Using Conditional Expectation to Reduce Variance in Discrete Event Simulation

Abstract

We review the method of using conditional expectation to reduce
variance in discrete event simulation and present a new applica-
tion to the simulation of queueing networks. This method can be
particularly useful in reducing variance when estimating quantmes
associated with rare events.

1. INTRODUCTION

We will be concerned with a variance reduction technique
based on the use of conditional expectation and its application to
the discrete event simulation of stochastic models of systems.
Such a variance reduction technique is not new and has been
referred to by a variety of names including statistical estimation
(by Kahn and Marshall (4) in the context of Monte Carlo calcula-
tions and by McGrath and Irving (10) in-the context of discrete
event simulation), virtual measures (by Carter and Ignall (2) in
the context of discrete event simulation), conditional Monte Carlo
(by Burt and Garman (1) in the context of simulating stochastic
PERT networks) and simple conditioning swindle (by Simon (12)
in the context of sampling expériments). The use of the term
conditional Monte Carlo does not seem to be appropriate howev-
er, since this term usually refers to a much more complex variance
reduction technique (e.g., see Hammersley and Handscomb (3)).

The basic idea is the following. Suppose we wish to estimate
the expected value of a random variable X. The straightforward
method is to generate observations of X and estimate E[X] by the
sample mean. Suppose, however, that X depends on another
random variable Y and that given the value of Y the expected
value of X, E[X]Y], can be computed. Then by generating ob-
servations of Y, E[X] can be estimated by the sample mean of the
computed conditional expectations. As applied to discrete event
simulation Y will typically be the state of the system. As we will
see this method is particularly useful for reducing variance when
estimating quantities associated with rare events.

In the next section we review the use of conditional expecta-
tions and present two examples, a simple sampling experiment
example due to Simon (12) and a complex discrete event simula-
tion example due to Carter and Ignall (2). In Section 3 we pres-
ent an application of conditional expectation to the siriulation of
queueing networks. This application is new. We present our
conclusions in Section 4.
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Other variance reduction techniques for discrete event. simu-
lation are discussed in the' 1974 book by Kleijnen: (5) which also
contains an extensive bibliography. The 1978 paper by Lavenberg
and Welch (9) contains more recent references as a supplement to
Kleijnen's bibliography.

2. REVIEW OF METHOD .

For any two-random variables X and Y it is known that

E[E[X| Y]] = E[X] ¢y

and
Var[E[X | Y]] = Var[X]-E[Var[X | Y]]

<Var[X] . )]

with equahty holding in equatlon (2) if and only if X is a deter-
ministic function of Y. Suppose that we wish to estimate E[X]
and that E[X]Y] is a known function of Y which we denote by
g(Y). Then from equations (1) and (2) g(Y) has the same ex-
pected value as X and, as long as X is not a deterministic function
of Y, g(Y) has smaller variance than X. This suggests a better
way to estimate E[X] than the usual way. - .

Example (Simon (12)). X has a beta distribution with parame-
ters Y and Y° + 1 where Y has a Poisson distribution with mean
equal to 10. The usual way to estimate B[X] is to generate inde-
pendent observations of Y, denoted Y;,...,Yy, and from these to
generate independent observations of X, denoted X rrs Xy Where

X, is a sample from the beta. distribution with parameters Y,
and Y, + 1. The usnal unbiased estimate of E[{X] is

X= E X, /N. (€3]
However, g(Y) = E[X | Y] is a known function of Y; in particular
g(Y) = Y/(Y2 + Y + 1). @

Then
E= g g(Y,)/N (5)
n=l .
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Review of Method (continued) ,‘

is an unbiased estimate of E[X] and since the observations of X
are statistically independent as are the observations of Y, it fol-
lows from equations (2), (3) and (5) that Var[g]l<Var[X]. Note

that observations of X need not be generated to obtain g, but that

the function g has to be computed for each observation of Y.

In the above example it was obvious what the conditioning

random variable Y should be and the observations of X were
independent as were the observations of Y. In discrete event
simulation, the choice of Y may not be so obvious and the obser-
vations obtained will typically not be independent. Nonetheless it
may be possible to apply the method with dramatic results as the
following example shows.
Example (Carter and Ignall (2)). ‘A simulation model of fire
department operations in a borough of New York City was con-
sidered. The model was used to measure the effectiveness of
various policies for deploying fire fighting equipment in respond-
ing to serious fires. Serious fires occurred relatively rarely (about
1 in every 30 alarms was for a serious fire). In the model it was
assumed that serious fires occur according to a homogeneous
Poisson proceéss. The state of the simulated system described the
disposition of all fire fighting equipment. The simmlated system
was observed at a set of discrete times yielding the dependent
sequence of observations (Y-,Zj,Xj), j=1,...,J, where for the j-th
observation Y; is the state, ~Zj =1 if a serious fire occurs and
ZJ- = 0 otherwise, and X. is the time to respond to the serious fire
if Z. =1 and X; =0 if Z, = 0. It was assumed that for all j,
(Y;,Z;,X;) is distributed as (Y, Z, X). The quantity to be cstimat-
ed was }JE[X'I Z=1], the expected. response time to a serious fire.
Let N denote the number of serious fires observed, i.e., the num-
ber of observations for which Z. = 1. The usual estimate of
E[X]Z=1] is the average X of the N observed response: times to
serious fires. (Note that since N is a random variable, X will in
general be biased.) For this model g(Y)=E[X|Z=1,Y] can be
computed as a function of Y, i.e., given the state of the system
and given that a serious fire occurs the expected response time
can be computed. In order to apply the method we could com-
pute g(Yj) for all observations Y; such that Z; = 1 and average
these N computed values. However, we can do even better! Due
to the Poisson nature of the serious fires Z and Y are independ-
ent, i.e., PfY=y{Z=1} = P{Y=y} for all y. Thus,

