A GENERAL SIMULATION MODEL FOR INFORMATION SYSTEMS:
A REPORT ON A MODELLING CONCEPT

A. L. Buchanan and R, B. Waina
The Rand Corporation
Santa Monica, California

It is possible to simulate o variety of classes of systems with a single model structure by
describing the systems in terms of their information flows. The design and application

of such a model is presented and discussed.

1. INTRODUCTION

We have been concerned for some time with the design
of management information systems (MIS) in general and
laely in particular with a class of MIS that we call
large-scale. Recent involvement in and observation of
design efforts by the Air Force Logistics Command moti~
vated us to create a special design methodology to use in
these situations, and a desigh model to complement it,
The purpose of this paper is fo present the model; there-
fore, we will describe the approach only in outline form
with no justification, But before we do that, a defini-
tion of large-scale seems in order.

2. DESIGN APPROACH

There are a number of definitions of large~scale systems,
but the one we favor, because it fits the design problem
so well, is as follows: a large-scale system is one that no
one person or small number of people (say three or four)
can understand in totality in any operational sense {e.g.,
know it well enough to be able to design a MIS fo sup-
port it). The implication of this definition for a design
effort is a very large design feam requiring formal de~
sign and control aids. From experience we have devised
an approach fo design that we will briefly outline in

step form.

(1) A small number of multiskilled people are
formed into a central design team. They be~
gin to form alternative designs of a very

418

high policy level and, where required,
they bring in other specialists to pro-
vide specific technical information.

(2) Aliernative policies are combined and
evaluated in an iterative manner until
some insight is gained about what is good
policy and what is bad, and which poli-
cies fit together and which do not.

(3) The iterative process continues, but now
there is more interest in adding detail to
the system description than comparing
policies. It may very well be, though,
that additional detail will couse the de-
signers fo reevaluate some policy that they
had previously decided fo adopt. .

(4) This process ends when the amount of de-

tail becomes too great for the central group
to handle. The central design group now be-
comes the central design control group. A
description of the design is prepared and seg-~
mented into pieces. Various subdesign groups
are assigned to each piece to work under the
direction of the central design control group
to finish the design by completing the detail.

At the transition point from one design group fo many, the
design is well established and only very serious nondesign
occurrences cause it fo change in a basic way. Before the

transition s made, the design effort is one that is well
understood and documented. It is the transition, seg-
menting and control problems that are little understood
and that require formal aids. This paper proposes a simu=
lation model as an approach to all these problems.

In summary, we subscribe to the philosophy that you start
with some overall design, break it into subsystems, and
examine each subsystem in detail, including its effect on
other subsystems and the fotal system. Further, some cen-
tral conirol group has overall responsibility for the inte-
grity of the final design.

2.1 MODELLING CONCEPTS

Out of two streams, then--the specific design problem and
a general research interest-—comes a first primitive at~
tempt to gain insight by actually building a model. The
problem we addressed is this: develop a general model

for evaluating the responsiveness of management informa~
tion systems. The model would consist of a small number
of primitives that an analyst could use to describe a large
number of systems. While this requires a highly skilled
user, it does allow subdesigns to be developed in varying
levels of detail and, hopefully, connected in any of vari~
ous combinations. This is necessary to be able to fit any
useful model into current computers.

The mode! developed from such an effort could thus serve
os a useful tool to system designers in the Air Force, and
hopefully to MIS designers in almost any context, as our
concept was to develop a system representation that would
be highly flexible and contexi-free.

With regard to the model, we can ask three significant
questions, We attempt to answer the first in this paper.

(1) Is it possible to build a flexible, context—free
evaluation model applicable to a variety of
systems?

(2) How large a set of system can be practically
handled by a single model?

3) Can such a flexible, context~free model be made
sufficiently easy fo use that its employment will
significantly increase the quality of a system de-
sign for a given level of effort?

We assert that the answer fo the first question is yes. We
have achieved flexibility and context~freeness by focussing
on modelling the information flow.

There are a number of techniques that involve flows in net-
works: industrial dynamics and DYNAMO, GERT, signal
flowgraphs, to name a few. These approaches deal with
aggregations, however, and require the development of
some set of equations or some aggregate description of in-
formation flows. And such quantitative descriptions of in~
formation flows are often very difficult to come up with,

and frequently require heroic assumptions by the system
analyst. We therefore decided to deal in terms of indivi-
dual messages, which can have a one-fo-one correspon-
dence with the real world.

