MONTE CARLO TECHNIQUES FOR STOCHASTIC NETWORK ANALYSIS

by John M. Burt, Jr.* and Mark B. GarmanT

Summary

This paper presents simulation procedures for
efficiently obtaining estimates of the distribution
function, or parameters thereof, of the maximal flow-
time through directed acyclic networks whose activity
times are random variables.

Introduction

Project graph analysis (variously called PERT or
CPM) has proved to be a useful and broadly applied
management tool. In its original form, the completion
times for individual activities of a project were
agssumed fixed and known in advance: this in turn led
to the now familar algorithms for computing the crit-
ical path, earliest start times, slack, and so forth.
The unreality of such an assumption is, of course,
apparent in many contexts, Consequently, attempts
were made to introduce probabilistic activity comple-
tion times, allowing representation of the stochastic
nature of most projects.

Methods for solving the stochastic PERT problem
have usually followed one of three basic approaches:
analytic, approximation, or Monte Carlo methods, All
are intended to avoid a difficult multivariate inte-
gration, which is the most general solution technique.
That this is so may easily be shown as follows: Let
a PERT network be defined as usual (a directed, acyc-~
lic, weakly-connected graph) with source node s and
terminus node 2z, To the kth arc in the network,
k=1,2,...,b, attach a non-negative random variable,

Ty, and a cumulative distribution function (c.d.f)
Fe(t); these will represent the time of complete the
kth activity and probability that this completion

time is less than ¢, respectively. Now let Pj be

the subsets of {1,2,...,b} such that k € Py 1if and
only if the kP arc lies on the jth path,” j = 1,

i,...,m, from source s to terminus z. The time

to complete all the activities on the jth path is a
random variable, Xy, where

I T (1.1

kﬁPj

%

One variant of the stochastic PERT problem may be
stated as that of finding the c.d.f. for the random
variable

T = X (1.2)

3

max
j=1,2,...,m

.

(The path Pjx for which j* maximizes (1.2) is
called the critical path and T 4s called the critical
path time or project completion time.) The solution to
the problem is simple in appearance, being given by

b

Fr(e) =ff..f moar (g) (1.3)
stt k=1
3=1,2,...,m
where x: = I .
3 kertk
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In practice, however, expression (1.3) is usually quite
difficult to evaluate. This is particularly the case
when the number of paths, m, or activities, p, is
large or the c.d.f.'s are cumbersome to handle mathe-
matically (e.g., step functions, normal distributions).
Other variants of the stochastic PERT problem include
calculation of the mean, or expected project completion
time,

i = frar(t) = KD, (1.4
or more generally, if c(t) d4s any function (which may
be interpreted as a cost function), the calculation of
the expected value (cost)

c =J’c(:)dFT(t> = ECe(T)), (1.5)

and so on.

The analytic methods tackle expression (1.3) by
assuming (1) simple functional forms for the dFi(t),
and (2) special networks for which the multivariate
integral (1.3) may be separated into a series of
single-variate integrals. Martin (1965) has described
a class of networks susceptible to "series-parallel re-
duction," which he gives as a systematic way of sepa-
rating (1,3) based on network configuration. Charnes,
Cooper, and Thompson (1964) illustrate their method of
"chance constrained and stochastic programming" with
exponential c.d.f.'s and a network for which (1.3) also
separates. Gaver and Burt (1968) have investigated the
exponential families of ¢.d.f.'s in conmection with
simple stochastic PERT networks,

Generally speaking, we cannot expect in a given
problem to find both simple c.d.f.'s and simple network
structure. In this case, one alternative is to approx-
imate the given activity completion time c.d.f.'s and
network with simpler c.d.f.'s and networks. For
example, the c.d.f.'s can be approximated by single
step functions, which reduces the stochastic problem to
an ordinary deterministic one. Fulkerson (1962) sup-
plies a lower bound on the expected project finish time
(1.4), which is shown to be an improvement over the
lower bound obtained by solving the deterministic prob-
lem in which the random completion times are replaced
by thelr means. Clark (1961) uses the central limit
theorem as a rationale for assuming that the X,'s
(1.1) have a joint normal distribution, and gives
tables of statistics for this case. Kleindorfer (1969)
has derived upper and lower bounds on Fp(t) by suc-
cessively bounding the c.d.f.'s of incomplete paths
from s to =z.

