PROGRAM.GENERATOR SYSTEMS*

ABSTRACT

A program generator system is a general soft-
ware tool for producing program generators. The
brogram generator automates portions of the program
synthesis process for menbers of a particular class
of programs, allowing the source forms of programs
to be more compact and to reflect the conceptual
basis of the applications area more directly. This
paper explores the design and workings of program
generator systems for simulation programming. A
generalization of the macro processor is shown to
form a sound design basis, 4 basis which can be
adapted to the simulation programming environment
by the inclusion of innovative features. The
status of a pilot implementation of a program
generator system for GPSS is reported.

PROGRAM GENERATORS

The term progran generator is used here to
denote a processor for a language more problem-
specific than the familiar, procedure-oriented,
higher-level languages but less so than the non-
procedural problem-oriented languages which have
been developed for rather narrow classes of
problems. The language accepted by a program gener-
ator might properly be called problem-tailored
because it seeks to provide accomodation for the
working concepts of-a particular problem area
without the costly burden of a totally descriptive
language and its processor for a specific class
of problems in that area. It also seeks to provide
a programming means more facile than that of a
higher-level language by freeing its user from
attention to details which are repetitive, error-
inducing, and not central to the problem at hand.

The program generator is a direct descendant of
the macro processor. They have the same goals and
operate to process programs written in a problem-~
tailored dialect of an underlying language. Both
attempt to produce only portiong of programs and
allow the user to think in terms of previously
defined modules developed expressly for his species
of programming. And, both achieve versatility
by placing the generated sections of programs with-
in the control framework fashioned by the user in
the underlying language. While macxo processors
exist in-great variety;. (see Cole [1] .for .a sampling)

~they .are only rarely .applied ta higher~level

*This work was supported by the Natiomnal Science
Foundatipn under Grant Number MCS75~15839,

‘John R.. Metzner

Computer Science Department
University of Missouri-Rolla

languages in which a modularization feature (the
procedure or subprogram and its invocation) already
exists.

To be more precise, it is the macro processor
plus a set of macro definitions that corresponds to
a primitive form of the program generator. As
was the case with macros, the primary focus is
upon the system within which program generators
may be defined and invoked.

PROGRAM GENERATOR SYSTEMS

A program generator system is a general soft-
ware tool for producing program generators. It is
like a re-usuable kit which supplies the building
blocks and a general framework in which to place a
selection of the blocks. A program génerator
system enables the efficient creation of problem~
specific program generators and thereby a problem-
tailored programming dialect. The operational
position of the program generator system is illus=-
trated in Figure 1 which shows that it supports the
creation of multiple program generators which in
turn assist users in the creation of numerous
programs. The form of this assistance is the

FIGURE 1
PROGRAM PROGRAM
GENERATOR GENERATION
SYSTEM PROCEDURES
Ggggammmn «(pnoawu-mmman
SOURCE LANGUAGE
> /
PROGRAM
MODULE SELECTION
e}
LIBRARY ASSEMBLER SPECIFICATIONS

1)

.5"PROGRAM 3/

AND PARAMETERS

Winter Simulation Conference 695



696

' of ‘programming.

Program Generator Systems (continued)

automation.of. portions of the. program synthesis

~task ‘itself. - Theibenefits of replacing detail- "

filled tedium by *aggregates meaningfull in the
context of the problem area are well-known.

‘The setting :dn which~a.program.generator is

" used <is-similar to those .of ‘syntax-directed

compiling systems and extensible programming
languages, but the program generator system
differs in several respects. The role of a syntax-
directed compiler is to create a translator for an
entire language, its voluminous and arcane input
must describe every facet.of the language and the
compiling task for it. It is designed to create

a processor for whatever well-formed language its
user may care to create and use, offering great
freedom in language design at a great cost in
translation time. Extensible language systems,

in attempting to alter their compilers to offer a
degree of problem-tailoring generally have not
succeeded in allowing more than a modicum of
tailoring and that at the expense .of acquiring a
mastery over large amounts of technical detail.

The program generator system differs markedly from
these systems by not trying to offer all things

to all users but concentrating upon those few
things it can do well for a particular set of users.

