A SURVEY OF METHODS FOR SAMPLING FROM THE GAMMA DISTRIBUTION

ABSTRACT

Considerable attention has recently
been directed at developing ever faster
algoritnms for generating gamma random
variates on digital computers, This paper
surveys the current state of the art
including the leading algorithms of Ahrens
and Dieter, Atkinson, Cheng, Fishman,
Marsaglia, Tadikamalla and Wallace,
General random variate generation
techniques are explained with reference to
these gamma algorithms, Computer
simulation experiments on IBM and CDC
computers are reported.

I. INTRODUCTION

The gamma distribution is a useful
model for stochastic inputs to a wide
variety of simulation applications,
Computer generated gamma variates have
been used to model interarrival and
service times in queueing problems, as
lead times and demand in inventory
control, and as failure times in
reliability models, The gamma
distribution's popularity can be traced to
the properties it obtains by the
appropriate selection of its shape
parameter. In this paper, we consider the
gamma density in standardized form:

£0x) = x* ! exp(-x)/L (@), x > 0, @ > 0.

Several parameter values of o are
particularly important. If o = 1, then f
is the density of the exponential
distribution., If o = k, an integer, then
a k-Erlang distribution is obtained. Sone
simple transformations of gamma variates
lead to other well-known distributions.

If X has the density f, then 2X has a
chi-squared distribution with 20 degrees
of freedom. The ratio of independent
chi-squared variates is an F variate;

% /(%,+ X,;) is a beta variate if X; and X,
are independent gamma variates, Finally,
the limiting distribution of a gamma
variate as o +« is normal. Because of
the gamma distribution's versatility and
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its appropriateness in simulation
applications, considerable attention has
been directed to improving methods for
generating gamma random variates on a
digital computer. The purpose of this
paper is to examine various generation
methods and to identify the state of the
art, In section 2, some general
univariate techniques are reviewed,
Section 3 describes some of the leading
algorithms, Finally, in section 4 we
compare and contrast the algorithms. We
also discuss future research directions.

II. GENERAL TECHNIQUES

The most common univariate random
variate generation techniques can be
roughly described as one of the following
[18]: inverse probability integral )
transform, transformation, rejection and
mixture, We will briefly describe each of
these techniques in this section.

The first method is based on the
following well-known result: if X is a
continuous random variable with
distribution function F, then U = F(X) has
a uniform 0-1 distribution. The converse
of this result leads to a random variate
generation method: given a uniform 0-1
random number U, the variate X = F-1(U)
has distribution function F. Application
of this method is limited to variates
having an inverse distribution function in
simple closed form. For the gamma family,
only the exponential distribution (o = 1)
enjoys this property. This leads to the
exponential generation formula
X = «In(1 - U) or equivalently X = -1ln(0),
since U and 1 - U have the same uniform
0-1 -distribution, For arbitrary shape
parameter o # 1, this approach fails since
the evaluation of F~! must be done
numerically, However, for integer a = k,
we can apply the general transformation
method. In particular, X = -ln(wl; U; )
has a gamma distribution with shape '
parameter k, if the Uj's are independent
uniform 0-1, The transformation method
can also be used to obtain chi-squared, F
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Sampling»from the Gamma (continued)

" and beta variates as indieated in
section 1.

The rejection method [10, 16, 19] has
recently been the most fruitful approach
to developing new algorithms for

generating gamma variates, The algorithms

of Ahrens and Dieter [1], Wallace [201, |
Atkinson [2], Marsaglia [13], Fishman (71,
Cheng (5], and Tadikamalla [16, 171, are
based on the rejection method.‘ The idea
of the rejection method is to generate
variates from a density h(x; 8) which
somewhat resembles the desired density’
f(x). Occasionally, variates generated
from h are rejected in such a way that the

accepted variates have 'a distribution
corresponding to f. Formally, let f(x)},

X e, be the density from which samples
are required. Let h(x; 0 ) be another
density which is easy to generate, has the
same support as f, and which satisfies
f(x) £ &8h(x; 0) for all xe¢ @ and for some
§> 1. The rejection method algorithm is:

t. Generate x having density h(x; 9).
2. Generate u which is uniform 0-1,

3, If u< T(x) = £f(x)/8h(x; B), go to
1. Otherwise, return x,

Tne variable & is the expected number of
"trials" until acceptance of x. 'The
variable 1/8 is generally referred to as
the "efficiency" of the procedure,

Several sometimes conflicting
considerations enter into the selection of
h(x; g) They are summarized, as follows:

1. A fast, simple algorlthm for gener-
~ating 'variates from h{(x; §) -must
be available.  (i.e., step 1 of the
algorithm should be executed-
quickly.)

2. The efficency 1/§ should be close to
1.’ (i.e., h(x; ) should look’
like f.) ’

3. The acceptance-rejection test in
step 3 should be simple, (i.e., T(x)
should be easy to evaluate )

4, § must be computable from
8 = min [ max f(x)/h(x; 8)I.
0 Xefd
We will return to these considerations in
relation to specific gamma algorithms in
section 3,

The mixture method is based upon
representing the density f from which
variates are to be generated as
£(x) = pr £ (x) + pafp(x) + ... Pn f (x),
where py+ pp + ... pp = 1 and eacn of the
fi's are densities. The rule of thumb in
developing mixtures for f is to select the
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f£i's so that f; is the fastest f3 to
generate, p, is close to 1, and _ - R
f2, ves 4 £ are not unduly diﬁflcult toﬂnnq
generate, The corresponding mixture
method algorithm is simply to generate
variates from each f; with probability j
The mixture method has not received the
same attention for generating gamma
variates as it has for normal and
exponential variates (see Marsaglia