of

One annoying aspect of most approximation methods
is that it is difficult to predict the accuracy of the
total project approximations, even knowing the accuracy
of the individual activity approximations. This might
be particularly distressing when, say, the cost func-
tion of (1.5) is drastically non-linear, or when an
unknown error cannot otherwise be accepted. If ana-
lytical methods are unsuitable and the uncertainties
approximation cannot be tolerated, then there is no
choice but to turn to numerical integration for the
evaluation of (1.3)-(1.5). Due to the multivariate
nature of the integrals, their difficult regions of
integration, and limitations on computing resources,
Monte Carlo simulation is normally employed in their
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evaluation. In this area, Van Slyke (1963) has
treated the case of straightforward Monte Carlo sim-
ulations and also gives a method for improving esti-
mates of (1.4) based on his "criticality" index.

In the present paper, we shall advocate some
combinations of the analytic and Monte Carlo
approaches, giving several special techniques for im-
proving the estimation of (1.3)-(l.5) derived from
the general theory of Monte Carlo methods. The first
technique to review here is that of straightforward
simulation, also referred to as crude Monte Carlo.

In crude Monte Carlo, samples Ti are drawn
from the populations of each activity time Ty.
These are then added a long the possible paths of the
networks accordings to (1.1), yielding path time
sample X%t; the maximum of these path times is then
taken according to (1.2) and the result, Ti, yields
a single sample of the project's completion time.
(We will call 7L a realization of the project com-
pletion time T.) If this process is then repeated a
number of times for Tl,T2,°°°,Tn, we may use the
resulting empirical distribution of realizations to
estimate the actual distribution of the project com-
pletion time. In essence we are performing a sam-
pling experiment, constructing draws from the desired
distribution function, That there is uncertainty in
our estimates is an inevitable consequence of the
randomness of the activity time samples. To reduce
this uncertainty and increase the confidence of our
results, it is often necessary to take a very large
sample. Then "on_the average," the abnormally high
and low values of our estimates will balance out.

In terms of computer time, the cost of taking a
very large number of realizations may be prohibitive;
for example, it is well known that the variance in
the estimation of (1.4) generally decreases with the
number of realizations, N, by only a factor of
1/N. Thus improving the confidence in our estimates
while limiting the effort involved in computing the
realizations 1s a topic of considerable interest.
Hammersley and Handscomb (1967) and Shreider (1966)
give several general variance reduction techniques
for Monte Carlo. In the following sections we shall
apply some of these to the stochastic PERT problem.

O—0O—0 50 Tz
Figure 1,1
To illustrate the advantages of the Monte Carlo
techniques to be described in Sections II and III, we
will use the simple two-activity series network of
Figure 1.1. The success of the techniques to be dis-
cussed may be shown for any network configuration;

however, this simple network is sufficient for illus-
trating their utility.

First let us note that a random draw from any
known probability function may be expressed as a
function of a draw from the uniform distribution,
denoted U(0, 1). This fact is an obvious conse-
quence of the monotonicity of cumulative distribu-
tions. That is, 1f Ty is the desired draw from a
given distribution, F,(-), then Tk = Fil(R),
where R is a random draw from U(0, 1).
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Antithetic Variates

The crude Monte Carlo method of estimating

E(Ty + T2) = E(T) in Figure 1.1 would be to take two
independent random draws, R; and Ry, from
U(0, 1). We would next transform them into indepen-
deEt random draws, T; and Tp, by Fjl(Rl) and
F3(Rp) respectively. The first realization would be
1.1 1

T1+T2. (2.1)
We would then tabulate n such independent realiza-
tions using random numbers and average to obtain the
"straightforward" estimate
1 1 2 2 e n n
l+T2+T1+T2+ +T1+T2.

n

T

_ T

T = (2.2)

