division By zero,
mismanagement of facilities, stores, or trunk
queuing variables, and excessive transactions
simultaneously in a process where this cri~
teria is controlled by the modeler. If errors
are detected during the simulation run, an er-
ror termination routine for the simulation is
evoked which annotates the error and dumps to
an external file all global queuing and arith—
metic variables with the status of all queues.
Additionally, disk files containing all local
variables and transactions are made available
for diagnosis. These external files may then
be examined after the simulation is terminated
to provide a complete analysis of the state of
the simulation when the error occurred. It is
additionally possible to specify dynamic moni-
toring and dumping of discrete variables

during the simulation run to permit tracing of
the logic flow,

To further facilitate the utilization of the system
a complete breakout-restart capability has been
implemented in the simulation run. This gives
the modeler the ability to stop a program at
discrete points and restart it with or without
alterations. This facilitates computer time
scheduling for large sinmulations and minimizes
the possibility of reruns due to computer fail-
ure, It also provides the unique capability to
run a model until it has reached a steady state
condition, perform a breakout, and then run a
series of restarts of the steady state model im—
pressing varying loading factors upon the steady
state condition., The maintenance of a separate
event log facilitates analysis of the subsequent
restarts and permits statistical analysis of the
entire simulation including the restart or only
the simulation time involving the imposition of
varying loading factors. This particular capa—
bility has proved to be very valuable in the an—
alyses of communication networks,

The random number generator implemented for
SOLPASS has been tested extensively at the
USAECOM R & D Laboratories, It is fast,
non=recurring over long sequences, satisfied
fundamental statistical criteria and is repeat—
able.

Starting with three arbitrary real numbers be-
tween zero and one, a new number between zero
and one is calculated as the sum of the three
numbers., The oldest of the original numbers
is replaced by the new number and the sequence
is repeated for the next random number. With—
in the SOL language, a random number is ob—
tained by use of the syntactical primary
RANDOM,

There are several intrinsic distributions to the
SOL language which also utilize the random
number generator. These are the normal,expo~-
nential, poisson, and geometric distributions.
There is, additionally, a probability function in
the SOL. language which has been defined as

PR = RANDOM LESS THAN OR EQUAL TO.
Thus, if one desires an event to occur with the
probability of .25, it would be specified as

IF PR .25; An extension to the SOL language
which calls upon the random number generator
is the distribution function. This function per—
mits sampling from a discrete probability dis-
tribution., Values of the random variables are
given in an expression with the associated fre~
quency of occurence. Frequencies need not
sum to any particular number; they are summed

27

and normalized before the function is evaluated.
The random number generator is called by the
distribution function for the selection of the
random variables.

There are several characteristics of this im—
plementation pursuant to routine efficiency
which are of interest to the modeler, The
SOLPASS system has been designed so that
memory is not a restriction on the size of the
model. Most models will normally run in

8, 000 words of resident memory on the B5500,
This is brought about by several design features
in the control modules of the SOL system. In
other simulation systems, considerable core
memory is required to retain statistics. The
generation of an event log tape as opposed to
maintaining in~core statistics minimizes the
actual simulation model core requirernent.
Secondly, the system is responsive to the num-
bepr of transactions in any one process and, if
the number of transactions exceeds a pre-—
determined quantity which is a function of the
number of local variables in the transaction,

a disk management module is evoked which
provides efficient core swapping of transaction
groups for each process. A third factor in the
effectiveness of the simulation system is the
queue Mmanagement capability. The queues,
where all queuing variables are maintained in
a single segmented dynamic array, may be
overlayed by the operating system of the
B5500, All entries into the queue are via link
lists and several levels of algorithms are util~-
ized for queuing and un—queuing based upon the
current size of a particular queue.

The use of multiple algorithms for transaction
management and queue management permit
efficient running of both large and small simu-—
lations. Small simulations will run completely
in core, not requiring disk access. Large
simulations, on the other hand, will tend to

run the most active segments in core with over—
flow to disk only as required to handle large
volumes of transactions.