APPLICATION TO SIMULATION PROGRAMMING

A large segment of the simulation programming
field is suited to the use of program generator
systems. Where programs tend to be moderately
large, involving several people in their creation
and maintenance, whare a narrow but detailed
class of simulands must be considered, and where
model changes due to variation and refinement dom-
inate parameter changes, the program generator
system has a likely application.

The use of program generators in simulation
programming is not new by any means. Recent
literature mentions program generators used as a
matter of course, such as for supplying parameters
to the DELCAP airport simulation [2]. At the
other extreme is the FORTSIM system whose program
generators provide the user a simulation dialect
of FORTRAN [3]. By and large, program generators
are either relatively weak and based upon ordinary
macro processors or are robust and highly adapted
to their tasks as a result of being expensively
programmed "from scratch" for the purpose.

This work attempts to demonstrate that program
generator systems for simulation programming can
be designed which enable the economical creation
of -suitable and adept program generators by
providing significant assistance from the program
generator system. This can be done by generalizing
the macro processor, incorporating improvement and
innovation into that generally unevolved type of
system, and specializing the system to the task
of producing program generators for a simulation

‘programming language. -

The principal benefit derived from the use of .
a program generator system is the ability to use .
alterable.submodels in simulationprogramming- the.
way we use alterable subprograms in .other -varieties
Other benefits result from the

December 5-7, 1977

o

M Lt ude v E
ability to model and program in terms of submodels.
‘The efficiency of havingsa program generatoxr supply
‘repetitiVve detail has been noted. Many of ‘the
advantages higher-level programming has over
-assembler language programming accrue here also
‘because program generators can ehable the use of
a relatively higher-level.dialect of .the.underlying
simulation language, a dialect tailored to the
workings of a particular type of simuland. Faster
programming, more comprehensible and maintainable
programs and the ability to deal with larger models
are benefits in this category. The submodels also
assist in the process of communication with the
applications area analysts or the "customers" for
which the simulation was developed.

Another group of benefits arises from the
modularily aspects of using program generators.
(These are not additional benefits when the under-
lying simulation programming language provides for
program modularity, as SIMSCRIPT II.5 does.)

When the expression of a program can refer to a
module defined out-of~line, a top-down style of
programming is encouraged. This leads in our case
to a top-down style of model syntheses, usually
yielding increased clarity and economy. Modularity
permits independent testing and the substitution
of modules to effect model changes.

The expected pattern of use for a program
generator system in simulation programming proceeds
as follows. Initial modeling and perhaps some of
the programming are started in the usual manner.

As this progresses, recurrent submodels are
identified, classified, and then generalized
wherever possible. Concise linguistic forms for
generator invocations and program generatoxr
definitions are then developed for the major sub-
models and their use is introduced in the develop-
ing model documentation and simulation programs.
The program generator procedures and their related
submodels can be tested at this point. The process
iterates as needed to encompass remaining submodels
and enhancements or refinements to those already
treated. Ultimately, both modeling and programming
for the simulation project are done largely in
terms of the submodels, and the program generator
is used routinely to reduce the size of the
simulation programming effort. Variations in the
submodels are then handled by changing either the
form of the program generator's invocation (if

the desired alternative submodels are anticipated
by a sufficiently general program generatox
definition) or by changing the program generators
themselves. In either case, the tasks of making
alterations throughout the simulation programs

and keeping track of all the resulting versions

of it are largely avoided.

SYSTEM DESIGN ISSUES

There is some freedom in the design of a
program generator system. The program assembler
shown in Figure 1, for example, may be entirely
absent., It must be omitted where the simulation
programming language: does- not-permit .a breakdown
into ‘separately ‘processed modules which -can be
subsequently included from a library. Or, it
may be a central component of the system, as in



the AVSIM facility [4]. In any event, a program
assembler {even when it is just a Linkage Editor)
operates like a primitive program generator by
selecting modules in response to commands. So,
.‘where & program .assenbler:is sed, there is a
-division of effort between it and-the program
generator with-the.former :.selecting the desired
modules for roles in which there is so little
variation expected that a set of “"canned" routines
will suffice.