All random numbers are independent, and n samples .
are generated from their appropriate identical dis~
tributions, so we have

E(T) = E(Tl) + E(T,) = E(T) 2.3)

and
Var(Tl) + Var (T2)

n

Var(T) =

In other words, the simple procedure described gives
an unbiased estimator of E(T) whose variance de~
creases as 1l/n. If the procedure is repeated many
times (n + =), then T becomes arbitrarily close
to E(T) in accordance with a law of large numbers.
Unfortunately, if there are many independent serial
activities, then the sum of the variances in the
numerator of (2.4) becomes larger, and a correspond-
ing larger number of repetitions, n, 1s required
in order to determine E(T) accurately.

We notice first that in order to estimate E(T),
the realizations Ti + T and T3 + T] need not be
independent so long as tﬁey have The cOrrect marginal
distributions. Intuitively, too, one sees that if,
when Ty i1s "large" in one realization, it is forced
to be correspondingly "small" in another, then the
average will tend to be closer to the true value E(T)
than in the case of purely independent samples. To
achieve this effect, we can construct two realizations
of T = T + T2 using the same two random numbers:
first generate” Ry and Ry, then T, and Ty, and
finally T; next make the transformation R% =1~ Ry
(k=1,2) agd from these transformed draws obtain
T; and T3, finally adding to get T'. Lastly
average to obtain what we call the antithetic variate
estimator,

1 1! 1 1’ n n' n n'
+ " see
= - T1. Tl v+ '1‘2 + T2 + + T1 + T1 + T2 + T2
A : 2n
1 1, ... n 1 o, n' !
_1 Tl + T2 + + T2 Tl + T2 + + T1 + T
7 +
n n
=1 @+T). (2.5
Now by construction, E(T) = E(T'), so the estimate
TA is unbiased.



Furthermore,

Vaf(Tl) + Var(Tz)'

n

(2.6)

Var(T) = Var(T') =

However, it is apparent that T and T' are negative-
1y correlated, i.e., Cov(T, T') < 0. Since

var(T,) = —i— Var (@) + 71; Var (T") +_-§- Cov(T, T) (2.7
- Var (T) + Cov (T, T') < Var(T) ,
3 2 2

this means that the above procedure is more efficient
than doubling the total number of independent reali-
zations computed. One can, of course, estimate the
variance of T, given specific distributions for Tl
and Ty by simply computing the sample variance of
the n independént averages Ti + T% for 1=1,2,*--,

2
n. Since T, is the average of n independent
terms, confiéence limits may be placed on E(T) wusing
the Student t tables.

The significant impact of antithetic variates
upon a sum is most apparent when the activity c.d.f.'s
are symmetric, for example, if Ty can be assumed
uniform, or normal. For Figure 1.1 in the former
case, assume T, ~ U(0, 2m;) and T, ~ U(0, 2my).

The anthhetic variate estimate Ty 1s then

_T T 4T, + T,

1771 2Ty
7
N [}
o1 i, .1 i, .40
= SR TtT T, T, (2.8)
where
i i
T1 Zml R1 .
it i
T1 =2m, (1 - Rl),
i_ i
T2 = Zm2 R2,
i i .
T, = 2m, (1 - R). 2.9
It follows that
YE(T)= L §2 Y+ 1~ &Yy + 2m [+ 1 - &Yy
A PL e R 1 M21%2 2
= my + My
Var(TA) = 0, (2.10)

Hence the antithetic variate method here yields
a zero variance estimate of E(Tj + Ty); the result
would be the same if we had used normal distributions
for Ty and TZ', (The zero-variance result does not,
of course, generalize to other than the simple series
networks.)

Although the value of antithetics is most pro-
nounced when the underlying activity distributions
are symmetric, the technique will result in better
(lower variance for -the same number of realizations)
estimates of mean completion time (1.4) than those
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from crude Monte Carlo, regardless of the activity
time distributions. As an illustration, let Ty and
Ty of Figure 1.1 be identical and independent expo—
nential distributions with means ; and T2 are
the corresponding antithetic exponentiais. For each
realization, we draw two random numbers, Ri, Rp ~
U(0, 1), and then compute

T=T + T, = =X log Ry -A log R

o (2.11)

and
] 1
T'= T + 'rz’, = =X log(l - R;) -\ log(l = R,).