The SOL.PASS simulation package is in use on
a Burroughs B5500 computer with a remote
access user system. To make most efficient
use of the remote access facilities all SOL~
PASS programs have been developed for use
on the remote access system as well as for
batch processing. Figure 1 illustrates the
flow through the SOLPASS system. The gen-
eration of the Object Program code is per—
formed in two steps via an intermediate ALGOL
language state. Both compiler programs, the
SOL compiler as well as the ALGOL compiler,
can easily be executed from the remote access

units., The error listings on disk are available
for debugging immediately, thus eliminating the
long turnaround times of batch processing.

The simulation model can be tested by short
test rung of the Object Program. In case of
test runs executed from the remote access units
disk files are used instead of a Log Tape and
Error Tape. A subsequent Log Analysis Pro—
gram Run also executable from the remotes
will produce the statistical data either on a
hard copy or on disk memory. A second Anal-
ysis Program is used to generate load plots of
specific model components, a very useful item
in verifying the model.

Simulation production runs in general arée per—
formed by batch processing over night or week-
ends.

Generally a Simulation Model consists of three
basic segments: the transaction generator, the
basic simulator, and the analyzer. As exper—
ience has shown it is better for operational
reasons to run segments of long simulations
individually. This is in particular true for sim-—
ulations whereby extensive numbers of trans-
actions with local variables are to be generated
from statistical data. For instance, in traf-

fic simulations detailed statistics are usually
available to generate messages with all para~
meters such as originator, destination, mode,
length, precedence levels, route through the
network, etc., For large communication net~
works the computer time to generate these mes—-
sages approaches the basic simulation time.

All segments of the program should be run sep-
arately and intermediate results of the simu-
lation saved by the breakout feature provided

in the extended SOL. language. The separation
of the traffic generation program usually will
cut the running time 50% for each segment. The
separation of the traffic generator avoids re-
dundancy whenever several simulation runs are
planned with identical traffic statistics.

The SOLPASS system separates statistical
analysis program from the basic simulation pro-
gram. This approach proves very efficient
since the log tape of the simulation usually has
to be analyzed more than just once and a variety
of parameters can be specified for this analysis,
for statistical listing as well as graphical il-
lustrations.

Typical run times for simulations of varying
sizes are contained in Table 1.

28

Applications for SOLPASS

Discrete Simulations
Traffic Simulations
Road Traffic Studies
Air Traffic Studies
Communications Traffic Studies

Systems Simulations
Control Systems
Computer Systems
Communication Systems
Transmission Systems

Hardware Simulations
Error Detection/Correction
Encoding/Decoding Devices
lLogical Circuits

Continuous Simulations
Flood Control Systems
Analog Processes
Electronics Circuits
Transient Analysis

The expanded SOL language has been developed
for general purpose applications. Consequently
SOLPASS has found a broad spectrum of ap—
plications within the USAECOM laboratories,
Using the SOLPASS system most of the listed
applications have been modelled and pro—
grammed in SOL and executed on the Burroughs
B5500 computer., Within the USAECOM Com~—
munication and Automatic Data Processing
l.aboratory SOLPASS had been developed for
the simulation of traffic flow across large mil-
itary communication networks. Consequently,
most of the experience has been gained in
Traffic Simulations and Systems Simulations.

Traffic Simulations are concerned primarily
with the development of traffic load patterns
for existing planned networks, to derive proper
dimensions for the network components., For
all types of traffic studies SOLPASS seems to
be ideally suited.

Systems Simulations are usually performed to
verify a certain system design without building
specific hardware. Traffic considerations are
here of secondary importance only. Also in
this class of application SOLPASS performed
very well,

Hardware Simulations are the third class of
applications. Not enough experience has been
gathered in this particular class for a proper

evaluation. However, indications are that SOL-
PASS could be applied quite successfully in this
field.

