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Abstract

Adaptive Step-Size Integration (ASSI) refers to a
process of numerical integration in which the (n+1)-st
integration step size h(n+1) is determined at the end
of the n-th step without a trial solution and without
computing the local truncation error. By analogy
with discrete-data control systems which feature
adaptive sampling intervals, the computation of the
interval h(n+1) is based on the magnitude of the
system sensitivity functions. For example, the
influence of the interval size on the i-th state variable
is given by the sensitivity function 3x/ 3h. While
adaptive step size control systems have been investi-
gated in the past, ASSI has received very little atten-
tion.

This paper reviews the theory of ASSI in the light
of recent results on the selection of the optimum
criterion functions for the determination of the
integration interval at each step. Since previous
attempts to evaluate ASSI have been tested on very
simple systems, a fourth order differential equation
is used as a benchmark problem in the paper. The
resulting fourth order systemn is solved by ASSI using
three different step size ''control laws'' (adjustment
algorithms) with Euler integration. For comparison
the system is also integrated using a Runge-Kutta
fixed step formula, The results show a slight advantage
in total execution time for one of the ASSI algorithms.
However, the results are difficult to generalize.
Various limitations of the results are discussed. The
paper concludes by indicating that the results are
inconclusive, and that it still remains to be seen
whether ASSI is a ''good idea.'

Introduction

Variable step size algorithms for the numerical
solution of ordinary differential equations generally
require either trial solutions or estimates of the local
truncation error. Multiple step algorithms such as
predictor-corrector methods utilize a sequence of
trial values which can be used to adjust the step size
until an appropriate error criterion is met. Other
variable step size algorithms estimate the truncation
error at each step in the integration process.

Based on this estimate, the integration step size

can then be doubled or cut in half. A review and
analysis of many of these methods can be found in

the references [1-3]. All the above mentioned
algorithms share one common feature: they calculate
a trial vector on the basis of which step sizes can be

determined to fit predetermined accuracy requirements.

By contrast, adaptive step size integration (ASSI) is
defined here as a process of numerical integration in
which the (n+1)-st integration step size h(n+1) is
determined at the end of the n-th step without a trial
solution and without computing the local truncation
error., Rather, the determination of the step size

is made on the basis of the sensitivity of the solution
to changes in the step size. Hence, ASSI requires
the evaluation of ''sensitivity functions [4], and

the incorporation of these functions into appropriate
step size adjustment subroutines.

Adaptive step size integration is analogous to the
process of adaptive sampling in sampled data control
systems. In a series of papers beginning in 1962
[5-137] various authors have investigated the per-
formance of sampled data control systems with a
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sampling interval dependent on some function of the
state variables. While most of the above mentioned
references are somewhat heuristic, other papers
have investigated optimal control systems with state
dependent sampling [14,15). In general, in a
system of the type illustrated in Figure 1
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it can be demonstrated that the use of state-dependent
sampling can result in a requirement for fewer samples
for a given accuracy criterion than that obtainable
with a fixed sampling interval. Hsia [13] has
examined a variety of control laws which have been
used in adaptive sampling, and indicated how these
could be derived from a general formulation, Among
the control laws of interest are the following:
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where Tj is the duration of the i-th sampling interval,
Tmax is the maximum allowable sampling interval, G
is a gain constant, and i is the sensitivity of a
particular state variable to variations in the sampling
interval. It is the control law of Equation (3) which
appears to be suited to the problem of adaptive
integration.

Adaptive Integration

Consider the block diagram of Figure 2
Yo

ult) {: % @ o .

) = y(t)

¥,
AT [ o

l ; %(H)

Fig.2

Figure 2a represents an analog computer solution of
the differential equation
y = £(y,u) o)
while Figure 2b represents the numerical solution of
the same equation by means of Euler or rectangular
integration formula

y(n+l) = y(n) + hi(n) (5)

The numerical integration formula is represented by
its discrete transfer function [16]. By analogy with
Figure 1 it seems reasonable to construct a feedback
control law for adjustment of the step size h by means
of a control law similar to that in Equation (3). Further,
it is intuitively appealing to suggest that when the
solution to Equation (4) is highly sensitive to changes



in the step size, h should be small; on the other hand,
when the solution is relatively insensitive to changes
in the step size, then large steps may be taken with
small error penalties. Such a philosophy is embodied
in Equation (3), where the sensitivity Hi is defined by

4 lim y(tn,hn+Ah)-y(tn,hn)
M(tn) = Ah+0 ah (6)
or
‘ - _ Oy (tn)
Bt = H(n) = —ah—“— (7

If one applies the definition of the sensitivity coefficient
or sensitivity function in Equation (7) to the rectangular
integration formula of Equation (5), we can differentiate
this expression term by term and obtain

Svlntl) = dla) + h2ed 4 gy ®)
3h h

or

W(n+t1) = H () + hi(n) + y(n) (9)

Equation (9) is a sensitivity difference equation (9]
which can be solved to obtain the desired sensitivity
coefficient for substitution into a control law such as
that given by Equation (3). Once up+}] is found, we
can proceed to the calculation of the step size

hp+] for the next interval. Note that trial solutions
of the difference Equation (5) are not required. In
general, for an n-th order system there will also be
an n-th order system of sensitivity equations with
respect to the parameter h.