Our antithetic estimate will then be the simple average

]
T =t z (T+T) . (2.13)
A N 2
over N
realizations

Thus

E(TA) =

— 1 1 1 1 4

Var(TA) = Z-Var(T) +-z Var(T ) + E-Cov(T, T), (2.14)
Var(T') = Var(T) = E(-A log R, -A log R, - 207 (2.15)

= AZE ((log Rl)2 + log Rl log R2 + 2 log R, + log Rl

2
log Ry + (log Rz) + 2 log R2 + 2 log Rl + 2 log R

2
+ 4) (2.16)
=@ F1-24142-2-2-2+4) =22,
Cov(T, T') = E([-—A log Ry -} log Ry - 21] (2.17)
[\ log (1 - R))-} log (1 - Rz)—ZA])
= AZE(lo R, log (1 - R,) + log R, log(1l-R,)
g Ry log 1 g R; log(1-R,
+ 2log R1
+ log R, log a- Rl) + log R, log (1 - Rz)
+ 2log R2

+ 2log (1 - Rl) + 2log (1 - R2) + 4). (2.18

Noting that R1 and R2 are independent and that
72 %
E((log R)1log(1-R)) = 2 < >
we obtain
Cov(r, Ty = A2 (2 - Tt 12 i
, ( - 2+ 142- -2
“2-2+4)
= -1.29022,
Hence substituting this in equation 2,14,
=y A2 32 2 ,
Var(T)) = =+ 3 - 64527 = .3552% << 2% = var(m)
= Var(T').

*
Bierens de Haan; Nouvelles Tables D'Integrals.,



Here the antithetic variate procedure results in
an estimate of the mean whose variance is less than
1/5 that obtained by crude Monte Carlo. In other
words, we would have to take almost six times as many
independent realizations in a straightforward estima-
tion of the mean to obtain an estimate with the same
variance as that of the antithetic variate estimate.
We see that even when the activity c.d.f.'s are highly
nonsymmetric, a substantial economy can be achieved
with this simple technique.

So far we have concentrated upon antithetic
variates as a procedure for estimating a parameter,
the mean, of the project completion time T. The
method of antithetic variates also ylelds better esti-
mates of the entire function Fp(t) than thgse ob-
tained via straightforward simulation. If Fl(t) and
Fy(t) are the empirical distribution functions calcu-
lated from several realizations of the two parallel
antithetic processes, then

Fl(t) + F,(t)
2

(2.20)

Fy(t) =

will on the average be much "closer" to the actual _
completion time c.d.f., Fp(t), than will either ¥,
or Fy. It is intuitively clear that this averaging
of c.d.f.'s will "smooth out" the resulting c.d.f.; to
see this, we observe that if sampling randomness leads
to realizations of Process 1 which are particularly
iow (i.e., lower than those obtained in case Process 1
were a perfect estimator of Fp(t)), then the reali-
zations of Process 2 will be correspondingly high. The
degree to which the method of antithetic variates pro-
vides better (than straightforward simulation) fit to
the actual project completion distribution depends on
the underlying activity c.d.f., and upon network con-
figuration. As in estimatlon of the mean, the best
results occur when activity c.d.f.'s are symmetrical.

It should be noted that estimates of Var(T)
should not be formed by simple averaging of the sample
variances of the antithetic variates; such a procedure
would lead to a biased estimate. This undesirable
property is common to all of the variance-reduction
techniques presented in this paper. However, it
appears likely that much of the bias in estimation of
Var(T) may be eliminated by applying the Tukey-
Quenoville jackknife procedure. The interested reader
is referred to W. G. Cochran, Sampling Tecbniques,

p. 180.

