SIMULATION CATEGORY LANGUAGES ~ A DDP_ EXAMPLE

ABSTRACT

General simulation languages can be used to express any
simulation situation. Often, however, the expressions are
bulky and cumbersome because of the host language's need
for generality. High-level languages for specific situa-
tions or problem areas, called "Category Languages"”, can
greatly improve users' access to simulation computing
power and can quite easily and justifiably be implemented
as "front-end" pre-processors to ordinary general simula-
tion languages.

In this paper, definitions and motivations for Category
Language Methodology are presented, with a discussion of
applications areas, implementation methods, and an
example of the Category Language Methodology drawn
from Distributed Data Processing.

CATEGORY LANGUAGES

A Category Language is a programming language tailored
to a specifie, limited-context applications area. Category
Languages will normally be defined and implemented to
solve isolated problems in a convenient fashion. For
example, one builds a Category Language whenever a set
of utility subroutines are written to support a program-
ming task. The subroutines make it convenient to handle
similar program situations. They are normally not of
general utility.

By giving up generality, one may greatly simplify and
shorten investigation time for construets in the applica-
tions area. Common tasks and activities are acecomplished
in a type of short-hand, increasing efficiency and reducing
the likelyhood of error.

Simulation languages exhibit several alternate world-

views (ef. 1). These world-views are necessarily broad.

perspectives of the simulation arena. The ability to select
more limited arenas may enable much more powerful
construets to be developed.

Investigation of Category Languages as a simulation
methodology may lead to improved capabilities in general
simulation languages. Currently available languages are
really low-and medium- level languages. One has hot yet
appeared which does for simulation what (for example)
PASCAL has done for computation, Category Languages
will help to more fully explore the possibilities for
"structured simulation”. Such experience must be valu-
able in the effort to advance simulation methodology and
produce more powerful tools.

P. Nick Lawrence

Advanced Software Technology
Texas Instruments, Ine.

Austin, Texas

FEATURES OF CATEGORY LANGUAGES

A Category Language allows the expression of major
construets in simple terms. Large pieces of a problem
area can be represented in single, parameterized struc-
tures in many cases. Expressing a particular problem in
such structures is often faster, easier to understand,and
less error-prone than re-programming each new case.

The limited context limits the proliferation of such
construets, making Category Language design and imple-
mentation feasible. If the context is not limited, as in
current simulation languages, a large number of major
capabilities are necessary. Construction of a special-
purpose language, a Category Language, can be the most
efficient and cost-effective way to approach the problem.

A Category Language can be tailored to meet the needs of
a specific project and a wide range of users, while not
limiting the project's simulation speecialists., A primary
use of a Category Language is to.-remove the simulation
specialist from the construetion and operation of routine
projeet simulation tasks, freeing him to concentrate on
exceptional cases. The general project staff is thus
provided a tool to examine most of their problems and a
relatively unloaded consultant, the simulation specialist,
to handle the execeptions. The specialist can build from
the Category Language to handle special cases, concen-
trating on the extensions and not the body of the problem.

Use of Category Languages can improve engineering and
managerial efficiency and cost-effectiveness in many
areas. The many reasons for using simulation have been
documented elsewhere (ef. 2). Category Languages
exhibit these benefits and add others. Models can be
varied by people who don't know the workings of a
simulation system.. Model construction is usually faster
and verification easier due to smaller source modules.
Users can concentrate more on the problems and less on
the tools. All of these can result in cost savings and
efficiency.

TYPICAL CATEGORIES

There are as many categories as there are points of view
about problems. Applications areas can be conveniently
divided into the management-oriented categories and the
problem-oriented categories. The difference lies more in
the point of view than in the funetional details, Manage-
ment-oriented categories are essentially a matter of the
amount and type of detail, while problem-oriented cate-
gories deal with specific problem areas.

Winter Simulation Conference 569

Simulation Category Languages {continued)

The two types are really orthogonal. Given a problem
area, the level of detail is usually a design option. (The
problem area may need to have a certain level of detail,
but that doesn't guarantee that that level will be
implemented.) And certainly the decision to have a
specified degree of accuracy in the model does not dictate
what problem area the model will address.

Two convenient management-oriented categories are
proposal-level simulation and project-level simulation. A
proposal-level simulation investigates a variety of system
alternatives, while a prOJect-level simulation fine-tunes a
specific system.

In a proposal situation, one needs insight and reassurance
and has very little time to gain it. Category Language
methods can provide what is needed on time, by letting
the engineer investigate many more situations than would
otherwise be possible.

In a project situation, one needs detailed, on-going support
of a specific design in order to optimize and perform
trade-off analyses. Category Languages can remove the
constant need for simulation consulting during the project
by giving engineers and managers easy access to a
simulator and freeing the consultants for special efforts
not efficiently covered by the Category Language.

There are many problem-oriented categories. The pri-

mary features of a problem-oriented Category Language

are a few high-level structures which represent large

pieces of a problem area. This coverage is illustrated in
. the next seetion.

A DDP CATEGORY. LANGUAGE

An example of @ problem category for which a Category
Language has béen developed and implemented is a type
of Distributed Data Processing (DDP). A system com-
posed of many identical but independent processors
configured in some topologic network is a common
engineering problem. One is interested in relative loading
and capacities, bottlenecks and under-utilization. A
Category Language (NETSIM) has been designed by the
author to explore such systems.

NETSIM is a problem-oriented Category Language aimed
at proposal-level studies of identical, independent-node
DDP systems. A stochastic approach is assumed. An
inventory of various kinds of nodes, lines and tasks is
provided. Nodes and lines are slaves to tasks, and a
description of the network and tasks deseribes the system.