The fourth field is the off-beat application to
continuous processes. Although only recently
conceived and tested on a number of basic prob—
lems, this application does not seem to be as
far off as one might expect. As a matter of
fact, programming seemed to be less involved
than on analog computers. Using the remote
access system, results and plots were available
immediately after relatively short runs.

SIMULATION BEXAMPLES
Airport Simulator

The following illustrates a rather simple traffic
simulation problem, which has been used as a
classroom problem in a SOL programming
class. The SOL program listing for this prob-
lem is shown as a language sample because of
its small size,

QUEUE 1 QUEUE 2 J
A\
4 4 5
3 © Gates
b 7
INSPECTION 18
| I

An arrival building has 8 gates. Before planes
can approach a gate they have to pass a health
inspection station. Only one plane can be in—
spected at a time. It takes 4 seconds per pas—-
senger to complete the inspection. The plane
then enters a queue until a gate is assigned. It
will -occupy a gate immediately if vacant. A
plane will stay at a gate for an average time of
20 minutes sampled from an exponential distri—
bution., Planes arrive at a rate of 24 per hour,
poisson distributed. 60% of the planes carry
50 passengers, 830% carry 100 passengers, and
10% carry 150 passengers.

Determine: the maximum queues waiting for
inspection.

Note: simulation time units in seconds.

SOL program listing

BEGIN
FACILITY INSPECTION;
STORE 8 GATES,
100 QUEUE1, 100 QUEUEZ;
ALGOL
BEGIN
DEFINE MINUTES =X 60,
HOUR = X 3600#;
END;
PROCESS CONTROL:
BEGIN
WAIT 1 HOUR;
STOP;
END;
PROCESS SIMULATE;
BEGIN
INTEGER PASSENGERS;
LABEL START, ARRIVAL;
START:
WAIT EXPONENTIAL (1 HOUR/24);
NEW TRANSACTION TO ARRIVAL;
GO TO START;
ARRIVAL:
PASSENGERS:=DISTRIBUTION
(BOG#60, 100#30, 150#10);
ENTER QUEUET;
SEIZE INSPECTION;
WAIT (4/PASSENGERS);
RELEASE INSPECTION;
LEAVE QUEUEH1;
IF GATES FULL THEN
BEGIN
ENTER QUEUEZ;
ENTER GATES;
LEAVE QUEUEZ;
END ELSE
ENTER GATES;
WAIT EXPONENTIAL (20 MINUTES);
CANCEL;
END;
END.

Communications Network Simulator
In general, simulations of large scale com-
munication systems are performed because of

the following two reasons:

(1) To optimize an existing network with
respect to optimum systems utilization,

(@) To size links and switches in a com—
munication network to be developed.

29

The folltowing figure shows a simple network
layout for illustration purposes only, Real net—
works tend to be much more complex in their
layouts.

This sample network shows 6 nodes and 8 links.
Node 6 as an Access Node has no impact on al-

ternate routing. Therefore, Access Nodes in a
network will have to be treated differently than

the regular Trunk Nodes.

Traffic statistics between pairs of users (need-
lines) are usually available or can be derived.
A further preprocessing of those user require~
ments will lead to traffic statistics between
nodes only (nodal needlines). These are re-
corded in matrix form based on busy hour traf-
fic. This matrix will serve as input to a traf-
fic gener‘a{tor".

During the simulation, individual messages will
then be routed through the network according to
a special routing algorithm and statistics are
collected for the loading of links and nodes., Im-
portant statistical factors are the maximum load
occuring during the simulation and the average
utilization.

In SOLPASS, the most convenient way' to model
the links between nodes is to utilize the STORE
utility as provided by the SOL. language. The
store is a utility, which can be used by a num—
ber of transactions simultaneously until the
capacity of the store is exhausted. Then fur-
ther arriving transactions can either be queued
until enough capacity of the store becomes a—
vailable or they can be sent to a special pro—
cedure to take any other action desired. Each
transaction represents a message as specified
in the Traffic File and conserves its specific
Traffic File information until it is terminated
(cancelled).