Stratification

Stratification is a sampling technique in which
the range of the random numbers underlying each activ-
ity c.d.f. is broken into k disjoint and exhaustive
intervals, (aj, as43), where 0 = a) < ap < --- < ap
1. The division of the ranges need not be the same
for all activities in the network; the best method
would be to choose the intervals in such a way that
the activity c.d.f.'s have equal variance over each of
them. However, as a practical matter, it is simpler
to split the range into equal parts:

0 <1/k < 2/k < *++ < (k-1)/k < 1. Then k parallel
simulations are run in such a manner that for each
realization, a sample from each of the intervals is
assigned to one of the k processes. The assignment
of intervals for each activity to each process is ran-
dom. An example will clarify the procedure.

By splitting the range of the uniform random
variable underlying each activity time into three
equal intervals, we will perform 3-way stratification

on the network of Figure 1.1. Let us assume that the
distributions for activities 1 and 2 are both rec-
tangular with ranges (0, 2m;) and (0, 2my), re-
spectively. For each realization, we will draw two
ordinary independent uniform random numbers, R; and
Ry, and the completion time realizations for the
three processes are

Tl = 2mRy + 2myRy 3.1

12 = 2m [(Ry + Hmod 1] + 2m,[(R, + Pmod 1]
13 = 2m [(R) + Dmod 1] + 2m,[(R, + %)mod 1].

From equations 3.1 we see that at each realiza-
tion the three parallel processes receive random
times over different intervals of the job distribu-
tions. This stratification leads to a dependence
between the three simulated processes. Intuitively,
if one leads to a very high-valued realization of
Ty + T,, another will be correspondingly low, and
t%e th%rd will be somewhere in between. Note, how-
ever, that the draws for each separate process are
still independent draws from the uniform distribu-
tion and are not serially correlated. The proof of
this property is simple. For example, the random
number R wused fog the first activity time realiza-
tion in process T comes from

F(r) = PL(R, + %)mod 1sr] (3.2)
- 1 1
= P[(R; + Pmod 1 < r|R;€(0,)1 x P[R1€(0,3)]
1 12 12
+ P[(Ry + Pmod 1 < rlRle(g,g)] x P[R;e(5,3)]
1 2 2
+ PI(Ry + Pmod 1 < r|Rle(§,l)] x PR e(3,1)]
(1 1 1 1
0x-§+0x§+3rx—§=r for05r<§-
- 1 1 1. 1 2
_ 3r - 1) x 3 + 0 x 3 + 1 x 3T for §-s r<§
1x %-+ (3r - 2) x-% + 1 x-% = r for %-s r<l
& x%+ 1 x%—+ lx%= lforzz=1 (3.3)
r for 0 < r <1
1 for r 2 1 (3.4)
which is the distribution function, U(0, 1).

The gwneral procedure for stratifying would be to
draw k separate (rather than just one) random num-
bers for each activity, R;,Rp,<+-,Ry, and place them
in the different intervals:

R2 + 1 Rk +k~-1

k k :
Or we might use antithetic variates within the k

intervals; this latter procedure would lead to 2k
parallel processes where for each realization the

!
T )

yee sy

. random draws would be of the form:
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_R_l_ (1-R;) R, + 1 (1-R,) +1 R +k-1
® k * k k 2T k g
(1-R) +k - 1

—_—.



The degree of detail (size of k) that should be used
depends upon the purpose of the simulation. For a
single experiment on a small network the extra pro-
gramming required would take a disproportionate
amount of time. But for doing a parametric analysis
of a network, or for rerunning the simulation several
times as activity status data is received, significant
savings in computer time can be achieved by increas-
ing k.

Realizations from each of the parallel processes
of stratification are serially independent and hence,
yield "legitimate" samples in the estimation of ;
FT(t). The points obtained through the use of this
technique again tend to cover, or f£ill out, this
c.d.f. more evenly than those of crude Monte Carlo.

Control Variates

With antithetic variates or stratified simulationm,
one constructs parallel processes whose realizations
are negatively correlated with one another. Thus, if
one process results in an unusually high estimate, the
other(s) will be correspondingly low, and their aver-
age will tend to be close to the actual value. The
control variate procedure works in an opposite
fashion. Suppose Frp(t) is the (unknown) actual
c.d.f, function of project completion time and T
is the random sample representing the i-~th realiza-

tion from Fp(t). We seek a control variate, cvi,
which has a high positive correlation with Ti,7 and

whose c.d.f., Fgy(t), 1is known exactly.
will illustrate this method.

