A BAYESTAN APPROACH TO THE DESIGN OF SIMULATION EXPERIMENTS

INTRODUCTION

Simulation is inherently an experimental modelling
tool. One obtains results from simulation models by
operating them, or in other terms, by conducting ex-
periments with them. The intrinsic experimental na-
ture of simulation (and its resulting costliness as
a modelling methodology) implies that in order to
utilize simulation effectively, it is important to
make the fullest possible use of the tools of expér-
imental design and statistical analysis.

Effective design of simulation experiments requires
consideration of a number of issues, including:

. the context of the experiments (i.e., deter-
ministic or stochastic model, continuous or
discrete domain of experimentation, etc.);

. the nature of the decisions to be made, based
on the outcome of the experiments;

. the special experimental capabilities of sim-
ulation models.

The approach to experimental design described here
is oriented toward stochastic models, and to situa-
tions involving discrete experimental options, as
opposed to experiments in a continuous space. A
Bayesian approach has several advantages over previ-
ous methods for dealing with problems of this type.
As preface toadiscussionof this Bayesian approach,
the following three sections clarify the special ex-
perimental capabilities of simulation, assumptions
regarding the context of the experiments and nature
of resulting decisions, and previous research in
this area.

SIMULATION AND SYSTEMS PLANNING

The purpose of simulation experiments is to acquire
additional understanding about the system under stu-~
dy in order to improve the decisions made by the an-
alyst. Effective design of experiments must thus
recognize the nature of the decisions to be made, in
order to assess the value of the information which
might be obtained through any of several possible
experiments.

Simulation may often be used very effectively in the
initial planning stage of a project, when several
basic alternative system configurations are being
evaluated and compared. The product of the initial
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planning stage is the selection of a basic system
configuration to undergo detailed design. The deci-
sion which must be made by the analyst is thus a se-
lection of that alternative which is 'best,' in some
sense, from among a set of possible alternatives.
The decisions made at this stage are extremely import-
ant because they strongly influence the final outcome
of the project. No amount of detailed design work
can overcome the effects of an incorrect decision
with regard to basic system configuration.

The cost of an incorrect decision at the initial plan-
ning stage may be considered to be an opportunity
cost associated with selection of an inferior alter-
native. That is, if alternative "i'" is selected,
subjected to detailed design and implemented, a cer-
tain measure of system performance will be achieved.
If, however, another alternative, say "j," is really
the best alternative, selection and implementation
of "j" would have resulted in a superior measure of
performance., The cost of the incorrect decision in
this case is the opportunity loss, or difference be-
tween what is achieved and what might have been achiev-
ed,

If one is designing experiments to compare alterna-
tives, the potential value of any possible experi-
ment is thus dependent upon the cost of an incorrect
decision, and should be incorporated explicitly into
the experimental design process. This is a major as-
pect of the approach described here. A second major
aspect of this approach is that it effectively uti-
lizes the capabilities of simulation as an experimen
tal environment. Simulation does provide very spe-
cial opportunities to the experimenter, and the na-
ture of these opportunities must be fully understood.

SPECIAL EXPERIMENTAL CAPABTILITIES IN STMULATION

The experimental environment provided by simulation
is a unique one because of its controllability and
reproducability.

If one is constructing a set of experiments to inves-
tigate the effect of varying a certain input varia-
ble, the ability to control all other variables is
very important. In this way, the effect of the
change in which the analyst is interested can be iso-
lated, and not obscured by the effects of other in-
put variables.

The reproducability of the simulation experimental
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DESIGN OF SIMULATION EXPERIMENTS...Continued

environment stems from the '"pseudo-random" nature of
the random elements in simulation models. Because
of this 'pseudo-randomness,'" parallel experiments
under the control of the same random-number streams
can be performed. This gives the analyst opportuni
ties to reduce the variance of some of the sample
statistics of interest (or to use less experimental
effort to obtain a given level of confidence in these
model outputs). Such techniques are typically re-
ferred to as "variance feduction' methods. Among
the better-known of these are antithetic variates
and common random-number streams. Considerable pri
or work has been done in the analysis of these techr
niques by Page [11], Fishman [2], Kleijnen [4], Moy
[9), and others.