If preemption on links is required the TRUNK
facility as specified in SOL should be used. A
simple substitution of stores by trunks will ac-
complish this in an existing model. Because
the simulation using trunks requires many more
bookkeeping processes than for stores, the
model designer should use the TRUNK facility

only when preemption has to be implemented
although trunks will perform all functions of
the regular STORE facility.

The nodes pictured in the shown network are,

of course, very simplified and the system de~
sigher is interested in statistics about the fol—-
lowing nodal components as illustrated in Fig—
ure 3.at the end of the text.

Figure 38 shows the block diagram of the Node
Sub-Model, The Node is represented by 9
distinct modules, which do not necessarily rep—
resent hardware modules but which have been
selected because each of them has a very dis—
tinct meaning in the simulation. They are all
represented by STORE utilities.,

LOCALSWITCH -~ This store registers
calls which are both locally originated and
also received.

TRUNKSWITCH - This store registers calls
which are relayed at this node between
trunk groups.

LOCALTOTRUNK and TRUNKTOLOCAL -
These stores register traffic which is lo—
cally originated and inserted into the
trunking network or which is remotely or—
iginated and received locally.

SANDF - This store is entered by Store/
Forward (S/F) messages in addition to the
regular stores. The SANDF store is only
entered at the node to which the originating
and receiving users are connected,

RTNQUEUE, PRTQUEUE, ROWQUEUE,
FLHQUEUE ~ These four stores are only
entered by a store/forward message, if the
message could not be delivered because of
systems blockage. The stores represent
message queues, separated by precedence
levels: RTNQUEUE for routine, PRTQUEUE
for priority, ROWQUEUE for immediate,
and FLHQUEUE for flash, To ensure that
the higher priority messages in queue will
always be considered first, attempts to
deliver queued up flash messages are made
every second, for immediate messages
every two seconds, for priority messages
evepry four seconds, and for routine mes—
sages every 8 seconds.

All stores are decreased by the capacity re—
qguirement of a message, whenever this mes—
sage was terminated (cancelled).

Call Examples

The following actions will take place as can be
best explained by these examples:

(1) Local Direct Call
The transaction representing the local
call enters the LOCAL SWITCH store
at origination time. A record is made
on the Log Tape concerning the change
in load on this store. An origination
message is printed out on the event
listing, specifying node, message num-
ber, time, originating node, receiving
node and links along primary route.,
The transaction remains active until
the holding time expires., Then the
LOCAL SWITCH store load is reduced
by the capacity of the transaction, a
record is made on the Log Tape indica-
ting the reduction in load on this store.
A completion message is printed out on
the event listing specifying message
number and the time of completion, The
call completion count is increased by 1
on this Nodal Needline. Then the mes—
sage (transaction) is cancelled.

(2) Direct Call from Trunk Node to Trunk
Node via Intermediate Relay Trunk
Nodes
The transaction representing this call
prints the origination message on the
event file listing., Then the availability
of the preselected primary route con—
tained in the traffic file is tested. If not
available, an alternate route of the same
length or one link longer is searched
for. If no alternate route is found, a
"blocked" message is printed out in the
event file listing and the lost call count
is incremented by one. Otherwise, the
loads on the following stores are in-
creased by the message capacity.

At the originating Node:
LOCALTOTRUNK

At the receiving Node:
TRUNKTOLOCAL

At all intermediate Trunk Nodes:
TRUNKSWITCH

All links along the route:
TRUNK

As each store is loaded, a corresponding entry
is made on the log tape. After the holding time
has expired, the loads of all stores entered by

31

this transaction are reduced by the capacity
of the transaction and corresponding entries
are made on the log tape. The message count
of completed messages is increased by one.
Then the transaction is cancelled.

