CHANNEL BALANCING IN A MEMORY HIERARCHY --—

A CASE STUDY

Derrell V. Foster, Department of Computer Science,
Duke University, Durham, North Carolina

J. C. Browne, Department of Computer Sciences, The
University of Texas at Austin, Austin, Texas

I. Introduction

It appears that during every stage of development of
computer systems that the demand for computer memory has
increased. Efficient utilization of memory is essential
to satisfy the demands for memory. The memory hierarchy
concept has resulted from physical and economic consider-
ations which make it impossible to provide unlimited
storage in single memory. Several memory levels with
different access times, capacities, and costs are
necessary. Such a hierarchy consists of executable levels
such as core memory and non-executable levels (IO devices)
such as drums, disks, and tapes. It is a well-known fact
that computer system performance is critically governed
by the choice of a cost-effective memory hierarchy.

An important goal of the system designer is to select
hierarchy management strategies which exploit the
heterogeneous nature of program and data files so that
files which are the least frequently accessed (have a low
activity profile) are assigned to slower memories and files
that are the most frequently accessed are assigned to
fast memories. Such an assignment process (methodology)
which satisfies not only device capacity constraints but
also queuing delays associated with the devices is
referred to as channel balancing. Management of executable
levels has long been considered and many of the
associated problems are well understood. However,
management of the IO devices when viewing the computer
system as a whole has been performed on a more or less
heuristic basis.

After a brief discussion of a methodology for channel
balancing in Section II, a case study of the assignment
of the system library for the UT2D operating system is
given in Section III. It should be noted that the case
study uses a simulation model to provide a realistic
model; however, an analytical queuing model is used to
guide the simulation so that evaluation of non-optimal
file assignment can be avoided.

II. Methodology

Fundamental to the methodology for channel balancing
are two models: a detailed model and a gross level model.
The detailed model (implemented in the case study as a
simulation model) maps domain variables, notably the job
characteristics, the degree of multiprogramming (potential
job interference due to queuing delays), and the
hardware/software characteristics of the computer system,
into values of system performance metrics, say a value
of system throughput as measured at the CPU.

The gross level model (implementated in the case
study as an analytical queuing model) reflects the effect
of file assignment through the service times of and the
branching probabilities to the 10 devices. For a given
set of device service times, there exists a set of
branching probabilities which maximizes system throughput.
Thus the optimality of a file assignment can be estimated
by how accurately the model yields the values of this
set. A knowledge of the characteristics of rotating
devices reveals that mean service times are effected by

file assignment Somewhat less than are the branching

505

probabilities. Note also that the identity of the
files is not maintained in the gross level model.

A methodology for channel balancing is given by
the following iterative procedure:

(i) Select some initial file assignment.

(ii) Evaluate the detailed model for the service

times of the IO devices.

Evaluate the gross level model for the branching

probabilities which maximize throughput using

the service times determined in step (ii).

(iv) Select a new file assignment whose accumulative
frequency of file request on an assigned device
satisfy the optimal branching probability
constraints determined in step (iii) while not
violating device capaclty constraints.

(v) Iterate on steps (ii) - (iv) until no changes
in file assignment occur.

(iii)

A more detailed description of this methodology is
given in [1].

III. The UT2D Peripheral Processor Library -- A Case Study

3.1 Introduction

The UT2D operating system is a system which coordinates
the activities of a CDC 6600 and a CDC 6400. Essentially,
it is a pair of autonomous operating systems which
communicate to share resources such as mass storage (e.g.,
extended core storage (ECS), disks), permanent files,
and certain system libraries (e.g., Peripheral Processor
Library). Normally, the 6600 system handles batch jobs
and the 6400 system handles interactive jobs. Since batch
jobs produce a greater variety of resource demands on the
system, trace data from the 6600 is used to parameterize
this case study.

The CDC 6600 computer system is composed of 10
smaller processors called peripheral processing units
(PPUs) in addition to the central processor. The purpose
of these PPUs is to perform input/output and control
functions in support of the central processor. All PPUs
have access to 12 channels which are in turn connected
to various IO devices (i.e., memories). Data transfer on
the channels is controlled by instructions issued by the
PPUs and can provide either single word or block transfer
from the devices. Each PPU has its own memory of 4096
12-bit word capacity which is separate from the 6600's
central memory. The peripheral processors act as a buffer
between the external environment and the central processor.