Antithetic sampling is a variance reduction technique
which is useful in the estimation of the mean re-
sponse from a simulation model for a particular set
of input conditions. The basic motivation for anti-
thetic sampling can be illustrated by a simple exam-
ple in which two simulation runs are performed, and
two samples, Y; and Y,, are drawn from the distribu-
tion of the model output, Y.

The expected value of Y may be estimated by the sam-
ple mean:

Y, +Y
7 - 1 % W

and in general, the variance of Y is given by:

cov(¥., Y,)
+ ; 27 . (2)
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If the samples are independent, cov(Y;; Y,) =0, and
the result is the familiar one:

V@) = 1291 3)

However, if cov(¥,, Y ) is negative, the variance of
Y will be reduced, 1mply1ng amore efficient estimate
of E(Y) than could be achieved through independent
sampling.

Antithetic sampling is one of several ways in which
the analyst can attempt to induce negative values of
cov(¥y, Yg). The various methods available have
been surveyed by Moy [97], and more recently by Me-
Grath and Irving [8]. The attractiveness of anti-
thetics stems from the fact that it is one of the
easiest techniques to apply, and at the same time is
one of the most effective.

The application of antithetic sampling involves the
performance of pairs of simulation runs. In the
first run, a stream of random numbers, RN;, RNp,...,
is transformed into samples of the various inputs to
the simulation model, The result of this simulation
is a sample, Y, from the output distribution, £(Y).
For the second run, the so-called "antithetic” ran-
dom-number stream, 1-RNj, 1-BNj, ..., is used, re-
sulting in output samples which are negatively coxr-
related with those from the first run, and producing
an output sample, Y', also from £(Y), which is (one
hopes) negatively correlated with the sample Y, from
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the first run.

Common random numbers is a technique which may be
used for variance reduction in the comparison of
alternative system configurations, or options. To
illustrate the motivation for this technique, consi-
der a simple example with two options, denoted X
and_A2. Comparison of these two options canbedone
by defining the difference in response, Z:

z = (le1> - ). &)

Mean value comparison then involves the expected
value of Z:

Bz = Ll - @yl

EYin) - EiA). ()
1 2

This mean difference can be estimated by the sample
mean difference, Z:

z = @ - @y, (6)

with variance:

v(Z)

V(ml) + V(ELy)

2cov(¥ln,, ¥l Ay (7

1’
Clearly, if cov(Ylh ) Y]X ) can be made positive, a
variance reduct10n111z will be achieved, Positive
correlation between these sample means can be induc-
ed by constructing pairs of positively correlated
samples through the use of common random numbers.

By using a common random-number stream, RNj, RN,,
+vey to sample the inputs for each option, the in-
puts are the same, and the outputs, Y\Kl and Ylk
are (one hopes) positively correlated.

In light of these unique capabilities of the experi-
mental environment available in simulation, it is
clear that the traditional statistical tools for ex-
perimental design must be modified and extended if
they are to be used most effectively for the design
of simulation experiments. The following section
describes previous work in development of experimen-
tal design procedures for simulation, and a new ap-
proach based on statistical decision theory is then
presented.

PREVIOUS RESEARCH

The classical statistical framework for designing
experiments to compare several alternatives is pro-
vided by multiple ranking procedures. These proced-
ures are discussed in detail by Bechhofer [1], and
their application to simulation has been studied by
Naylor, et al. [10], Kleijnen, et al. [6], and
Schmidt, et al. (13]. The major drawback of multi-
ple ranking procedures is that they make rather in-
efficient use of the simulation enviromment. A ba-
sic assumption of these procedures is that all sam~
ples are independent, and thus the use of variance
reduction techniques, suchas antithetics and common
random numbers, is specifically excluded.



In recent years, groundbreaking work has been done
by Fishman [3], Kleijnen [5] and others in the de-
velopment of experimental design methods which are
explicitly simulation-oriented and are able to make
effective use of various reduction techniques. To
date, however, the available methods are limited to
pairwise comparisons and are based on a design ob-
jective of minimizing the variance of the estimated
difference in performance between the two alterna-
tives.

This minimum-variance criterion serves as a surro-
gate for the objective of minimizing the risk of in-
correct decision by the analyst. It only indirectly
addresses the decision of which alternative is the
best, since there is no inclusion of the mean dif-
ference.

The approach described here is an evolutionary step
in improving methods for the design of simulation
experiments, It incorporates both the capability to
handle more than two alternatives at a time, and ex-
plicit recognition of the costs of incorrect deci-
sions into the experimental design framework, while
retaining the ability to exploit the special experi-
mental capabilities of simulation.