Figure 1 also fails to show a translator
between the program generator and the program
assembler, making that diagram represent a compiler-
compiler. style of implementation. While much more
difficult and expensive to implement, program
generator systems of this type have been built.
Basili [5] describes a system which generates
portions of compilers so that somewhat problem-
tailored dialects of a base language can be produc-
ed by the knowledgable user. This design permits
the program generator to be a full compiler,
avoiding the processing time costs of preprocessing
or interpreting. The drawback is that the problem-~
tailored dialect must be used long and hard to
recover the investment in learning time and
compiler creation.

A less ambitious form is based upon the
familiar macro processor which, by accepting
macro definitions in-stream, combines the two
elements at the top of Figure 1. Its workings are
depicted in Figure 2., The definitions may be
placed in the library previously and may be
in the primary input. Under the requirement
that the in-stream definitions be entered first,
the path through DEFINE is closed down as soon as
any other is used. Leaving it open is an obvious
convenience. Further, using the convention
that a later definition replaces an earlier defini-
tion of the same name allows the definition of a
macro to be changed during the course of processing.

This redefinition could even occur as the result
of macro expansion, as Halpern [6] suggests.

The process labeled CLASSIFY in Figure 2

J+normally operates.at the statement level. .That
.'1is,. the. problem~tailored.dialect.must contain
~ only constructs which can be-isolated into units

like statements in'the-base language which are to
pass through unscathed. The invocation of a

» macro expansion must therefore be an entire state-
ment. This need not be so. Leavenworth [7] has
shown that relatively simple parsing mechanisms can
be employed in the CLASSIFY process to permit the
invocation of program generators by a construct
other than a statement, for example, by an operand
or by a block of statements. The utility of this
enhancement, however, depends strongly upon how
much syntactic variety there is in the structure
of the base language.

A more productive improvement of the macro
processor is that of giving the EXPAND process
other: destinations for its generated code. The
output path shown in Figure 2 places generated
statements back into the system (to possibly
detect further, nested macro invocations) and
corresponds to the familiar in-place expansion
replacing the invocation. Allowing EXPAND to
select among several destinations for each generated
statement adds a great deal of flexibility. Those
possible destinations are shown in Figure 3.

The insertions made into the base language program
are not rescanned for further invocations (although
multi~pass preprocessing would provide rescanning)
and the insertions must be made at previously
noted syntactic interstices such as “beginning of
program", "end of initial declarative block", and
the like. Similarly, insertions shown to the in-
put stream cannot be made at the time they are
generated but must be stored until their syntactic
cue (i.e. "next START card") is recognized by the
CLASSIFY process and then inserted as a block

FIGURE 2

MACRO PROCESSOR

EXPAND

>

Y —
N~ ] PROGRAM
GENERATOR
DEFINITIONS
DEFINITION < DEFINE <: CLASSIFY _———
LIBRARY PROBLEM-~
TATLORED
SOURCE
~—— BYPASS |G :

V.

-i . "BASESLANGUAGE PROCESSOR

Winter Simulation Conference 697



Program Generator Systems {continued)

CLASSIFY

FIGURE 3

L1 0

] 1

EXPAND <::
DEFINITION
LIBRARY 5

DEFINE <
BYPASS

<):

N

PROBLEM~
TAILORED
SOURCE

BASE LANGUAGE PROCESSOR

into the input stream. This generalization is
not new, the SYMPLE system employed it to good
effect [8].

Taking a look into the structure of the
process labeled EXPAND reveals other opportunities
for design improvement. Figure 4 shows the major
data flows within this component. The EXPAND
module, in a conventional macro processor, performs
its processing by interpreting the definition
{one line at a time) and calling action routines
in the proper sequence.

Maurer [9] has demonstrated the feasibility
of "compiling" heavily used macro definitions
and placing them within an augmented EXPAND
module as shown in Figure 5. The "compiled"
definitions consist of the series of calls of action
routines the interpreter would generate in expanding
the macro. Both the fetching from the library and
the slow process of interpreting are thereby avoided.

This is where the program generator system
aspects come in. An EXPAND module altered by
the addition of compiled macros becomes a tailored
program generator still capable of accepting
further generator definitions. It acts like a
macro processor for a dialect of the base language
enriched by the verbs corresponding to the
compiled macros.