E[X|Z=1]= Y E[X|Z = 1Y = y]P{Y =y} )
y

g(Yj) can be computed for all observations 'Yj, not just those for
which Z; = 1, and averaged to obtain the estimate

g= 3 e¥p/ ™
j=1

It follows from. equation (6) that g is unbiased. The simulation is
run only to obtain observations of the state of the system. For
each observed state the conditional expected response time to a
. serious fire is computed whether or not a serious fire actually
occurred. The observed response times to serious fires can be
discarded. Note that the observations (Yj,Zj,Xj) are not modified
_ by this procedure. The observations are merely processed in a
different way.

Since Var[g(Y)] < Var[X] and N, the number of observa-
tions of X, is typically much smaller than ¥, the number of obser-
vations of Y, we expect § to have a much smaller variance than X
does. However, since the observations of X are not independent
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and the observations of Y are not independent we could not prove
that Var[g)l<Var[X]. Carter and Ignall found empirically, howev-
er, that variance was reduced by a factor of approximately 20.
The cost involved in computing g(Y) doubled the cost of the
simulation. Thus, variance was reduced by a factor of about 10
for the same total cost.

3. APPLICATION TO QUEUEING NETWORKS

Queueing networks are commonly used to model the conten-
tion for resources in job shop type systems and have been particu-
larly important in recent years as models of computer systems and
communication hetworks (e.g., see Kleinrock (6), Kobayashi (7),
Reiser and Sauer (11)). The queueing network shown in Figure 1
is a simple model of an interactive multiprogrammed computer
system which we will use to illustrate the application of condition-
al expectation. There are a fixed number K of customers in the
network, each customer representing a user of the computer sys-
tem. Service center 1 represents the terminals and a service time
at this service center represents a user’s 'think" time. Service
center 2 represents the processor and service centers 3,...,S repre-
sent secondary storage devices (e.g., drums and disks). A service
time at service center 2 represents an interval of processing time
for a user’s task until either the task is completed, in which case
the user starts another think time, or until data from a secondary
storage device is required. A service time at any of service cen-
ters. 3,...,5 represents the time to access and transfer data from a
secondary storage device to main memory. A customer leaving
service center 2 next enters service center s with probability p,,
s=1,...,S, where p, = 0, indépendent of the state of the system.
The queueing discipline for each service center is first come first
served. - The service times at service center s are independent
random variables, each distributed as a nonnegative random varia-
ble T, which has an arbitrary distribution with finite moments of
all orders.
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Suppose we wish to estimate the expected waiting time (not
including the service time) in service cemter 3. Let the state of

. the network be given by the number of customers in each service

center and the elapsed service time for each customer in service
and let Y(t) denote the state of the network at time t. Let
t;, j = 1,2,..., denote the times at which customers complete serv-
ice at service center 2 and let Y; denote the state just prior to t;,
ie., Yj = Y(tj—). Let Zj = 1 if the customer which completes
service at t;, next enters service center 3 and let Zj = 0 otherwise.
Let X. denote the waiting time in service center 3 for the cus-
tomer which completes service at t; if Z; = 1 and let X; = 0 if
Zj = 0. We assume that for all j, (yj,Zj,iij) is distributeé as (Y,
Z, X). We wish to estimate E[X|Z=1]. The usual estimate
would be the average of the observed waiting times in service




center 3, i.e., the average of those XJ for which ZJ = 1. Note that
if py is small the number of observed waiting times will be small.
For thls model g(Y) = E[X|Z=1,Y} can be computed as a func-
tion of Y as follows. For state Y let n(Y) denote the number of
customers in service center 3 and let T(Y) denote the elapsed
service time of the customer in service in service center 3 if
n(Y)>0 and let T(Y)=0 if n(Y)=0. Then, since the queueing
discipline is first come first served

E[X|Z =1Y] = T(Y) + E[T;] max (n(Y) - 1,0).  (8)

. Furthermore, since a customer completing service at service center
2 next enters service center 3 with probability p; independent of
the state of the system, it follows that Z and Y are independent.
Thus, equation (6) holds for this model. (It is necessary to inte-
grate over the continuous-valued components of the state in equa-
tion (6).) g(Yj) can be computed for all the observations Y;, not
just those for which Zj = 1. It follows from equation {6) that the
average g of these computed values is an unbiased estimate for
E[X|Z=1]. As in the fire department simulation example in the
preceding section we expect that Var[gl<Var[X] since
Var[g(Y)]<Var[X] and the number of observations of X is less
than the number of observations of Y (much less if p3 is small).
However, we could not prove this since the observations of X are
dependent and the observations of Y are dependent. Later in this
section we will present empirical results to illustrate the variance
reduction obtainable.