A DECISION-THEORETIC APPROACH
TO EXPERIMENTAL DESIGN

In order to provide explicit consideration of the
consequences of decisions to be made on the basis of
experimental results, a decision-theoretic approach
to the design of these experiments has been adopted.
The formulation is based on previous work in decision
theory and experimental design by Raiffa and Schlai~
fer [127, and Lin [7].

The basis of this approach to experimental design is
the multivariate Normal-Normal probability model.
The following discussion presents a brief description
of the method. For a more complete presentation, the
interested reader is referred to Turnquist [14].

If r alternatives or optiomns are being considered
and compared, the r mean responses may be written as
a vector:

po= Dby By eees ] (8)

The decision problem faced by the analyst is then to
identify from among this set the optilon which produ-
ces the largest (or smallest) mean response. The
maximization and minimization problems are equiva-
lent mathematically, so the development here will be
phrased in terms of selecting the largest mean value

The analyst may express his uncertainty about the
unknown values of the elements of P in the form of a
multivariate probability density function, £(). In
the Normal-Normal model, f(p)is amultivariate normal
density function with mean vector

m o= [m, my, oo, m ] (9

and covariance matrix

511 S12 - Slr?
S21
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Sp1 v ¢ ¢ srrd (10)

where Sij represents the covariance of By and uj

If the analyst decides that by is the largest mean,
when in fact the largest is ®ys the penalty, or loss
incurred as a result of the decision is assumed to
be:

This linear loss function is the formal representa-
tion of the notion of opportunity loss discussed
earlier. Clearly, if the correct decision is made
(i.e., i=j), the loss is zero, For any incorrect
decision, a penalty is incurred.

Given the representation of the analyst's state of
uncertainty, £(u), and the loss structure associated
with incorrect decisioms, L(ki, W), the optimal
Bayes decision (i.e., minimizing expected loss) is
simply to select the option corresponding to the
largest element of the vector, m. This decision has
associa ted with it a certain level of risk, or ex-
pected loss.

In an attempt to reduce the risk associated with
making a decision, the analyst may try to obtain more
information by conducting experiments. Experimental
observations are taken on the output of the simula-
tion model, a random variable, Y. A single observa-
tion (say, on option i) may be written in the form
Yo=Ky + w (12)
where pj is the mean response for option i and w is
a random disturbance about the mean, due to the sto-
chastic nature of the simulation model. The Normal-
Normal probability model requires that the random
disturbance be normally distributed with mean zero.

In general, a set of observations from n experiments
can be written in matrix form as follows:

Z(n) _ é(n)E.T + E(n) 13)
where (n)
bl = n x 1 vector of experimental
(n) observations
A = n X r coefficient matrix relat-

ing each element of y(®) to a
() specific option, k

= n x 1 vector of random errors,
distributed multivariate normal
with a zero mean vector and co-
variance matrix denoted £(%),

n . .
The é( ) matrix is composed of zeros and ones. Each
row corresponds to an experiment, and has r-1 zeros
and a single 1 in the kth position (if the experi-
ment is run on the ktR option).
by (n)

The elements of the covariance matrix, , are
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DESIGN OF SIMULATION EXPERIMENTS...Continued

assumed known. Both this known variance assumption
and the normality assumption for the errors, g(n),
are likely to be violated often in practice. Because
of this, an important aspect of the research has
been sensitivity testing for the effects of various
types of violations., These sensitivity tests, de-
scribed by Turnquist [14], indicate that the method
exhibits considerable robustness relative to these
assumptions. -

Given equations (9), (10) and (13), the process of
incorporating new information into the prior distri-
bution, f(u), is very straightforward, as shown by
Raiffa and Schlaifer [12]. ‘The covariance matrix
and mean vector of the posterior distribution (in-
cluding the data) are as shown in equations (14) and
(15):

SP_l - g:l + é(n)T[E(n)]-lé(n) (14)

m = m+se aA®TME™I T ™™D as)

where posterior covariance matrix

e |18
It

posterior mean vector.

Equations (14) and (15) tell us how to incorporate
the data we gather into the representation of the
state of our knowledge about the system under study.
We can now focus on the experimental design issues
—that is, deciding what data to gather.