Our model thus consists basically of management fransforms
with various kinds of messages flowing among and between
them. A transform is a black box with a set of input mes~
sages, a set of output messages, and some relationship be=
them. In our current primitive model this relationship is
merely a fime delay; after all expected input messages are
in, all specified output messages are created. Each indi-
vidual message has its associated time delay, which we
call processing time. In addition, each message has a
transmission time, the time fo get from ifs originafing frans-
form to its destination transforr. Both times can be random
variables from any of several specified continuous
distributions.

Transforms can be grouped into nodes, This is usually done
when there is some set of resource constrainis, causing
transforms to vie for resources. A node might be considered,
for example, as a particular decisionmaker, and the trans-
forms as the various kinds of decisions he makes, The input
messages would be the information and requirements that
stimulate decisions, and the output messages would be the
commands, reports, and so on issuing as results of the deci-
sions. Although we speak of messages throughout this paper,
it should be realized that a message can be a proxy for any
of a large class of temporary entities, such as an order, a
customer, a job, or an airplane flight, By thus adopting an
appropriate frame of reference, one can apply the model to
a fairly large set of problems.

When using our model, the analyst describes the system
under consideration using the form shown in Fig. 1. One
form corresponds to one fransform at a node. Any output
message described on a form appears on some other form os
an input message. The system relationships are thus de-
scribed in terms of how transforms are tied together by
messages.

In Fig. 1, "Node" is the identification number of a parfi~
cular node. Nodes are numbered arbitrarily from one ()
up through the number of nodes; i.e., if there were ten
nodes in a system they would be numbered |, 2, 3,..., 10.

"Transform" is any identifying symbol meaningful fo the
analyst. It is-not used by the model.

"Type" is an arbitrary number specifying the type of infor=-
mation a message carries. Numbers 900 and above are re-
served for "artificial" messages that accomplish various

special tasks, Such messages do not enter into the simula-
tion statistics. Substantive messages describing the system
being simulated are thus limited to numbers | through 899,

"Level" is an arbitrary number saying something about the
information content of messages within a given type, For
example, if type 85 is a message relating to inventory,

419

MANAGEMENT

DESCRIPTION DATA

INFORMATION SYSTEM

NODE TRANSFORM
INPUT MESSAGES
Type Level Origin Priority Quality
OUTPUT MESSAGES
Process Time Transmit Time
Type | Level | Dest. | Pri. | Pct. | Rsc. | Type | Mean | S.D. | Type |Mean | S.D.

Fig. 1=~System Description Form

420

level 1 might indicate that the reorder point has been
reached, whereas level 2 would indicate that no order
action need be taken.

"Origin is the number of the node from which a particu-
lar input message is expected. At any given node, only
one message of a particular type, level, and origin may
be expected. Duplicate messages are not permitted,
even though they may be in different transforms. The
presence of a duplicate message will result in an error
prinfout and suppression of the run execution.

"Destination” is the number of the node to which a parti~-
cular output message is being senf. More than one mes-
sage of a particular type, level and destination may be
sent from a node. Duplication will result in an error
message, but run execution will not be suppressed.

"Priority" designates the urgency of a message. The
model logic does not yet include consideration of priority.
It could be easily implemented by defining the message
queuss as ranked.

"Quality" is considered in the Shannon (information
theory) sense; i.e., a low quality message would have
high noise and be difficulf to read. A low quality message
might require more processing resources or more fime fo
process, or might require retransmission of the messoge.
Quality has a range of 0 fo 1. The model logic does not
yet include consideration of quality.

"Pct" is used when the node is of an or-output rather than
an and-output type. When implemented, it will be the
percentage of types any one message is sent out, The par-
ticular message outputted would be defermined randomly.

"Rsc" is the amount of resources required to process (gen-
erate) a particular output message.,

"Process Time=~Type" is an integer denoting the particuler
disiribution of the process time. The available distribu~-
tions are as follows:

Constant

Normal

- Lognormal
Exponential
Negative Exponential
- Poisson

Geometric

Weibull

NOOhWN—-©O
1

"Process Time--Mean" is the mean of the distribution.

"Process Time=-~5.D." is the standard deviation.

"Transit Time" is the length of fime a communication chan-
nel is occupied in transmitiing a message, If messages are
being transmitted by electrical means (i.e., speed of light),
this fime is then the length of a particular message, multi-
plied by an appropriate conversion factor. If some slower

means of communication is being used, this is the length of
time it takes fo physically transport the message (or other
enfity) from its origin fo its destination.

"Transmit Time-~Type" uses the same set of codes as process
time~~type. "Transmit Time--Mean" and "Transmit Time--
$.D." have the obvious meanings.