The implementation of the program generator
system can greatly facilitate the task of creating
and adding a compiled macro. Using a higher-
level language for EXPAND and sharing its source
with the user will enable a systems~oriented
menmber of his programming group to trace through
the course of expanding the interpreted version
of the definition and create the CALLs to action

December 5-7, 1877

routines it performs. The resulting routine is
then compiled with EXPAND, the control section's
table is given the location of the new routine,
and the altered version becomes the program
generator for those applications needing the

compiled macro.

FIGURE 4 1 opRrIONS

ACTION ROUTINES:

DEFINITION
BUFFER

CONTROL

i}

FROM

DEFINITION
LIBRARY

ARITHMETIC, INSERT,
ETC.

AT

PROCESS~
TIME
VARIABLES

PARAMETERS 4/\\

DISK

ADDRESS

FROM
©~ CLASSIFY




FIGURE 5
INSERTIONS

 lcomuanps
INTERPRETER |

ACTION ROUTINES

o

DEFINITION COMPILED PROCESS-

BUFFER PROGRAM TIME.
GENERATORS VARIABLES

PARAMS., /\

CALL
DISK OR ROUTINE
CONTROL
ADDRESS
FROM FROM

DEFINITION LIBRARY CLASSIFY

Most macro processors have a set of features
collectively termed conditional assembly features.
These are the mechanisms that enable macros to
be much more than shorthand notations for blocks
of source code. Process-time variables can be
given values which act like data to the program
generation process, affecting the characteristics
of code generated by program generator invocations

located throughout the submitted program. Condition-

als (e.g. IF) in the generator definitions can

act to adapt the code generated to global variables
in addition to invocation parameters, This
process-time conditioning can be more important

in simulation than the execute-time conditioning
based upon test-and-branch coding in the simulation
program executed because it can avoid space and
time penalties when the same path is to be taken
throughout a simulation run., Therefore conditionals
can expect to receive close attention in the

design of the language in which program generator
definitions are to be expressed.

This definition language should be similar
to the conceptually familiar macro definition
language, but must be much more xobust in several
respects. The storage and retrieval by name of
process~time values must be largely implicit
and significant ability to perform computation
with such values must be present, Arithmetic
capabilities alone are not sufficient, the
ability to manupulate text must be present in
good measure also. The sophisticated generation
and processing of text characterizes the program
generator and sets it apart from the macro
expander which has only primitive capabilities
in this respect, ILarge amounts of program text
- must ‘be produced and produced in ways far
more-:articulatecthan. inserting wmser~supplied
argument strings into model statements: The
combination of this aspect with the previous one
requires that process-time variables may be

7 SET JFIRST .= l. ~ .EXP(VAR)

string-valued and that a rather rich set of
string-manipulation verbs be available.

A noted characteristic of the program generator
is that while.it.must. perform a.lot of. text

-..manipulation; that manipulation-cannot be ‘the

same foru:every activation of asprogram:generation
procedure --.it must be :made.to. depend strongly
upon parameters .of that.activation and process-
time M*data" parameterizing as a whole large
portions of the system to be simulated. There-
fore, the language used to specify program
generation procedures must contain significant
constructs for conditioning, constructs more
adroit than the pedestrian IF...THEN..., GO TO...,
and REPEAT OVER LIST... normally found in advanced
assembler and macro definition languages.

PILOT SYSTEM

As a pilot project to explore the capabilities
of this software production assistance mechanism,
a macro-style program generator system for GPSS
has been designed and a large portion of it has
been implemented. The pilot system is intended
to be a strikingly adept form of macro processor
incorporating improvements and generalizations
upon macro systems as we know them and attuning
the system to the task of generating significant
portions of GPSS programs. Its overall design
is necessarily somewhat open-ended so that
desirable features can be freely included and
evaluated. For example, the initial system will
permit invocation of program generators by
constructs conforming to the syntax of a GPSS
<statement>, but the design anticipates the
eventual inclusion of invocation at other levels
like <operand> or <label>.

Four remote destinations for generated GPSS
source lines have been provided:

1) At the beginning of the program,

2) Just before the first block
statement,

3) Before the next START statement,

4) After the next START statement, and

5) Before the next JOB or END statement.