B) S/F Message from Trunk Node to
Trunk Node via Intermediate Trunk
Nodes
The same action takes place as pre-
viously described for the direct mes—
sage except for the following: At the
originating and receiving node the S
and F store is also utilized. In case
there is no route available the mes~—
sage is not cancelled, but depending
upon its precedence level, will be
entered into one of the following stores:
FLHQUEUE, ROWQUEUE,
PRTQUEUE, or RTNQUEUE.

A corresponding entry is made on the log tape.
In certain time intervals depending upon the
precedence level, an attempt is made to de~
liver the message. A record of S/F delays
between pairs of nodes is maintained. If an
S/F delay exceeds the time of delivery require-
ment, then the transaction is cancelled. An
entry is made in a special file that registers
S/F messages hot being delivered on a node

to node basis, Then the message is cancelled.

The following communications network model
for large communication networks was pro-
grammed in SOL and has been run extensively
for network sizes up to 127 nodes and for
various degrees of traffic loads.

The Basic Model

The basic simulation model consists of three

programs, which have to be run sequentially:
The Traffic Generator Program, the Network
Simulator Program and the Statistical Analy—
sis Program.

(1) The Traffic Generator is a program
that generates a complete message file

for the busy hour. Two sets of input files
have to be prepared for this program:
frequency files and routing files. There
are five frequency files, one for each mode
of traffic (TTY, voice, etc.). These con—
tain in matrix form the number of messages
occurring between pairs of nodes during the
busy hour. The routing files contain all
possible alternate shortest and next longer
routes. These files have also been gener-
ated by a pre-simulation run using the basic
connectivity file of the network to be simu~—

lated. There are a number of parameters,
which must be set for each run, specifying pre-
cedence distributions, average inter—arnrival
time, and average holding times. The fol~-
lowing data are recorded: Interarrival time,
precedence, message number, mode, holding
time, originating node, receiving node, a
shortest route. All times are in terms of
milliseconds. The route does nhot include the
two terminating nodes. Routes from or to
access hodes are ohly recorded to their respec—
tive trunk node.

() The Network Simulator
Features
The Network Simulator is the most in—
portant of the 3 simulation programs.,
It reads the Traffic File and performs
the bookkeeping tasks forall network
components to be monitored while mes—
sages (transactions) are passing through
the model logic. The information about
all active transactions, queues and oc—
cupied utilities (stores, facilities,
trunks) is recorded and maintained on
disk. Whenever a utility or a table is
entered a corresponding entry is made
on a log tape. Each entry contains time
of entry, numeric entry value, type of
utility or table, identification code, and
index (if used). The program also pro—
vides for a breakout/restart feature
which allows saving the contents of all
disk files at certain time intervals,
This information is stored in a Restart
File on magnetic tape. In case of
machine failures, the program then can
be restarted at the last breakout point.
This feature is also useful if certain
network parameters are to be changed
during the simulation run, since at re—
start these parameters can be changed,
if desired. The Network Parameters
are contained in files on disk and are
read once at the beginning of each sim-
ulation run and each restart. They con~
tain information about Access Nodes to
Trunk Nodes connections, simulation
time, breatkout intervals, link capacities
and the time increment for printing the
number of active transactions. During
the simulation two printer listings are
produced: the Event Listing and the
Transaction Listing. The Event File
records all important simulation events
in order of time., The Transaction
Listing contains a record of all active
transactions, the total number of trans-
actions during the simulation and at the
end, a record of the computer time

32

used since begin of simulation or re—
start,

At the end of simulation and at each
breakout a special printout of Grade~
of—-Service for the total system and

in matrix format for each Nodal Need-
line is produced. Furthermore, the
number of messages delivered between
nodal pairs is also printed in matrix
format. For S/F messages, delays
exceeding the specified time of delivery
are printed separately for each pre—
cedence level and each Nodal Needline.