It is sometimes necessary fo describe a transform that peri-
odically issues a message (or sef of messages) without any
input from any other transform. In this case an "artificial®
message of fype 900 or greater is used. The inpuf to the
transform is the artificial message, whose origin is the node
the transform belongs to. The output from the transform is
the set of messages plus the artificial message whose desti-
nation is the same node. The fransmit time of the artificial
message is the length of the period. This fime can be
either a constant or a random variable.

In its current stage of development, the model can be used
to describe two general types of networks when channel
constraints exist (ee Fig. 2a)

(1) Every node can communicate with every other
node through a central swifching node. The
constraints are (a) the number of input channels
af each node, (b) the number of output channels
at each node, and {c) the number of duplex
channels at the ceniral node.

This central node is not explicitly modeled, but
is treated implicitly within the program logic.

{(2) Nodes are arranged in a single string, so that each
node has only one predecessor node and one suc=
cessor node. The constrainis are items a and b
above. The number of output channels at each
node must equal the number of inputs at its
successor.

When there are no channel constraints, virtually any type
of nefwork can be modeled (see Fig. 2b).

The model is written in SIMSCRIPT 1.5 on an I1BM 360/65.
We chose that language primarily because of our familiar -
ity with it and also because it seems fo be a good maich
with our modelling concepts.,

The cards punched from the forms (Fig.) describing the
system are read by routine START, This routine, after
establishing the system and associated parameters, exa-
mines the system for missing and duplicate input and output
messages and indicates any such errors, If possible, it then
starts the system in operation by creating one of each pos~
sible output message. The network thus starts out in a rela~-
tively full state and seeks its steady stafe from there. It is
also possible to start the system in a relatively empty state
and let it build up. Care must be taken to insure that the
steady state can be reached from the starting state (e.g.,

421

CENTRAL
SWITCHING |
NETWORK

Fig. 2a--Networks with Channel Constraints

Fig. 2b=~Nefworks without Channel Constraints

422

periodic messages must be generated inifially or they will
never be generated).

number of channels currently in use. When the two are
equal a request for the use of that particular set of channels
is denied. For a message fo be fransmitted, a channel must
be available from each of three sets of channels; the out-
put channels at the origin; the trunk channels of the ceniral

The prime mover of this simulation model is the message
as it flows through and between fransforms. A message

may be in any one of seven states at any given time, A
diagram of the various states and their relationships is
shown in Fig. 3.

A message is created. Af this point it wants to begin
using some processing resources, If said resources are
available, it assumes state 2 immediately. If not, it as-
sumes sfate |, and is filed in a queue of messages
awaiting processing resources at that particular node.
Upon completion of processing the message is ready to be
transmitted tfo its destination. If a channel is free, the
. message assumes state 6, If not, it is filed in one of sey~
eral queues of messages awaiting transmission. If there
are no oufput channels availahle at the node of origin,
the message assumes state 3 and is filed in a queve at the
origin, If there are no channels available at the ceniral
switching node (assuming that type of system is being
modelled), the message assumes state 4 and is filed in a
queue at the destination, If there are no input channels
available af the node of destination, the message assumes
state 5 and is filed in a different queue at the destination,
A message can experience several shifis between states 3,
4, and 5 before it finally assumes state 6. Upon comple-
tion of transmission, the message assumes state 7. |t re=
mains in this state until all expected input messages have
arrived at the fransform. These input messages are then
destroyed, and the related set of output messages created.

As an example of the logic at a transform, assume that a
particular fransform has three input messages and two out-
put messages. Associated with each fransform is a
counter. In this example the counter would initially be
set equal to three. When a message arrives and is identi-
fied as being associated with this particular transform, the
transform's counter is decremented by one. When the
counter is equal fo zero, this indicates the arrival of all
three messages. They would then be destroyed, and the
output messages of that fransform created. The counter
would be reset to three to await another set of input
messages.,

The counting logic is such that duplicate messages are ig-
nored until the counter is reset, For example, assume a
particular transform has two inputs, one arriving af (simu-
lated) weekly intervals and one at monthly intervals.
When the first weekly message arrives, the counter is de-
cremented from two to one. When the second, third, and
fourth weekly messages arrive, the counter is not decre~
mented. When the monthly message arrives, the counter
is decremented from one fo zero, the input messages de~
stroyed, and the output messages created,

The transmission logic uses pairs of counters. One counter
contains the number of channels available af a node or in
the system, The second counter in the pair contains the

423

switching node; the input channels of the destination.
Channels are queried in that order.