A large number of control laws were investigated.
The best results were obtained from the following:

_ 1
h(n) = Gla o (10)
max
A
h(n) = ———— (11)
'Hul(n)l
_ max
hin) = Gu () + 1 t12)
h(n) = hma:-: (13)
GHy + 1

A Test Problem

The combination of the system equations and
sensitivity equations represents a nonlinear system of
difference equations. Hence, the application of ASSI
is highly specific to any particular example problem,
and generalization is very difficult. Consider for
example the two curves of Figure 3

Fig.3
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Curve # 1is typical of the response of a first order
system to a step input. It is intuitively evident that

if the solution is discretized, that the variable y will
become less and less sensitive to changes in integration
step size as the solution proceeds. On the other hand
the curve indicated by the number 2 has periods of
greater and lesser sensitivity which appear to be
related to its slope. The solution of any equation

which follows curve 1 can be made to favor adaptive
step size integration by simply taking a long enough
solution time since as time progresses one can take
larger and larger steps without incurring significant
errors. For this reason a fourth order differential
equation with a known solution was taken as a benchmark
problem. The specific equation selected for solution

is given by

d3 2

4 dy d dy =
d4x+adt3+bj+cdt+dy 0 (14)

dt

where a=2.9, b=2.7, ¢=0.7,d=-0.,1 and the initial
conditions are

y(0) = .01 v(0) = 1.001
¥(0) = -1.9999 ¥(0) = 3.00001
The solution to this equation is given by
et/ 10 _t
y{t) = g5~ + te (15)

For computer solution, Equation (14) is transformed
into a system of first order differential equations:

V172
V57V
V37V (16)
Y4 -2.9y4-2.7y3-0.7y2+0.1y1
¥,(0) = .01 y,(0) = 1.001
y3(0) =-1.9999 y4(0) = 3.00001
where the variables Yy Yy ¥ and Y4 represent the
variable y and its first, second and third derivatives
respectively,

Differentiation of Equation (16) with respect to
the step size h, followed by a certain amount of
algebraic substitution results in the system of sensitivity
equations

=M

K (n+1) 1)+ hi,(n) 4y, (n)
M, (nt+l) =M, (n) + hi,(n) + y3(n) (17)
u3(n+l) = H3(n) + hu4(n) + y4(n)
M (nt]) = u4.(n) + h[-Z.9u4(n)-2.7u3(n)-0.7u2(n)+
011 (M ]+ y )

A simplified flow chart for the solution of Equation
(16) and (17) is shown in Figure 4
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Note that the following sequence of operalions is
followed: a) calculation of the sensilivity vector
u(n+1); b) calculation of the step size h(ni 1), (the
inequality h > hmin is included to insure that the
program does not resull in infinitesimal steps under
any circumstances); c) calculation of y(n+1) by any
single step algorithm. While Euler inlepration

was used in this study, any single step algorithm
can be used. However, multiple step algorithms
such as predictive-corrective formulas can not be
used because of the nonuniform size of h. A sccond
order Runge-Kutta algorithm was chosen for this
test case as a reference digital solution, In ordcr
to have a meaningful comparison, all cases werc
adjusted to have the same mean square per slcp
error when compared to the known analytical solutions.
A comparison of execution times and the number of
integration steps taken in the same solution

interval for several control laws and the Runge-
Kutta fixed step-size formula are given in Table 1.
The three control laws for which results are
included are representative of a number of other
control formulas which were investigated. It can be
concluded from an investigation of this table and
other similar results that those control laws which
were based on the sensitivity function ] (i.e. a
partial derivative of y) with respect to h) did not
yield any significant improvement over the fixed
step size R-K formula. An attempt to search
among the four sensitivity coefficients for the
largest numerical value at each step in general
produced considerably worse results in the sense
that more steps were required and a longer solution
time was required to obtain the same first step
error. Interestingly enough, the best results were
obtained from control laws which were based on the
rate of change of a sensitivity function as shown in
the second column of Table 1 which indicates a
saving of approximately 207;,

Discussion of Results and Conclusions

Unfortunately, the results of Table 1 are specific
to the test problem being investigated. On the basis
of this problem alone, it can not be stated whether
any of the control laws investigated here will in
fact result in reductions of computer time in
integration of any other differential equations.
Furthermore, the results of Table 1 were obtained
by trial and error. In view of the nonlinearity of
the systern, it is entirely possible that other
combinations of the parameters G, 2. and hmin
will yield the same first step mean square error
with a problem tirne trmax = 40 seconds. The use
of an optimization algorithm for the determination of
the optimum parameters of the control laws which
would yield the best possible match to the known
analytical solution was not justified in view of the
fact that the results would still not be general, but
only specific to this particular problem. A previous
paper by Nilsen [17) also raised some reservations
about the generality and usefulness of ASSI.