The initial version of the program generator
language for this system is a verb-keyword
language. This gives a BASIC flavor to the
language but keeps the interpreter simple and
easy to change.

An example generator definition is shown in
Figure 6. The purpose of this generator is

FIGURE 6

PROGEN EXP2 NOM,IND,SEGS,ALPHA,BETA
PUT1 #NOM FUNCTION #IND,CH#SEGS
SET INDEX = #SEGS
SET STEP = 10./INDEX
SET DEL = STEP*{BETA
SET WORK = #ALPHA
SET VAR = 0.
PUT1 0,VAR
. TOP:SET VAR = VAR - .STEP
SET 'WORK = WORK + DEL

PUT1 FIRST,WORK
GIF ((INDEX=INDEX-1).GT.1l) GO TO TOP
ENDGEN

Winter Simulation Conference ggg



Program Generator Systems (continued)

to supply (from an invocation anywhere in the
‘Program beforé START) the definition of a two-
parameter exponential function. The function

name, the identity of the independent variable, the
number of linear-segments to employ, and the two
parameters are parameters of the invocation. Using
a random number code for the independent variable
vields the definition of a function for supplying,
without extra arithmetic, a random variate having
the exponential distribution with the two parameters
specified. PUTL is the verb indicating formation
of a statement and insertion (FIFO) at the start
of the program. SET signals a replacement state-
ment for process-time variables (note the assign~
ment in sub-expressions) and GIF is the generator-
time IF statement. This generator is very in-
elegant, producing a follcwer caxrd for every pair
of points in the function's definition.

The process-time variables have their mode
stored in the symbol table and need not be declared
or initialized before use., Vectors and arrays
are provided at program generation time and the
lookup type of operation for process~time storage
permits subscripting by guantities of any of the
four modes; integer, real, logical and character
string. The SET statement has all' the power of
FORTRAN arithmetic, allowing articulate function
generation algorithms like Kisko's [10] to be
executed in-stream as program generator procedures.
In fact, a FORTRAN implenientation of the program
generator system was deliberately chosen so
that such procedures could easily be compiled
and made part of a tailored version of the system.
Portability was a factor in the language choice
also, ANS FORTRAN is used and assembler language
action routines for machine-dependent (IBM 370)
functions have been kept to a minimum.

The pilot system is still months away from
distributable form. Some aspects of its design,
especially in the generator definition language
where some innovative conditioning mechanisms
such as decision tables for text generation
will be attempted, are still evolving. It is
hoped that this paper will elicit the ideas and
suggestions of practitioners.

700 December 5-7, 1977

1.

10.

REFERENCES

- Cole, A. J., Macro Protessors, Cambridge

University. Press, (Cambridge, England, 1976.

Gilsinn, J. F., "Validation of an Airport
Simulation Model", Proc. 1976 Winter Simulation
Conference, 273-277, 1976,

Crumm, R. D., Wang, S~L, and Cooper, E. H.,

| "PORTSIM--Simulation Using Structured FORTRAN

Plus Table Management", Proc. 1975 Wintex
Simulation Conference, 15~19, 1975,

Scarpino, F., and Clema, J., "A General Purpose
Tool for Interactive Simulations", Proc. 1976
Winter Simulation Conference, 475-484, 1976.

Basili, V. R., "The Design and Implementation
of a Family of Application-Oriented Languages",
Proc., 5-th Texas Conf. on Computing Systems,
6~12, 1976.

Halpern, M. I., "Towards a General Processor
for Programming Languages", Comm. ACM, 11:15-25,
{(January, 1968).

Leavenworth, B. M., "Syntax Macros and Extended
Translation", Comm. ACM, 11:790-793, (November,
1966) .

vander Mey, J. E., Varney, R. C., and
Patchen, R, E., "SYMPLE - A General Syntax
Directed Macro Preprecessor", Proc. AFIPS
1969 FJCC, 157-167, 1969.

Maurer, W. D., "The Compiled Macro Assembler",
Proc. AFIPS 1969 sSJcC, 89-93, 1969.

Kisko, T. M., "An Automated Method of Creating
Piecewise Linear Cumulative Probability
Distributions", Proc. 1976 Winter Simulation
Conference, 487-494, 1976.