In this decision~theoretic framework, the problem of
designing the (n+l)St experiment becomes ope of spe-
cifying the (n+l)St rows to add to the A'™ and g(“)
matrices, These rows define the option on which™an

experiment is to be run, and the correlation struc-

ture with previous experiments.

The basic criterion for designing optimal experiments
is the Expected Value of Sample Information (EVSI).
This is a measure of the expected reduction in risk
which would result from the availability of the new
information associated with an experimental outcome
EVSI is a function of the experiment being planned,
and explicitly incorporates the "cost of being wrong'
in the selection of the best system alternative.

In general, one compares EVSI, as a measure of the
benefit from an experiment, with the cost of perform-
ing that experiment, to obtain a measure of net be-
nefit for each possible experiment. The experiment
with the largest net benefit is then selected as the
next one to be performed, After the performance of
each experiment, the updating equations, (1l4) and
(15), are applied, and the next experiment is plan-
ned. When the EVSI criterion suggests that no fur-
ther experiments are worthwhile, the process termi-
nates.

The method for locating the optimal next experiment
utilizes the structure due to the "pairwise' nature
of antithetic sampling and the "r-tuple" nature of
common random numbers. Antithetic sampling is ap-
plied by generating pairs of negatively correlated
observations with each option. Common random num-
bers are applied by making a run under each option
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with the same stream of random numbers.

This covariance structure canbe illustrated as shown
in Figure 1, for the case in which there are just
two options (r=2).

FIGURE 1

Covariance Structure of Experiments
for Two-Option Problem (r =2)

Option 1

Ogtion‘z

The covariances indicated in Figure l are as follows:

C1 = negative covariance due to antithetic
sampling on option 1;

C2 = negative covariance due to antithetic
sampling on option 2;

03 = positive covariance due to common random

numbers between options 1 and 2;

04 = negative covariance due to simultaneous
use of antithetics and common random
numbers.

In general, we can visualize a structure of "2r-
tuples'" of correlated experiments.

This structure implies that the experimental design
problem can be viewed as a process of filling “slots"
in a tableau, as shown in Figure 2. Each row of the
tableau comprises a '"2r-tuple" of corfelated experi-
mental possibilities, and the rows are all independ-
ent from one another,

FIGURE 2

Experimental Design Tableau

Option 1 Option 2 Option r




Before experimentation is begun, the tableau can be
visualized as being completely empty; and as the ex-
perimental program proceeds, various boxes are filled
by running the particular experiment which that box
connotes. The experimental design process thus a-
mounts to searching over unfilled boxes in the tab-
leau, each of which corresponds to an experiment,
and selecting the experiment which results in the
largest expected net benefit.

If all available experiments at a given stage are of
equal cost, the optimal experiment is clearly the
one with maximum value of EVSI. However, if the a-
vailable experiments are of unequal cost, or when
the expected informational value of the optimal ex-
periment may not be sufficient to cover its cost, a
measure of net benefit must be constructed for each
experiment.

If the units of EVSI are monetary, and the benefits
measured by EVSI are accruing to the same group as
the cost of the experiment, the simple procedure of
computing the Expected Net Gain of Sampling (ENGS)
is adequate:

ENGS(e) = EVSI(e) - C(e) (16)

where C(e) is the cost of the experiment, €.

However, the units of EVSI are often not monetary,
and in many cases the benefits and costs of experi-
mentation may be accruing to different people. In
these situations, the comparison of benefits and
costs must be less direct.

Tn order to understand the dimemsions of the benefit/
cost trade-off, it is important to recognize that
the units of EVSI are always the same as the units
of the simulation output. The job of the analyst is
then to weigh the value of information, expressed in
these units, against the cost of experimentation, ex-
pressed in monetary terms, and decide which, if any,
experiments to perform.

AN EXAMPLE APPLICATION

As an example of the application of this experimen~
tal design method, consider the following situation.
Suppose we are operating a system which may be mo-
deled as a single-server queuing system with a FIFO
queue., Customers arrive in Poisson fashion, with
mean inter-arrival time of ten minutes. Service time
is exponentially distributed with mean nine minutes.

Because of the degree of congestion in this system,
we are considering three alternatives for increasing
the service capacity of the system:

1. Replace the current server with a new server
which works twice as fast —i.e., has expo-
nential service times with mean 4.5 minutes;

2. Replace the current server by a single Erlang-
2 server with mean service time of 5.2 min-
utes;

3, Add another server of the same type as cuf-
rently in use, to make a two-parallel-server
system, inwhich customers in the single FIFO
queue enter the first available server.