Network Simulator Structure
The model consists of three parallel
processes:

Start
Simulation

If Restart

Wait

Read Breakout
Restart Tal _> Time

J J
Read Record
Parameter Restart
File Tape

A L —1

sWait
Simulation
Time

L

k Print
1Statistics

Stop
Simutation

This process initiates the simulation, reads
the parameter file and sets all the simulation
parameters. In certain time intervals, this

process records shapshots of the simulation on
the RESTART TAPE. After expiration of the

specified simulation period this process termi-
nates the simulation and causes computer run—
ning time information to be printed out.

Process 2.

This process records in specified time intervals
the number of active transactions as well as

the total number of transactions entered since
the start of the simulation (i.e. it records the
transaction (or message) statistics). This is

an important feature for observance when the
network loading saturates.

Read
Incremented
Time

N

Wait
Increment
Time

N

Write
Transaction
Record

L |

Process 3. (Figure 4 at end of the text.)

This process is the heart of the simulation.

It contains all the logic corresponding to the
features of the model. It reads the traffic
file, waits for the exponentially distributed
interarrival time and then initiates a new trans—
action at the begin of the process., After a
record of message origination has been printed
either an unblocked route through the network
is loaded or, in case of local calls only, the
local node elements are loaded. The trans-
action stays in queue for the duration of the
holding time, then the completion Mmessage is
printed, the statistics recorded and, finally,
the transaction is cancelled.

(8) The Statistical Analysis Program
This is a standard program of the SOL
Simulation System, as described be-
fore. No basic options exist to change
the format of the listings produced by
this program. Since the simulation
made use only of stores and tables,

Statistical printing of stores not used

-—)
all other utility listings were suppressed, VoltT T

C

33

during the simulation was also sup-
pressed.

For stores the following items are
listed: the name of the store with in—
dex in brackets for subscripted stores,
the time of printout, the initial cap—
acity of the staope, the maximum capa—
city used (maximum load imposed
during the simulation), the total oc~
cupancy (the sum of all message capa—
cities multiplied by their respective
holding times), and the average utili-
zation (ratio of total occupancy to
store capacity multiplied by simulation
time). See Table 2,

Continuous Simulations

A NOVEL TYPE OF APPLICATION of the
discrete type SOLPASS simulation system
has been found in the simulation of transients
in continuous processes as in electronic cir—
cuits, This application is still in its initial
trial phase, but promises to be very power—
ful in simulation of circuits with nonlinear
parameters, which are hard or impossible to
simulate on analog computers. The basic
method to implement these processes is to
describe the interaction of the individual cir—
cuit components in finite but small increments
in discrete time steps. Usually currents or
voltages can be used to represent the inter—
active relations. However, there is no need
to formulate differential equations. The in—
itial conditions can easily be set by initiating
the process properly. There is no scaling
problem that would lead to invalid results.
Results can be made as accurate as desired
by choosing the proper time increments. The
regular SOLPASS utilities as facilities and
stores can be used to model network compon-
ents as capacities, etc. Running times are
usually very short and can be executed from
remote access units in the matter of seconds.
The resulting Log File now on disk can then
be analyzed by running the PLOT program
that will produce any desired plot of the pro-
cess by direct printout on the remote access
unit. Parameters then can be reset and the
simulation repeated until optimum results
are achieved.,

A simple example of a continuous simulation
problem coded in SOL follows:
L

BEGIN

INTEGER C, L. CVOLT, DI, DT, BIAS, CURRENT,

SIMTIME, I,R, L\VOLT;
STORE 2000 CIRCUIT;
ALGOL BEGIN
FILE IN INFILE DISK SERIAL

"IN (1,10,30);

END;

PROCESS CONTROL, 1

BEGIN

ALGOL. BEGIN

READ (INFILE,/,C, L,CVOLT,DT, SIMTIME,
BIAS,R);

END;

WAIT SIMTIME;

STOP;

END;

PROCESS SWINGER, 1;

BEGIN;

LABEL RETURN;

RETURN:

LVOLT:=CVOLT IXR;

DI:=(LVOLTXDT)/ L;

I:=I+DI;

CVOLT:=CVOLT-(IXDTYC;

CURRENT :=I+BIAS;

ENTER CIRCUIT,CURRENT;

WAIT DT;

LEAVE CIRCUIT,CURRENT;

GO TO RETURN;

END;

END.