The expected waiting time in service center s, s=4,...,S, can
be estimated in the same way. Note that each observation Y can
be used to compute the conditional expected waiting tlmes for
each of service centers 3,...,S. It does not matter which service
center was actually entered at time t;. The expected waiting time
in service center 2 can be estimated in a similar way by observing
the sequence of the states just before customers complete service
at any of service centers 1,3,...,S. Since these customers always
enter service center 2 next Z will always equal 1. Thus, the num-
ber of observations of the state will not be greater than the num-
ber of observed waiting times as was the case for service centers
3,...,5. However, we still expect the variance to be reduced since
Var[g(¥)]<Var[X].

We can also estimate moments of the waiting time in a simi-
lar way. For service center 3, consider estimating E[X“]Z =1],
the second moment of the waiting time. It is straightforward to

show that
E[X*|Z = 1,Y] = TA(Y) + @T(Y)E[T5] + E[T2]
+ (a(Y) ~ 2)(E[T3))%) max (a(Y) — 1,0). ©)

The waiting time distribution function, i.e., P{X<t|Z=1}, can
also be estimated, although the computation of
g(Y)=P{X<t|Z=1,Y} may not be easy.

We now present empirical results which illustrate the vari-
ance reduction obtainable using conditional expectation. For the
networks we simulated all service times were exponentially distrib-
uted. In that case the elapsed service times can be dropped from
the state, i.e., the state is simply the number of customers in each

service center and equations (8) and (9) simplify. For example, .

equation (8) becomes

E[X|Z = 1,Y] = E[T;In(Y). (10)

We simulated the 8 networks described in Table 1; S is the_num-
ber of service centers and K is the number of customers. For ail

8 networks EfT;] = 100, E[T,] =1, p; = .2, p, = 0. For net-
works 1-4 py;=.72,. py=.08 and for mnetworks §5-8,
p3 = Py = .36, ps = pg = .04. Both the mean and second mo-
ment of waiting times were estimated using conditional expecta-
tion and via the usual method. Table 2 contains estimates of the
variance ratio Var[g]l/Var[X] obtained from 100 independent
replications of a simulation. The variance ratio estimate used was
the ratio of the sample variances. Table 3 contains similar results
for estimating the second moment.

TABLE 1
NETWORKS SIMULATED
Network S K  E[T,] E[T,] E[T,] E[T,]
1 4 15 1.39 12.5 - -
2 4 25 1.39 12.5 - -
3 4 15 .694 6.25 - -
4 4 25 .694 6.25 - . -
5 6 15 . 2.78 2.78 25.0 25.0
6 6 25 2.78 2.78 25.0 25.0
7 6 1§ 1.39 1.39 12.5 " 12.5
8 6 25 1.39 1.39 12.5 12.5
TABLE 2
VARIANCE RATIOS FOR ESTIMATING
MEAN WAITING TIMES

Network Service Center

1 .81 a2 44 - -
2 .79 .80 .59 - -
3 74 .57 33 - -
4 91 67 37 - -
5 71 53 .54 46 37
6 78 68 .68 66 68
7 .84 48 - 43 .28 22
8 .86 43 51 37 43

TABLE 3
VARIANCE RATIOS FOR ESTIMATING
SECOND MOMENT OF WAITING TIMES

Network Service Center
2 3 4 5 6
1 .67 .57 33 - -
2 .68 .73 .53 - -
3 .53 34 .20 - -
4 .87 47 31 - -
5 51 43 42 37 27
6 .61 .52 .53 .66 .62
7 73 31 .33 .14 .15
8 .81 .29 .37 .26 .32

Note that variance reduction (variance ratio less than one)
was always obtained using conditional expectation. Typically the
variance reduction was greatest at the least frequently visited
service center and the variance reduction was greater for estimat-
ing the second moment than for estimating the mean. The vari-
ance reductions were achieved with neghglble extra computing
cost.
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4. CONCLUSIONS

We have reviewed the variance reduction method of using
conditional expectation and presented a new application to queue-
ing network simulation. In the empirical studies we conducted for
queueing networks variance reduction was always achieved using
the method and the variance reduction was greatest when estimat-
ing quantities associated with rafe events, e.g,, mean waiting time
at an infrequently visited service center. Since the estimates
obtained using the method are samiple means (e.g., see equation
(7)) it should not be any more difficult than usual to construct
confidence intervals when using the method. This is not the case
for some other variance reduction methods (e.g., see Lavenberg,
Moeller, and Welch (8)).
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