An example

Control Network

‘ Figure 4.1 :

The c.d.f. of the project completion time T for Net-
work B is difficult to calculate analytically; how-
ever, the c.d.f. of the completion time CV for the
Control Network may be found by applying the series-
parallel reduction technique (Martin, 1965). For each
realization, we use the same uniform random numbers to
generate i "and cvi. By comparing the simulation
results of the control variate with the known control
variate, c.d.f., we may correct the analytical results
for the known c,d.f., Fcy(t), to obtain results for
the actual network. '

In estimating E(T) for Network B, we would take
n realizations of T and CVi, using the same set
of random numbers for each. We would then compute

n
z
i=1

cV = cvi (4.1)

3 =

T =
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and average the quantities
i

=1t - ol 4 Ben) (4.2)
to form the control variate estimate
%--l- g (rt - ovly + E(CV) =T - CV + E(CV)
noyq > (4.3)

where E(CV) is the known mean of the c.d.f. ch(t).
Clearly, T is unbiased, since

E(T) = E(T - CV + E(CV)) = E(T) = &(T),
but T often has a much smallex varilance than does
the straightforward estimate, T. This may be seen
as follows. We have

-~

var(T) = var(T) + var(CV) - 2cov(T, CV)

(4.4)

(4.5)

since the same random numbers are used to generate
both T and CV. The two networks closely approxi-
mate one gpothepl_ﬁo we may expect the correlation
between T and CV to be close to 1, 1.e.,

cov(T, CV) =~ 1
k]

p(T, CV) = =2
a(T)a(CV)

(4.6)

where the standard deviations o(*)
the same, i.e.,

are also nearly

o (Mo (CV) = var(T) = var(CV). 4.7

Using approximations (4.6) and (4.7) in (4.5), we have

var(T) ® var(T) + var(CV) - var(T) - var(CV) (4.8)
= 0.
In a similar manner, we may use the known c.d.f.

of the control variate, Fgy(t), to correct for
sampling fluctuations in estimating the c.d.f. F. (t).
if Fey(t) and Fp(t) are empirical estimates o¥ the
Fey(t) and Fq(t), obtained by forming the cumula-
tive frequency functions of several realizations of
cvi and Ti, then an improved estimate would be
F(t) = FT(t) - ch(t) + ch(t). (4.9)
For a given value of t, if F (t) is much larger
(smaller) than the actual c.d.f., F_(t), then
F (t) will be larger (smaller) thaii Fey(t). On the
average, the corrected estimate, F(t), will be closer
to FT(t) o

The success of the control variate technique
depends upon how closely the control variate, cvd,
mimies the realizations of T in the given network.
The control network must be sufficiently simple, so
that we can calculate Fey(t) exactly; however, we
must be sure that realizations of the control network
are highly correlated with those of the original net-
work. The concept of "criticality" (Van Slyke, 1963)
was mentioned in Section I. In brief, the criticality
of any activity of a given network is the probability
that it will lie on the critical path. (It should be
intuitively clear that criticality is a function of
activity time's variance, as well as its mean.,) If
an activity has a high criticality, it ghduld be
included in the control network. In cons cting the
Control Network B above, for example, it was implicitly
assumed the probabilities of activities 5 and 13 being



on the critical path were relatively small. 1If,
however, activity 13 had a much higher criticality
than activity 11, a better choice for the control
network would be given in Figure 4.2:

Figure 4.2

The control variate network need not be an
exact subnetwork of the original configuration. 1In
Network C of Figure 4.3, let us assume that activity
time 3 has a relatively small variance. Then it
seems plausible that a good control network can be
formed by constructing activity A with c.d.f.,

Fp(t) = Plmax(Ty + Ty, T, + E(T5)) < S B
the i-th sample of activity J, then
2
A 5
1 4
Y
3 Ll 6 4 3 [d 6 r
Network C Control for Network C
Figure 4.3
= max[T + T% T1 + E(T3)] may be used as the
i—th sampie for activity A of the control network.