The purpose of a simulation is to study the behavior of the

system under varying conditions. To do this it is necessary
to collect statistics on various aspects of system operation.
In this model the following statistics are collected by node:

By message state, for all messages:
total number during run
maximum number in queue af any one time
average number in queve
maximum time any message is in queue
average time messages are in queue

Processing resource utilization:
maximum amount of resources used
average amount of resources used ‘
percentege of fime all resources are idée

Communication channel utilization:
maximum number of channels used
average number of channels used

Time spent awaiting for communication channels;
average fime spent
number of messages flowing between nodes

Another statistic collected is the flow time of a sequence
(or chain) of messages. (A sequence may consist of one or
more messages.) Flow fime is the average length of simu~
lated time from the creation of the first message in a se~
quence. [t does not include the fime the last message
(only) is in state 7.

2.2 APPLICATION OF THE MODEL

To demonstrate its versatility the model described here has
been applied to three different systems: o management
system, a communication system, and a job shop. In each,
the primary modelling difficulty was data collection.

The management system chosen was the reparable parts por-
tion of a proposal for the Air Force Logistics Command
(AFLC). The particular abstraction of that system we at~
tempted to model consisted of eleven different planning or
operating cycles, with eighteen different kinds of data
flowing among them. Conceptually, the model was quite
simple. However, obtaining numbers to describe the trans-
mission and processing times proved difficult. This diffi-
culty led fo the next method of application of the model,
which is to describe each transform in more detail, in terms
of the messages and transforms within a transform. That is,
we describe o subsystem in terms of its subsysfems and rela-
tionships, and run this model of the subsystem. Based on

CREATION

ol NG

AWAITING BEING
PROCESSING [PROCESSED v

AWAITING
TRANSMISSION

® 1 ®

SENDING e —— RECEIVING
NODE |- NODE
‘ \ot /
SYSTEM
® ¥

BEING - Y * Y

TRANSMITTED

oR

AWAITING
OTHER
MES SAGES

1

DESTRUCTION

Fig. 3--The Life of a Message

424

this analysis, we can then obtain empirical distribufions
of the relation between inpufs and outputs, which can be
used as describing numbers in the higher level model,
This more detailed analysis is now being carried out.

The second system modeled was the communication

system between the depofs and the headquarters of the
AFLC. This was done based on a projection of fraffic in
the system during the 1970s. In this application, however,
data were not readily available on the relationships be-
fween messages, so we had fo be content with looking at
traffic flow and queue buildup at transmission channels,
The system consisted of the headquarters, five major de~-
pots, and two minor depots, yielding eight nodes. Asso-
ciated with these were over 300 individual transforms,
and almost 800 messages flowing at daily, weekly,
monthly, quarterly, semi~annual and annual intervals.
The actual description of the system on the forms was done
by an eighteen-year-old research assistant in less than
two days. Thus, even though a model written specifi~
fically for that system might have been more computation=-
ally efficient, its development and debug expense would
probably have been considerably greater. Running time
of this system on the 360/65 for a simulation period of
two years was 400-600 seconds, and the core requirement
was 228 K bytes.,

The third model wes an aircraft engine repair shop with
three different kinds of engines going through four repair
processes. Arrivals at the shop as well as repair times can
be from any specified distribution. Again, system de~-
scription was very rapid and easy.

3. CONCLUSIONS

We have thus demonstrated that it is possible to build a
flexible, context~free evaluation model applicable to a
variety of systems. This was done by creating a model
that represents information flows, and then describing any
parficular system in terms of its information flows. The
model collects various standard queueing statistics to de~-
scribe the performance of any particular system. It also
measures the system's response performance. in terms of the
total flow time of sequences of messages. The model can
thus be used to study- various system designs in order to
gain insight info their relative performance. It should
therefore be a useful tool fo the system designer,

The utility of the model could be enhanced by several re-
finements. The major one is the inclusion of a decision
table in the transform description. This addition would
make possible a much better description of a decision
fransform, and also simplify the analyst's task by making
the description correspond more closely to reality, Allied
with this change would be the addition of a representation
of a generalized data base whose values cauld be changed
by messages. The data base could iiself serve as one of
the inputs to the decision table, In addition, the dafa
base could serve as a means of dynamically changing
system parameters (such as resource availability) during o

run. Finally, some sort of data collection routines must be
developed that can be modified by the system analyst fo
suit his particular application. Such a set of capabilities
should greatly enlarge the set of systems which could be de~
scribed by the model, and thus make it a powerful tool for
the information system designer.

425

