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Abstract ]

A gueueing system is simulated in which the
arrival and service rates are functions of the number
of customers in the system. This type of system has
been suggested as being more representative of real
queueing situations than is the usual "simple" queue
with constant arrival and service rates.

A modification of the "time of next event" simu-
Jabion method is required since an arrival to the
queue changes the distribution of residual service
time of the customer being served and the departure
of a customer changes the distribution of the time of
the next arrival.

The primary purpose of the simulation is to ex-
amine the statistical problems involved in estimating
the system parameters.

I Purpose

The purpose of this study is to examine the suifa-
bility of an estimation scheme for the parameters of
4 gqueuve with state dependent arrival and service rates.
This scheme consists of obtaining maximum likelihood
estimate of the arrivel rate and service rate for each
state and then making a least squares fit to the lo-
garithms of the rates.

Because of the complexity of this scheme, it is
not possible to obtain analytical results régarding
the properties of the estimates, To overcome this the
queuing system can be simulated and the results of the
simulation used to estimate the known parameters., The
behavior of the estimates can be studied as a function
of the length of the simulation,

II General Background

The queuing system in which the arrival rates
and/or service rates are dependent on the "state"
that is on the number of customers present in the
system at any instant, has been presented by Conway
and Mexwell™ for a_single server and by Hillier,
Conway and Maxwell” for several servers. The arrival
rate, given that there are n customers in the system
(being served and waiting for service), is
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where § is the mumber of servers, A the "normal"
arrival rate (when an arriving customer sees that he
will not have to wait) and b is a constant, If
b = 0, the arrival rate is the same for all dqueue
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lengths. A value of b > 0 reflects the "balking"
phencmenon: the reluctance of an arriving customer

to join the queue when he will be forced to wait,

the reluctance increasing with increasing queuve length.

The departure rate with n customers in the
system is
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where W is the normal service rate (when there are
no customers walting to begin their service) and ¢

is a constant. If ¢ = O the service rate is the
same For all queue lengths. A value of ¢ > 0 re-
flects the tendency of a server to speed up when
faced with a line of waiting customers., This tendency
was noted in toll collectors by Edie” in his classic
study "Traffic Delays at Toll Booths".

The terms "arrival rate" and “"service rate" refer
to the “birth-death" process. If there are m
customers in the system ab some time, the probability
of an arrival in the very small interval of time At
is
A At + o(at)

where o(At) represents terms of order greater than
At. Similarly, the probability of a deparbure in
At s

unAt + o(At).

These assumptions are eguivalent to assuming expon~
ential inter-event distributions, or Poisson processes.
If n customers are in the system, the time until
the next arrival, given that it occurs before a de-
parture, has the exponential distribution }‘,nexp( -).nx) .

The time until the next departure, given that it
occurs before an arrival, has the exponential distri~
bution pnexp( -pnx).

The study by Hillier, Conway, and Maxwelld
derives the probability of finding n customers in
the system at some random instant in the steady-state;
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with Po obtained from the relationship



Tables of PO, of the average number in the system,

and of the average number of customers in the system
who have not yet begun their service are presented.

One of the major drawbacks to utilizing this
model has been the difficulty in estimating the
parameters, b, ¢, A, and p. Hillier and Lieberman
suggest the following method: for n =S, take
logarithms of )‘n and. Hy to obbtain

b

log A, =1 log(ﬁ—i) + log A
n
log u, =c log(-é-) + log S .

Observe the queuing system for time T, ILet
T = amount of time that there are n customers
in the system

A = number of arrivals which occur when n are
in the system

D = znumber of departures which occur when n are
in the system,

Obtain the meximum likelihood estimates.

n - An/Tn

A
f,o=D/T, .

Determine the estimates of b and log A by making a
least squares fit of the log >‘n edquation, above,

substituting >‘n for ?‘n' The data for n< 8 can
be concentrated at n = S-1 with

8-1 S-1
7\'S--l = zAn/ z Tn ¢
n=0 D=0
Similarly, the estimates of ¢ and log Sy are

determined by making a least squares fit of the
log Fy equation, substitubing ﬁn for H,e The data

for n< 8 can be corbined with n =8 +o obbain

s S
IlS= an/znTn'
n=1 n=1

This is the estimation procedure examined by the simu-
lation of the queue with state dependent parameters,

ITI The Simulation

The simulation technigue used was a modification
of the "next event" method., The modification was
necessitated by the change in arrival and service
rates that occur with each change in state, Thus,
when a customer enters service, it is not possible to
generate his departure time since it may depend on
subsequent arrivals to the queue. The simulation was
conducted as follows: immediately following a change
in state to n, two random, exponential numbers were
generated; the first with a mean of l/)“n and the

second with a mean of 1/i . If the first was the
smaller of the two, this indicated that the next
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event was an arrival., This number was added to.the
clock time, the second number was discarded, and the
state was changed to n+l. The vdlue of Tl',l was

changed accordingly and An was increased by one, If

the second random number was smaller,.the next event
was a departure, The first number was discarded, the
the clock was moved shead by the appropriate amount 3
the state changed to n-l, T increased by the appro-
priate amount, and Dn increased by one, .