An important function of the operating system is to
coordinate the activity of the various PPUs. Communication
between the operating system and the PPUs is accomplished
through communication areas (i.e., mailboxes) in central
memory. For example, a PPU 'idles' in its resident program
by checking that word 0 of its communication avea remains
cleared. Whenever the operating system wishes a PPU to
perform some function (such as transferring data between
central memory and a disk unit), it enters the appropriate
function name into word O of the allocated PPU's communi-
cation area. After the resident program 'senses' that word
0 is no longer cleared, it must then locate the requested
transient program in the Peripheral Processor Library.
(This library may reside in many storage levels of a
memory (IO device) hierarchy.) After this program is
located, it is loaded into the PPU's memory and executed.
Following completion of the transient program, word 0 is
cleared and the PPU idles back in its resident program. The
(pseudo) IO devices from which the PPU loads this transient
program are central memory, ECS, and the system disk. Addi-
tional information concerning the operation of the UT2D
operating system and the CDC 6600 hardware system can be
obtained in [2,3].

It is the purpose of this case study to indicate where
to assign the programs of the Peripheral Processor Library
in the memory hierarchy so as to maximize the throughput
of the PPU system. This is accomplished by varying the
capacity constraints of the three I0 devices in order to

produce optimal system throughput as a function of
device capacity. In this manner, a near-optimal
capaclty solution to this assignment is obtained.

3.2 The PPU Subsystem

The PPU subsystem interconnection topology is given
in Figure 1. The system consists of four servers, central
memory, ECS, a disk unit, and a PPU. Both the simulation
model and analytical queuing model corresponding to the
topology are given in Figure 2. It is interpreted in the
following way. First, a request for a program in the
Peripheral Processor Library must queue for the secondary
memory in which the program is loaded. The request is
then serviced implying the transfer of the program into
the executable memory of a PPU. Upon completion of the
loading process, the program is executed by the PPU. Af-
ter completing PPU service, the request recirculates
in the model becoming a new request. The total number
of program requests circulating in the model (the degree
of multiprogramming for the model) is the same as the
number of avalilable PPUs. Consequently, after a program
is loaded, no queuing for a PPU is required. Also note
that no explicit inclusion of executable memory is
necessary since each PPU and its executable memory can be
viewed as a unit. The PPU server in the model stands
for a set of PPUs (and associated executable memories)
equal to the degree of multiprogramming (i.e., one PPU
per program).

3.3 Simulation Model Parameterization

The following parameters are assumed to accurately
and sufficiently characterize the behaviour of the CDC
6600 PPU subsystem (i.e., the loading and executing of
transient programs from the PPU Library) using the
UT2D operating system. Included in the parameters them—
selves are the effects of inter-machine interference (on
shared resources such as the PPU Library) since both the
CDC 6400 and the CDC 6600 were operational when the
event recorder was gathering data on the 6600.

3.3.1 Activity Profile. 1If the jobs themselves are
requests for the loading and executing program files,
then the job characteristics are commonly given in

an activity profile, one entry per file. The activity
profile is composed of four parameters for each
program in the PPU Library: reusability of the pro-
gram, request frequency of the program, instructions
executed/request, words loaded (record size)/request,
and volume of the program. The activity profile is
given in Figure 3. (Note that the record size and the
volume parameters are given in octal for convenience.
This is the only figure in which octal notation is
used.) The corresponding record size and volume
parameters are equal since the entire program is
loaded upon request.

The parameters that are more sensitive to
system behavior are request frequency and instructions
executed/request. These are obtained from a summary
of the trace data (event sequences) generated by the
event recorder. A detailed description of this
summary is given in [4]. The request frequency
parameter is simply a count of the number of times
that a given PPU transient program is located. The
instructions executed/request parameter is obtained
from the mean time between consecutive PPU transient
program locations.