[14, 15] and Kinderman and Ramage [11]).
This is primarily due to the awkward
problem that a different mixture must be
used for each o value, Only in very large
simulation studies could the effort in
determining mixtures for the various
values be justified,

I1I, LEADING ALGORITHMS

In this section we briefly describe
some of the better algorithms for
generating gamma variates., 'These
algorithms are based on 'the rejection
method-=-they differ only by .their choice
of h(x;8). The simpler choiceés for h(x;g)
include the exponential (Fishman), the
k-Erlang (Tadikédmalla), the double
exponential (Tadikamalla), and the
log-logistic (Cheng) densities. Several
authors have chosén h(x;8) to be a mixture
of two densities, These include a normal
and an exponential (Ahrens and Dieter), a
uniform and an exponential (Atkinson), and
two k-Erlangs (Wallace). Marsaglia’s
"squeeze" method .generates the cube root

of a gamma variate using a normal density

for h(x;8).

Many of thésé aglgorithms have been
streamlined consliderably by their
inventors to improve their relative
performance, Preliminary fast acceptdnce
tests to avoid evaluations of f{x) are
employed in the published versions of the
Cheng, Marsaglia and Atkinson algorithms.
Another streamlining teéhnique used in the
Marsaglia and Atkinson algorithms involves
generating a uniform variate via exp(-E),
where E is a standard exponential variate.
This leads to simplified acceptarnce tests
by eliminating exponential function
evaluations. For this technique to be
worthwhile, however, a fast exponential
generator must be used.

For formal -statements of the
algorithms, the reader is referred to the
cited papers. Oiur hope is that the briéf
overview given here is sufficient to
elucidate the commonality of the methods.
In the next section we compare the
algorithms on the basis of selected
computer execution timings,



IV. SIMULATION RESULTS

In this section the results of our
simulation experiments are reported.
Seven of the leading algorithms are
compared‘'on ‘the basis of computer
execution times and core storage. The
algorithms considered are preceded by
their abbreviations,. as follows

1. GO Ahrens and Dieter [1].

2, AT Atkinson [2].

3. GB Cheng [5].

h, @F Fishman [7].

5. MS Marsaglia [13].

6. T1 Tadikamalla's k-Erlang [16].

7. T2 <Tadikamalla's double

exponential [17].
Wallace's algorithm [20] was not
considered, since Tadikamalla has shown T1
to be superior, Similarly, Greenwood's
algorithm [8] was not included due to
results given in [13]. :

The timings of our simulation
experiments are given in Table 1 and Table
2. The algorithms were coded in FORTRAN
using published versions where they were
available. The results from Table 1 were
obtained on the Kentucky Educational
Network's IBM 370/165 computer, The
individual times are based on generating
10,000 variates. The FORTRAN versions of
Lurie and Mason's [12] uniform generator
and Kinderman and Ramage's [11] normal
generator were employed. The results from
Table 2 were obtained on a Los Alamos
Scientific Laboratory CDC 6600 computer,
The individual times are based on
generating 100,000 variates, and again
employing the Kinderman-~Ramage normal
generator. 'CDC's RANF uniform generator
was used,

The core storage requirements vary
considerably for the algorithms. The IBM
core storages in bytes are (GF, 526),
(r1, 696), (GB, 768), (MS, 882),

(T2, 986), (AT, 1068), and (GO, 1196).
These values do not include the core
storage of the uniform generator which was
common to all the algorithms, For MS and
GO, an additional 1162 bytes are required
to store the Kinderman~Ramage normal
generator,

From the preceding remarks and from
the tables, we can make several

TABLE 2

CDC Timings (u—seqonds)

1.5 2.25 3.5 4.5 5.5 10.5 15.5 50.5

- - .255 257 266 241 232 207
AT 224 251 281 294 311 376 427 656
GB 221 200 194 190 190 184 186 182
GF 213 267 326 362 398 541 574 1172
MS 194 190 185 184 186 180 177 176
T2 234 251 267 274 276 280 278 277,

recommendations, Algorithms AT, GF and T1
are not competitive for 0 values greater
than 2, Expected execution times increase
considerably as o.increases., On the IBM
system, GF-can be recommended for

oe (1, 2), if speed and simplicity are
the dominant considerations (for these g,
GF-and T1 are equivalent). Algorithm GO
improves nicely as ¢ increases but is
still inferior to both GB and MS. If only
one algorithm could be recommended, we
would advocate GB for the IBM. For CDC
equipment and with speed the primary
consideration, MS with the
Kinderman-Ramage normal algorithm can be
approved, Where both simplicity and speed
are important, then GB can be advocated
for both machines. .

V. CONCLUSIONS

TABLE 1

IBM Timings (u-seconds)

1.5 2.25 3.5 4.5 5.5 10.5 15.5 50.5

- ~ 267 260 259 237 235 232
AT 181 197 230 232 256 309 337 523
GB 178 176 168 169 164 162 158 155
GF 161 212 245 277 297 416 490 -

MS 209 208 207 210 206 207 209 212
Tl 161 195 233 248 271 406 492 -

T2 171 177 185 192 191 193 197 194

The state of the art for generating .
gamma random variates has been explored,
The leading algorithms have been explained
in a unifying framework and then compared
on the basis of core storage and execution
times, The algorithms of Cheng and
Marsaglia appear to be the leading
candidates presently. However, work
should be continued in developing even
faster algorithms. The appropriate
direction would appear to be in the
selection of h(x; 9). :
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