This method of simulation can lead to situations
which appear contrary to common sense, For example,
consider an instant following a change in state.
Random numbers are chosen yielding an inter-arrival
time of 1,2 and a service time of 1.5. The clock is
then moved ahead by 1.2 and the state is increased to
ntl. Two new random numbers yield an inter-arrival
time 1.8 and a service time O.7. Hence, the departure
oceurs at 1.2+0.7 = 1.9 time units, measured from the
first instant. This, in spite of the fact that the
original "service.time" generated was 1.5 time units
and the intervening arrival should speed up the server
by increasing the service rate from p_ to .

n n+1
- Despite this apparent anomaly, the simulation
procedure is correct. This follows from the "loss
of memoxy" property of the exponential distribution.
An alternative method of performing the simulation
would be to make use of a well known and easily
derived rule for two Poisson processes, If two
Poisson processes are operabing simultaneously, the
Pirst with rate )‘n and the second with rate M

then the probability that an event from the first
process occurs before an event from the second is
}‘n/ (AgHe )+ Thus, following each change of state,

My

T = T

could be calculated. A random number O <r < 1 is
chosen, If r < ey the next event is an arrival and

the time of its occurrence is obtained from a random
exponential variable with mean l/kn. It »> 9,

the next event is a departure and its time of occur-
rence is obtained from a random exponential varisble
with mean l/p.n.

Aside from this one feature, the remsinder of
the simulation program was quite simple and straight-
forward. It was written in FORTRAN and run on a
Univac 1108 at the UHMC Computer Center at New York
University., Summaries of An, Dn’ Tn’ and estimates

of Pn were printed at times 100, 200, 300, ...,

900, 1000, 2000, 3000, ..., 10000, as were the esti~
mates a and ﬁn, and the least squares estimates

of b, ¢, A and p.

IV Some Results

Table 1 presents the results of a run of the
simulation program for 10000 time units., The values
of the parameters were b = 0.2, A = 0.96, c = 0.2,
B = 0.k, A three-server queue (S=3) was simulated
and hence 8Sp = 1.2, There was nothing particularly
significant in this choice of parameters, rather it
was chosen as a "reasonsble" set of values which one
might expect to encounter in practice,

The results seem to indicate that the estimates
of X and Su are more consistent and accurate than
the estimates of b and ¢, The estimate of ¢ seenms



to indicate a bias on the high side while the egtimates
of A, Sp, and b seem to be biased on the low side,
with b showing the worst performance. After seeing
thegse results, it is possible to explain them although
they were not predicted hefore the fact,

The errors in estimation are due, in large part,
to the distortion caused by the logarithmic transforma-
tion of the data prior to the least squares fit, A
data point lying beneath the fitbted curve exerts a
greater effect than a point lying above it., For ex-
ample, assume that the regression curve passes through
the point x =1, y=1. If,at x=1, y=0.5 and
¥ = 1.5 were added as data points, the curve would
not be disturbed as their effect would cancel each
other out. If the curve and data was put on log-log
paper, the y = 0,5 point would be further away from
y = 1 than would the y = 1,5 point, resulting in a
downward "pull" of the regregsion line, This accounts
somewhat, for the consistently low estimates for A
and p.

Table 1

Parameter Estimates as a Function of Time

=02 )\ =0.9 8§=3 ec=0,2 p=0,h
Estimates
Time b A c Sy
100- 1.227 1,117 .139 1.343
200 .T9L 966 ~.056 1,211
300 .568 .953 117 1.253
hoo 129 .908 .288 1,167
500 .150 .938 257 1.164
600 .145 .931L 201 1.191
700 ,083 .923 .223 1.189
800 J11h .9L8 .2y 1.181
900 160 .ok .293 1.143
1000 .163 952 .32h 1,135
2000 .218 .959 .387 1,11k
3000 Jdke .953 .30k 1,151
Looo .120 940 .195 1,195
5000 152 .953 .196 1,195
6000 .157 .953 .208 1,186
7000 .148 .951 .222 1,180
8000 Ak «953 .230 1.163
9000 121 .9l .210 1.166
10000 .140 .957 ,198 1.180

The bias in the slope estimates can be attributed
to the same phenomenon, In 10,000 units of time,
approximately 78% was spent in state n = U4 or less.
(The largest observed n was 17.) Since log Ay

varies with log H+s_i' (and hence, small values of n
S
=T ), there
is a heavy concentration of points at the upper portion
of the log-log line, This concentration exerts the
downward pull on the upper portion of the line yielding

the low estimates for the slope b, Conversely, My

varies with log Z and hence the heavy concentration
at low values tends to depress the lower part of the
line yielding high estimates for the slope c¢. The
effect on ¢ does not appear as strong as the effect
on b.

correspond with large abscissa values of

V Conclusions

The results of the simulation indicate that the
=stimation procedure suggested by Hillier and Lieberman
for queues with state dependent paremeters does not
give accurate results, Substantial biases exist and
the precision appears poor, even after a long period
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of time,

Unfortunately, the simulation did not suggest
a better method of estimetion. Albthough the queuve
dependent model obviously has validity, its utility
is severely limited until the problems of statistical
inference are golved, These problems~first, showing
that dependence does exist, - second, showing that the
dependence follows the assumed form, and third,
estimating the parameters -~ are sufficiently complex
to make an analytical solubion most likely, The
simulation model can act as the testing ground for
whatever procedures can be suggested.
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