3.3.2 Degree of Multiprogramming. Another major
parameter of the simulation model is the degree

of multiprogramming. It is the parameter which
specifies the amount of potential queuing interference
due to requests for PPU transient programs which
reside on the same IO device. The event trace

summary contains the mean number of PPUs allocated

for the trace interval. Its value is 3.89. Since

a PPU can only be executing a single transient
program at any given time, the degree of

506

multiprogramming is set to four.

3.3.3 Hardware Characteristics The hardware
characteristics assumed by the simulation model are
given below. All times are given in microseconds;
the transfer times are given in units of either

(60 bit) words or (64 x 60 bits) physical record
units (PRUs). The capacity constraints are variable
as stated in the purpose of this case study. The
parameters are defined as follows:

A. Four PPUs with a mean execution time/instruc-
tion of 1000

B. Three I0 Devices
1. Central Memory (CM)
a. Capacity of 0, 2000, 4000, and 6000
words
b. Mean latency time of 2000
c. Transfer time/word of 5
2. Extended Core Storage (ECS)
a. Capacity of 0, 2000, 4000, and 6000
words
b. Mean latency time of 6000
c. Transfer time/PRU of 2000
3. (CDC 808) System Disk
a. Capacity of infinity
b. Mean latency time of 51000
Mean seek time of 25000
Mean rotation time of 26000
c. Transfer time/PRU of 1000

3.4 Simulation Model Validation

The purpose of validation is to establish the credibi-
lity of the model by comparing its results with known re-
sults obtained from the actual system. It is an indication
of how well the model itself reflects the actual system.
1f poor validation is observed, the input parameters as
well as the level of detail included in the model are
questioned.

By setting the capacity of CM to 2000 words, ECS to 0
words, and the system disk to infinity, and holding all
other parameters (activity profile, degree of multiprogram
ming, and the system model) the same as those given in the
previous section, the throughput as computed by the model
has a value of 59. The observed throughput of the actual
PPU subsystem is 52. The model produces a higher value
for throughput because (1) a constant degree of multipro-
gramming of 4 could not be sustained by the actual system
(i.e., the degree of multiprogramming sometimes well below
4), and (2) the capacity of CM is slightly larger than the
corresponding capacity in the actual system. However, it
is felt that these two values compare sufficiently well to
establish the credibility of the model.

3.5 Results Obtained Through Channel Balancing

3.5.1 Throughput as a Function of Memory Capacity.
The table in Figure 4 gives optimal throughput and the
associated assigned memory of the IO devices (i.e.,
how much capacity of each device is actually used)

for various memory capacity constraints. System

disk assignment is computed by subtracting the assigned
memory values for CM and ECS from the total transient
program volume (i.e., 5819 words).

The entire table is not complete because a) some
constraint combinations are deemed impractical (such
as 0 CM and 0 ECS), and b) some entries can be implied
from other entries (such as 2000 CM, 6000 ECS can
be implied from 2000 CM, 4000 ECS).

The following important observations can be made
from Figure 4. First, by increasing the capacity of
CM from 0 words to 2000 words, the corresponding
increase in throughput is approximately 9% in all
cases. Increasing the capacity of CM beyond 2000 words
does not affect throughput in any case. Second, by
increasing the capacity of ECS from 0 words, the

corresponding increase in throughput is near zero Central
for all cases. So it would appear that when Mz:mra (o
considering the PPU subsystem alone, the appropriate PP executable 4 ’
capacitieshfor CM and ECS are 2000 and O, respective- memory
ly. However, it is noted that the relative differ-

ence in throughput between the 0 CM, 2000 ECS and —
the 2000 CM, O ECS combinations is approximately ECS
6.5%. Since this difference is so small, the former
combination is desirable over the later combination
in terms of both storage costs and optimizing the PPU
entire computer system's performance (since an

additional 2000 CM words are available for user b Disk
programs at a cost of 2000 ECS words). This analysis

indicates that the PPU library which is currently

stored in CM should be transferred to ECS, thus

freeing CM for other uses. PPU Subsystem

Interconnection Topology

3.5.2 Program Assignment. Assignment of the programs
in the activity profile of Figure 3 to be IO devices

is given in Figures 5a and 5b. This assignment
corresponds to the table entry of 0 CM, 2000 ECS which M
generates a throughput of 55. Note that less fre-