A further difficulty arises from the very fact
that the step size is adaptive. This variability means
that error analysis is difficult if not impossible.
While in the benchmark problem investigated above
the accuracy of ASSI can be investigated, in general
of course the exact solution of the system being
studied is not known and hence the only input a user
would have would be that of adjusting the parameters
of the control law to see whether a solution with
smaller steps would in fact be different from one
with larger steps, after making allowances for
accurnulation of roundoff error.

Furthermore, note that the overhead associated
with the calculation of sensitivity functions at least
doubles the execution time required for the solution
of the differential equation itself. If one uses a better
integration formula than the simple rectangular

integration routine used here, this increase in time

van be [ormidable, to say nothing of the additional
analysis and precalculation required for the preparation
of the system of sensitivity equations.

In summary, adaptive step size integration has
been and continues to be an intuitively appealing
concept. However, the selection of the optimum control
law for ASSI, and general results for its application
to realistic problems remain lacking. It is the authors'
hope to stimulate further research so that ASSI can be
cither validated or laid to rest once and for all.

Table 1

Control 1 1 1 R-K

Law Glumaxl G m GHZI +8 2nd order

Exec-

ution .81 sec. .43 sec. .54 sec. .55 sec.

time

Number 5

of steps 127 8 99 101
Largest

step 1.63 1.81 0.5 .3984

taken

h_. 0.2 0.2 0.3 .3984
min

References

1) Blum, E.K., Numerical Analysis and Computation,
Addison-Wesley Publishing Company, 1972.

2) Ralston, A. and H.S. Wilf, Mathematical Models far
Digital Computers, Vol. I and II, John Wiley and
Sons Inc., 1967.

3) Carnahan, B., H.A. Luther and J.O. Wilkes,

Applied Numerical Methods, John Wiley and Sons
Inc., 1969,

4) Tomovic, R., Sensitivity Analysis of Dynamic
Systems, McGraw-Hill, 1963,

5) Mitchell, J.R. and W,L, McDaniel Jr.,"Adaptive
Sampling Technique", IEEE Transactions on
Automatic Control, pp.200-201, April 1969.

6) Hsia, T.C. '"Comparison of Adaptive Sampling
Control Laws'', IEEE Transactions on Automatic
Control, Vol AC-17, pp.830-831, December 1972.

7) Collmeyer, A.J. "Analysis of Discrete Data Control
Systems with Adaptive Sampling'', MS thesis,
University of Illinois, Urbana, June 1964.

8) Dorf, R.C.. M.C. Farren and C.A, Phillips,
"Adaptive Sampling Frequency Rate for Sampled-
Data Control Systems', IRE Transactions on
Automatic Control, Vol. AC-7, pp.38-47, January
1962.

9) Bekey, G.A. and R. Tomovic, "Sensitivity of Discrete
Systems to Variation of Sampling Interval", IEEE
Transactions on Automatic Control, Vol. AC-11,
pp. 284-287, April 1966. )

10) Tomovic, R. and G.A. Bekey, ''Adaptive Samphrxg
Based on Amplitude Sensitivity", IEEE Transactions
on Automatic Control, Vol. AC-11, pp.282-284,
April 1966. '

11)Mitchell, J.R. ""Concepts in Adaptive Sampling"',
MS thesis, Mississippi State University, State
College, June 1968, :

12) Tait, K.E. "An Analysis and Evaluation of Signal
Dependent Sampling in Discrete-continuous Feedback
Control Systems'', International Journal of Control .,
Vol.4No.3, pp.201-234,1966. )

13) Hsia, T.C. "Analytic Design of Adaptive Sampling
Control Law in Sampled-Data Systems', IEEE
Transactions on Automatic Control, Vol.AC-19,
No.l, pp.39-42, February 1974,




14)

15)

16)

17)

S.M. Melzer and B.C. Kuo, "Sampling Period
Sensitivity of the Optimal Sampled Data Linear
Regulator", Automatica, Vol.7, pp.367-370,1971.
Schlueter, R.A., "The Optimal Linear Regulator
with Sampling Time and Stole Conslraints', PhD
thesis, Polytechnic Institute of Brooklyn,
September 1971.

Bekey, G.A. and W.J. Karplus, Hybrid
Computation, John Wiley and Sons, Inc., Chapter
4, 1968,

Nilsen, R. "A Study of Adaptive Step Size Control
in Numerical Integration Using Discrete Sensitivity
Analysis', Summer Computer Simulation
Conference, Boston 1971,

792