Also, there 1s no necessity for restricting our-
selves to a single control variate. If we construct
two different control networks and label their criti-
cal path realizations cvil and CVZi, then a good
mean estimate is
T=w = T (ot - ouily + B(ovL) + v, L

noL 20
+ E(CV2). (4.10)

The weights, w; and w,, could be set at 1/2 or
computed by the regression technique discussed in the
next section. A similar procedure could be used for
estimating the unknown critical path distribution
function.,

n
r (ti - cy2dy
i=1

It should be noted that antithetic variates and
stratification could be used in conjunction with the
control variate procedure. This would be accomplished
by antitheticizing or stratifying within each of the
two processes of control variates. For instance, the
application of antithetic variates would lead to four
parallel processes; for each realization, a Ti, T'i,
CVi and cv'i would be computed. A low variance

mean estimate, T , would then be
R N
T=%: T (4.11)
i=1
where
i 3 i o1
oL AT VAV pewy. (4.12)
2

Regression

Let us suppose that we have run N experiments
employing antithetic variates to obtain estimates of
some parameter of the critical path, T&,Tﬁ,---,TR.
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Using the same set of underlying random nunbers, we
have also computed N estimates of this parameter
using stratification Tl,Té,--- T and the same for
control variates T%,T o T . éhe question arises
as to how to combine t ese 3N estimates into a
single "best" estimate, T, of the given parameter.
A reasonable procedure would be to take their simple
average

1w o,
T = 3 T

-

N
- 1
TC 3 z

1 —
g T (5.1

le

(Ti + T; + Té).
1=1

Instead of weighting the results of the three tech-
niques equally, a better estimate can be found by
computing weights €as Cgs Cus which yield the low~
est variance estimator,

~

.'i"=

e T, +eT +cT,,

a~“A s”S cC (5.2)

where the three coefficients are found by minimizing
the variance of the identically distributed

" 1
T caTA + csTS + ccTC (5.3)
subject to the constraint,
ca+cs+cc=1. (5.4)
For simplicity, let V. = var(T}) and C
el 3 3 jk
= cov(Tj, Tk); then
i, 2 2 2
var(T") caVA + csVs + ccVC (5.5)
+ 2cacsCAs + zcaccCAC + zcsccCSC'

Forming the LaGrangian by adding the constraint and
differentiating leads to a set of simultaneous equa-
tions whose solution is

2

o = oacsct Casac ~ Cuct Va%e ~ Vdlas  (s.6)
8 K

where

K=VV, +VV. +VV, -C> ~c2 - c? (5.7)
A's T VA% T Vs¥e 7 Cag 7 Cpe  Cge .
= 2070Cse * VsCac * Velas ~ CasCac ~ CasCsc ~ CacCsc

By symmetry, the coefficients c¢_ and ¢ may be

found. Hence the best linear unBiased esfimate of the
parameter, grovided we know the varlances j and
covariances is given by (5.2). Since this
proviso can seidom be met in practice, the best we can
do is to approximate V and G4y using sample
variances and covariances throug out (5.5)-(5.7).
essence, this is a "bootstrap" technique since we
combine a number of estimates with coefficients based
upon the estimates themselves. The coefficlents are
chosen in such 2 manner that the resulting combination,
7 » will have as small a variance as possible, given
our state of knowledge regarding the sampling distribu~
tions. If ome particular estimator is very "stable,"
(low variance), or tends to counteract the fluctuations
in the other estimators (large negative covariances),
it will receive a relatively large weighting,

In



Conditioned Sampling

In the introductory section, it was noted that
analytic methods assume simple activity completion
c.d.f.'s and simple networks to evaluate the integral
(1.3). In a network possessing various simple subnet-
works, we then might reduce these subnetworks via
series-parallel reduction, and derive an equivalent
network for which estimations may be completed by
 Monte Carlo methods. This has the effect of diminish-
ing the number of random samples required to effect a
realization of the project completion time T, There
is, however, another way of doing this, without using
series—parallel reduction, which we will call condi—

tioned sampling.