Figure 1

quently requested programs are often unexpectedly ECS PfPE
assigned to faster IO devices to more closely match A\
the optimal branching probability of that device with
the total frequency requests of the programs assigned
to that device. disk
IV. Summary
Values for throughput and a corresponding program
assignment as a function of memory capacity of the IO PPU
devices are generated utilizing a channel balancing method- Simulation and Analytical Queuing Model
ology. This automated technique allows the system designer Figure 2
to concentrate on major performance characteristics (such
as throughput) without unduly being burdened by system de-
tails (such as program assignment). The methodology extends Name Frequency Instructions Record Size Volume
previous work by including queuing delays for the I0 devices 2WD 11861 93 125 125
in a memory hierarchy, and optimization of total system 2RD 11289 95 122 122
throughput. An implementation of this methodology uses a 2F1 41 25651 137 137
simulation model to provide a realistic model; however, an 1RJ 586 941 346 346
analytical queuing model is used to guide the simulation oMT 3432 119 712 712
so that rapid evaluation of program assignment is possible. 187 567 680 265 265
1DB 3853 67 231 231
V. Acknowledgements LDR 578 259 307 307
2PD 3367 46 263 263
This research was sponsored by the National Science RFL 1396 69 170 170
Foundation under Grant GJ-1084 and by the Department of 2TS 910 100 536 536
Computer Sciences of the University of Texas at Austin. cI0 22960 3 174 174
1SS 392 174 432 432
1PL 585 63 224 224
1TD 148 342 164 164
CPU 3983 9 416 416
References 2PU 352 49 412 412
PFM 1214 28 460 460
[1] Foster, Derrell V., "File assignment in memory hierar- 2WUM 2102 16 277 277
chies", (Ph.D. Dissertation), The University of Texas EPR 1196 16 565 565
at Austin, August, 1974. 3AT 165 54 145 145
2SP 140 60 520 520
[2] Howard, John H., Jr., "A large-scale dual operating 103 124 56 73 73
system", Proc. of the ACM 1973 Annual Conference, 3EA 60 171 264 264
ACM (1973), 242-248. PCC 174 14 55 55
2TJ 116 42 32 32
[3] Thornton, J. E., Design of a computer the control 2FE 117 32 12 12
data 6600, Scott, Foresman and Company, Glenview, OPE 1338 7 110 110
Illinois, 1970. 2AM 97 36 76 76
2JE 109 21 17 17
[4] Howard, John H., and Wedel, Waldo M., EVENTD - UT-2D 1PS 2208 3 212 212
event tape summary/dump, UTEX-CC-TSN-38, Computation 2E2 46 50 140 140
Center, The University of Texas at Austin, Austin, SNP 760 6 67 67
Texas, July 1974. 2DF 875 4 37 37
1AJ 900 4 246 246
RCC 48 16 47 47
1SR 28 32 204 204
MSG 745 3 46 46
CLO 28 17 14 14

Activity Profile
of PPU Transient Programs

Figure 3

507

ECS

cM

0

2000

4000

6000

N J In F T

i C10 P 2296040 3
2 2wD P 11861.0 93
3 2rD P 11289,0 95
4 CpU P 398340 9
s 1lns P 3853.0 67
A 2MT P 343240 719
7 2pD [336740 46
A 1PS P 22n8.0 3
9 2wM P 2102,0 16
1n RFL P 1396,0 69
11 OPE P 133840 7
12 2nF p 875,0 4
13 SKnP P 16040 f
14 MSG P 74540 3
TOTALS? =40
aCCUMLATVE TOTALS! S4()