"SWING"

This model represents resonant circuit con—
sisting of the inductance L, the capacity C,
and a Resistance R in series, The initial
conditions can be set as parameters and the
current can be studied as a function of time.
Presently the system has been set up to plot
the current as a function of time by a sub-
sequent run of the SOL/PLOT program.
However, it is planned to implement a plot
function, which will allow to plot these
functions at remote access consoles, while
the program is running.

34

The SOLPASS implementation has proved
to be effective and efficient, as well as an
easily learned language for simulation pro—
gramming. It is believed to be the first un—
restricted implementation of the defined SOL
language. Modifications and extensions have
been added to increase the capability for
model debugging and statistical analysis. The
method of system implementation paves the
way for further logical extensions currently
being planmned which will make the language
an even more valuable simulation tool.

SOL

Source
Program

SOL Transaction
Compiler GCeneprator

ALGON
Source

Burroughs
ALGOL
Compiler

Simulator

Event
Listing

I}
|
Object l
Program |
Run | Statistical Plot
e Analyzer Program
LLog
Tape
Statistical Plots
Log Listing
Analysis \/ \/
Program
Figure 2

Statistics
on
Simulatio

Figure 1

35

36

~ LOCAL M
—pt TO -
TRUNK
A
RTNQUEUE
PRTQUEUE ‘
 —
- ' TRUNK
LOCAL SANDF U
-~ SWITCH SWITCH ¢
TRUNK
it TO -
. LOCAL -
Figure 3
READ |WAIT NEW
TRAFFIC INTERVAL P TRANSACTIDN
FILE TO START
RECORD
ORIGINATIO
EVENT
FIND
yes . | UNBLOCKED
Har’}dlmg ROUTE
LOAD LOAD LO- WAIT LLOAD
SANDF el CALL SWITCH———tt MESSAGE -‘—(—3—-— NETWORK
(Criginator) (Originator) LENGTH
CANCEL RECORD RECORD
TRANS~- " | STATISTICS . COMPLETIO
ACTION EVENT
Figure 4

Table 1

Typical Run Times

Time/Transaction
Processor 1/0
Active Transactions* Sec. Sec.
6 .08 .21
22 .16 .20
34 .23 .27
1150 .44 1.38
1230 .45 1.54
Each transaction queued two times/minute.
*Average active transactions
Table 2
NAME OF STORE TIME CAPCTY MAX USD TOTAL OCCP
TRNK(1) 1900135 512 379 529774858
TRNK(2) 1900135 512 387 570644927
TRNK(3) 1900135 512 388 506864532
TRNK(4 1900135 512 160 179039663
TRNK(5) 1900135 512 26 13185275
TRNK(8) 1900135 512 475 614295039
TRNK(Ip) 1900135 512 392 477109550
TRNK(8) 1900135 512 512 828680327
TRNK(9) 1900135 512 511 782505257
TRNK(10) 1900135 512 273 3812436429
TRNK(11) 1900135 512 506 669208291
TRNK(12) 1900135 512 113 118039645
TRNK(18) 1900135 512 74 78371754
TRNK(14) 1900135 512 88 75557580
TRNK(15) 1900135 512 512 807316577

37

AVG UTL
0.5445
0.5866
0.5210
0.1840
0.0135
0.6314
0.9404
0.8518
0.8043
0.3211
0.6879
0.1218
0.0806
0.0777
0.8208