Further suppose that these are equal-cost alterna-
tives, and that the criterion for evaluation is a

weighted combination of the mean total time (wait
plus service) of customers in the system, and the
probability of having a very long wait time. Speci-
fically, let the criterion be:

Y

]

E(Wt) + 100 P(Wq>30) (16)

where W

e total system time (minutes)

Wq wait time in queue (minutes).

Note the weighting coefficient on P(Wq>30) has an
implicit unit of "minutes" in order to eliminate di-
mensionality problems.

Note also that this problem may be solved analytical-
ly, so that in practice, simulation would not be used.
However, it does provide a convenient example problem.

The required inputs from the analyst are a prior
distribution and a set of variance and covariance
values. The prior distribution is specified as 'non~
informative," with the following mean vector, m, and
covariance matrix, S:

m = [30 30 30]

10° 5x10%  .5x10°
s = |.5x10® 10° .5x10°
sx10® 5x10% 10°

This prior distribution is "non-informative" because
of the very large variances (diagonal elements of S5).

This "three-option' problem requires estimates of
three variances and nine covariances (a simple exten-
sion of the structure illustrated in Figure 1). The
values used are as follows:

V1 = 60 C1 = -30 05 = -30
V2 = 60 C2 = -30 C6 = 15'

V3 = 60 03 = 15 C7 = -10

04 = -10 08 = 15

09 = -10

The argument leading to the selectionof these values
will not be given here. The interested reader may
refer to Turnquist [147.

A single experiment, or simulation run, is defined
to be the servicing of 200 customers, beginning with
the system empty. The experimental design results in
the performance of 34 simulations, arranged as follows
(using the tableau notation):

Option 1 Option 2 Option 3
2 5 1 4 3 6
9 11 7 8

10 12 14 13 16 15
17 18 19 20

21 22 23 24

25 27 28 26

29 31 33 32 34 30
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DESIGN OF SIMULATION EXPERIMENTS...Continued

The criterion for terminating experimentation is
that the maximum value of EVSI for any possible ex-
periment is less than .01 (minutes). This repre-
sents a judgment on the part of the analyst. that an
experiment which is expected to yield less informa-
tion than this is not worth the cost of running.
Note that the units of EVSI are the units of the re-
sponse, Y, and the analyst is required to make the
trade~off between this value and the cost of an ex-
periment,

It is clear that the bulk of the experimental effort
is directed toward option 1 (the single faster expo-
nential server) and option 2 (the Erlang-2 server).
A few experiments with option 3 (the parallel-server
system) suffice to eliminate it from contention. The
final predicted values of Y for the three systems
are indicated in Table 1, along with the true values
(from analytic solution) for comparison.

TABLE 1

Predicted Performance of the Three Options

True Value Predicted Value

Yl 9.33 8.72
Y, 10.505 9.18
Y3 12.37 13.84

APPLICATIONS TO MORE COMPLEX MODELS

Although it will not be discussed here, a major case
study is described by Turnquist [14]. This case
study involves the application of this experimental
deisgn method to a problem of comparing alternative
routing algorithms for Dial-A-Ride, a demand~respon-
sive transit system.

The results of this case study indicate that the ap~
proach is very useful, and can lead to substantially
more effective experimentation with complex simula-
tion models.

CONCLUSIONS

This discussion of experimental design has had two
major goals. TFirst, it has attempted to focus at-
tention on the unique expéerimental capabilities of-
fered by the simulation enviromment. The control-
ability and reproducibility of experimental condi-
tions in this environment require that experimental
design tools be modified and extended to make the
fullest possible use of techniques such as antithet-
ic variates and common random numbers.

The second goal of this discussion has been to intro-
duce a more complete methodological framework for
the design of simulation experiments than has previ-
ously been available. This framework is oriented
toward the special experimental capabilities of sim-
ulation in the planning of complex systems and the
nature of decisions to be made based on the experi-
mental results.
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It is the opinion of the authors that the decision-

theoretic approach described in this paper represents
progress toward both of these goals. It is the hope
of the authors that this work will stimulate greater
interest in the problems of experimental design for

simulation models, and that even more progress will

be made as a result of this interest.
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