0 2000 4000 6000
55 55 55
NE 0 0 0
1996 3992 5819
59 60 60
1996 1996 1996 NE
0 1969 3823
60 60
3992 3992 NE NE
0 1827
60
5819 NE NE NE
0
Legend
A. Margins -- I0 device capacity constraints
B. Entries
1. NE -- Not Evaluated
2. Values:
a. Throughput of the PPU Subsystem
b. Actual CM assigned
c. Actual ECS assigned
Results of
PPU Transient Program Assignment
Figure 4
ACTUAL 0BSERVED
R v REL FREN REI. FRFEQ
124 124 «2910387 2294823
85 8s «150348¢ «1511093
82 Az «143098) .1341195
270 270 050488 0521687
153 153 «048R4N? «05176R9
458 458 «0435036 00449730
179 179 « 0426797 «0409754
138 138 «02798Rq «0285829
191 191 s02h6447 20275834
120 120 «017695% .0195882
712 72 e0169A01 «018389
31 31 «0110914 .0105936
55 55 +0096337 .0123926
38 38 «0004435 «0075954
1496 1996 «8894537 «8946632
1996 1996 «BR94537 «8946632

TaTaL RECORN SIZE (R) OF ~URRENTLY [0ADED ORJECTS!
ToTal RECORp SIZE (R) OF ~URRENTLY LOADED OBJECTS SCHEDULED FOR EXECUTINN,

PPU Transient Program Assignment to ECS

Fi

gure Sa

508

NRSER
0RJ

1475
756
67
261
259
275
205
143
13A

9A
97
53
67
3a

4476

4476

VED
RFW

COMPLTEN
I.NAD REQ

1478
755
6T
261
259
225
208
143
13R

98
92
53
62
38

4475

4475

248
248

CURRENT
LOCTN

FMEM
ECS
FCS
ECS
£Cs
ECS
ECS
ECS
ECS
ECS
ECS
ECS
ECS
ECS

N NE
15 PFM
16 EPR
17 27S
1R 1AJ
19 1RJ
2n 1PL
21 LDR
2> 1sJ
23 1sS
24 2PU
2 pcC
26 3AJ
27 1710
7?8 2SP
29 1CJ
3~ 2FE
3y 2T1J
3> 24€E
33 2AM
34 3EA
35 RCC
36 2€2
37 2f1
38 Cio
36 ISR

—
2

VU UV UUVUUVDUOUOUUDUVUO VDU DD DD VO DOV O

F

121440
1106.0
91040
90040
SR640
5AS5.0
57840
564740
39240
3520
174,0
16540
148,0
14040
12440
n7.0
11640
1n9,0
Q7.0
A040
4840
46,0
4140
28.0
2840

TOTALS!

ACCUMLATVE TOTALS!

TaTsL RECORn SIZE (R)

TaTal RECORR SIZE

2H
16
100
4
ng)
63
PIXC)
rHQ
174
49
14
54
142
60
S&
32
42
21
_36
7
1A
S0
26451
17
32

2RQ08

29448

180

3a23

5819

304

ACTUAL
REL FREN

«0153885
«0151407
«011535¢n
0114083
« 007428
«0074154
0073267
0071877
«004696HQ
$ 0044619
0022096
«0n20918
0018760
«0017746
0015718
«001483
0014706
.0013817
0012296
0007604
20006084
«0005RI
«0005197
20003549
000315649

011054613

1.0000000

OF ~URRENTLY L 0aDEO ORJECTS!

OBSERVED
REL FHEN

«0155906
.0167899
.013192)
«0109Y34
«0055964
«0063962
«0057965
«0059964
«0035978
«003597R
.0027983
«001399>2
«0nl99R8
«0029982
«0n13992
«0005996
«0011993
«0013992
20003998
0003998
«0009994
«0005996
«0003994
«0005996
«0005996

«105336R
10000000

PPU Transient Program Assignment to Disk

Figure 5b

509

NRSER
0RJ

78
R4
hA
55
28
32
29
30
18
18
14

7
10
1S

WD WNWANNNY NI N

g1
N
~

5003

(Ry OF ~URRENTLY 1.0ADED OBJECTS SCHEOULED FOR EXECUTIAN,

VEU
RF G

COMPLTED
| 0AD REQ

78
B4
64

D DV W ANV N>

u
~n
~

5002

CURRENT
LOCTH

15K
DISK
NISK
DISK
N1SK
DISK
01SK
OISK
NISK
LISK
OIsk
DISK
N{SK
0ISK
N1SK
D1SK
D1SK
N1SK
OISK
018K
01ISK
DISK
N1SK
NISK
NISK