" NETSIM will be desecribed to illustrate a problem-oriented,
i proposal-level category language and not to document

\ NETSIM. The reader can easily build his own version of
‘this Category Language if he is interested.

Keywords are provided to define broad capabilities of
nodes. Examples are SENDER, RECEIVER, SHOTGUN,
COUPLER, and REACTOR. The keywords selected
closely suggest the node funetion. A SENDER omgmates
messages, i.e. a message source; & RECEIVER is a
message sink; & SHOTGUN sends on all. of its outgoing
lines at once; a COUPLER relays messages; 8 REACTOR
responds with a return message. There are other types,
but these illustrate the point.

570 December 5-7, 1977 '

Some combinations are allowed, such as SHOTGUN
COUPLER.

In the NETSIM language, one can define various node
parameters such as clock times, traffie, ete. or take the
defaults. A node is described and given a variable name.

Nodes are connected pairwise by lines. Lines are passive
and controlled by nodes. They are described as band-
widths and endpoints. They are named and typed either by
default or explicit definition. The network digraph
structure is then described by using named nodes and
named lines.

For example,

SENDER NODE ALPHA.
RECEIVER NODE BETA.

LINE GAMMA.

GAMMA FROM ALPHA TO BETA.

Here nodes ALPHA and BETA are typed, receiving several
default parameters by omitting ‘specifie overrides. Line
GAMMA is similarly specified. The topology of the
network is clear from the final command. (See fig. 1).

Figure 1. A Simple NETSIM System

The load for a system-may _be spemfled many ways. One
is to ,defme a construct called™® task, which directs node
activity., Tasks in NETSIM are composed of segments of
node~-use followed by I/0 on selected lines, described
statistically (fig. 2). Typical parameters are the number
of segments, the probability of an output after each
segment, the number of node clocks per segment, and the
size of an outgoing message.

For example,

TASK DELTA, 50 SEGMENTS.
LOAD DELTA INTO ALPHA.

This defines task DELTA by accepting the defaults
(except the number of task segments, here speclfled as
50), and establishes work for the system by assigning the
task to node ALPHA.

Similar methods are used to specify what to measure,
what to print, how long to run, ete.

\

TASK DELTA

' START ’

!

TIME 1

| ‘

SEGMENT
NO.1

PRosAl%usnc —® oTHER
e NODES
SEGMENT *
NO, 2 l TIN‘lE t
[
[d
[
SEGMENT
NG. 50 TIME t
]
PROBA'B/LLISTIC — SESEE
Fe—
END
Figure 2. Task Delta

It is clear that very little knowledge of simulation
techniques would be needed for a user to build a large
simulation in NETSIM. Of course, a knowledge of good
experimental techniques is still required.

METHODS FOR IMPLEMENTING
CATEGORY LANGUAGES

The chosen Category Language must easily represent
large pieces of the problem area. It should probably be
designed context-free for easy implementation. A trade-
off must always be made between Category Language
implementation effort and the savings from Category
Language use.

The basic elements of any computer language compiler
are "scan", the parsing of the source, and "eode gen", the
construction of an executable representation of the
source,

To minimize time and effort, the sean portion should be
built in a very modular and straight-forward manner. The
author has successfully used SNOBOL as the host sean
language because of the ease of deseribing and diseovering
syntax in a source code being scanned. Automatic
compiler-writers exist and might prove more suitable (ef.
3). Simplicity is of paramount importance.

In NETSIM, the target language is GPSSV. Source is
translated into GPSSV as macros, "eanned code", and a
variable data base. The dynamic code generation of
standard compilers has been studiously avoided.

Parameterized GPSSV simulations were built for each
basie category structure, i.e. node types, lines, ete. These
were debugged by direct execution. All possible data was
carried in matrix savevalues, thus avoiding GPSSV code
structure variations, The NETSIM compiler simply fills
the matrix savevalues and transeribes the necessary
reentrant code blocks. Execution of the resulting GPSSV
program is simply a matter of supplying it as source to a
GPSSV system.

NETSIM was built in one man-month and is about six
hundred source lines of SNOBOL.

It can be seen that these methods will produce effective
Category Languages for suprisingly little person and
computer time. Important areas which must be addressed
are compile-time diaghosties, modeling and experimental
techniques, and of course, validation and verification. A
cost-benefit trade-off must be done regarding diagnostics.
As for the last two, Category Language simulation is
intended to minimize simulation specialist involvement,
not necessarily eliminate it. A simulation consultant
should be used by a project requiring extensive simulation.

Verification and validation are always thorny issues.
However, the ease of use of the Category Language
encourages many runs which can be mutually eross-
checked. Insight is always the ultimate driver of
verification and validation.

CONCLUSIONS

The Category Language offers the user quicker, simpler
and more ready access to a relevant simulation. It can be
implemented cheaply, quickly and effectively, For many
projects, it is a viable alternative.

The Category Language may promote the development of
simulation toward more powerful and general simulation
methodologies.

BIBLIOGRAPHY

(1) L M. Kay, “Digital Discrete Simulation Languages:
A Diseussion and Inventory," Fifth Annual Simula-

tion Symposium, Annual Simulation Symposium,
Tampa, Florida, 1972.
(2) T.H. Naylor, Computer Simulation Experiments

with Models of Economic Systems, John Wiley and
Sons, New York, 1971.

(3) David Gries, Compiler Construction for Digital
Computers, John Wiley and Sons, New York, 1971,
esp. chap 20.

Winter Simulation Conference 571