To illustrate the procedure, let us suppose that
we wish to estimate the c.d.f. F r(t) for the criti-
cal path in the network of Figure 6 1.

Figure 6.1

(We note first that the network in Figure 6.1 may not
be further simplified by series-parallel reduction,
being a "multiply-crossed" (Hartley and Wortham, 1966)
network. )

The crude Monte Carlo approach would be to take
samples Tl,T},"',T%, i=1,2,++-,n, and form the

estimate
. A 108 §
| FT(t) = E-izl Gi(t) (6.1)
where
i i i i
1 4f max[X], X, X5, XZ] < t, where (6.2)
Xi = '1‘i + Ti + Ti, Xi = Ti + Ti + Ti
1 1 3 8 2 1 4 8
Gty =y} TR R
X3 = T2 + T5 + T8, X4 = T2 6 + T8
0 otherwise

\

In this case, eight samples per realization are
necessary.

Restating (1.2) for the network of Figure 6.1, we
have

T = max[X ’XZ’XS’XA] (6.3)
= max[T +T3+T8, +T4+T8’ T2+T5+T8, T +T6+T8]
Now the only apparent reason that the c.d.f. of T

cannot be expressed as a product of the c.d.f.'s of
X, Xo, X3, X, 1is that the latter are not independent;
sztherwise this would be possible. On the other hand,
if T » Ty, T were constants rather than random
variables, % § » X3, X; would be independent. Let
us therefore proceed as if such were the case; then we
would have

FT(t) = F3(t - T1 - T7)F4(t - T1 - T8)F5(t - T2 - T7)

F(t - T, - Tg). (6.4)
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The manner in which we may set T., T s Tq
to "constants" is simply by sampling them, i e.,
ing the random variables at some sample values,

f?x—

Expression (6.4) is then said to be "conditioned"
on the fact that T, Ty, Ty, Tg have taken on these
sample values., We can now form the conditional sam-

pling estimate

2 1
FT(t) = ;-iilﬂi(t) (6.5)
where
i i
F (t-T )F (e-TE T )F (t—T )F (£-T,-Tg)
\ 3 8 8
H, (£) ={4f max[’l‘i i, Ti+Ti, Ti+Ti, Ti+'1’i] <t
7 8 7 8
0 otherwise (6.6)

When using the conditioned sampling estimate
(6.5), we need take only four samples per realization,
that is, half as many as demanded by the crude Monte
Carlo estimate of (6.1). AFurthermore it would appear
that the "variation" in Fp(t) from the true Fn(t)
is less than for FT(t), since 4in each realizat on
we are using information on the entire c¢.d.f.'s for
T3, T, Ts, Tg rather than only the information
conta&ned in single samples of these. The sole price
to be paid for these gains is the multiplication of
F3(-), F4(-), F5(-), and Fg(-) in (6.6).

The general outline of the method is then as
follows: first, perform all series-parallel reduc-
tions that are to be done on a given network, deriv-
ing an equivalent network; second, examine all paths
from s to z in the equivalent network and select
one activity per path which is unique to that path
(if such exists); third, form the appropriate product
distribution as in (6.4) and "condition" it upon the
remaining activities; lastly, generate realizations by
repeatedly sampling these unselected activities, using
the product form estimate as in (6.6). The method
will reduce the required number of samples per reali-
zation by a number somewhat less than the total number
of paths in the network, which may be an important
savings in effort.

Conclusion

The choice of analytic, approximation, or Monte
Carlo methods (and combinations thereof) as means of
solving the stochastic PERT problem depends on the
activity c.d.f.'s,network configuration, computing
resources available, and desired accuracy. When Monte
Carlo methods are indicated, there exist several tech-
niques for improving accuracy and diminishing computa-
tional effort. In this paper we have described the
application of five such techniques: antithetic
variates, stratified sampling, control variates,
regression, and conditioned sampling. These techniques
may be used separately or in combinations; their exis—
tence makes Monte Carlo methods much more attractive
in the investigation of stochastic PERT networks.
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