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DISCRETE MODELS OF PHYSICAL PHEMOMENA

Donald Greenspan
Mathematics Department
University of Texas at Arlington

ABSTRACT: In this paper it is shown how classical physics can be reformulated
using only arithmetic. A1l the usual conservation laws are established in ex-
actly the same form in which they appear in continuous mechanics. New, com-
pletely arithmetic models of physical phenomena emerge. These models are more
consistent with both the molecular theory of matter and the capabilities of
modern digital computers than are classical continuous models. A variety of
computer examples will be described and discussed, as will the scientific and
educational implications of this new approach.

1. INTRODUCTION

One of the major goals of applied mathematics is the development of modéls of natural phenomena. We do
this in order to understand the basic mechanisms of nature, so that we can either control the associated
forces or predict events due to forces which are beyond our control.

Good modeling, however, requires a source of exceptional mathematical power. Until recently, the so-
phisticated concepts of the calculus served such a purpose and resulted in a vast panorama of continu-
ous models. With the development of the high speed digital computer, a new source of power became avail-
able, that is, the power to execute arithmetic operations, to store and retrieve numbers from a memory
bank, and to make certain logical decisions, all with exceptional speed. Today, we will explore the new
type of modeling which has emerged in recent years which utilizes only these computer capabilities.

Since we must replace all the familiar tools of calculus by concepts which utilize only arithmetic in
their formulation, it is difficult to know how to begin correctly. For this reason, we will first de-
velop some intuition by considering a simple physical experiment with the very familiar force of gravity.

2. GRAVITY

Consider a metal ball P, situated atop a building 400 feet high, as shown in Figure 2.1, and allow the
ball to be dropped vertically from a position of rest. As the ball falls, let us take a picture of its
motion every At seconds. The value of At will depend, of course, on the shutter speed of the partic-
ular camera being used. The pictures are taken, then, at the distinct times to,t],tz,t3,..., where,

t0 =0, t1 = At, t2 = 2At, t3 = 3At,..., tk = kAt,... . At each time tk’ k=0,1,2,..., Tet the
height of the particle above the ground be given by X = x(tk). From the knowledge that the initial
height was Xg = 400 ft., and from the sequence of resulting pictures, one can easily approximate, by
ratio and proportion, X aXgsXgsenns and so forth.

Suppose, as a particular example, we have a very slow camera and that At = 1 sec. Then, to =0,

t] =1, t2 =2, t3 = 3, t4 = 4, Suppose the heights above ground, at these times, are,to the nearest
foot, Xq = 400, X = 384, Xy = 336, Xq = 256, Xy = 144, respectively. These data are recorded in
column A of Table 1 and will be subjected, next, to mathematical analysis.

By rewriting XpaXpaXgsXgaX, as Xg = 400-0, x, - 400-16, X, = 400-64

400-144, x, = 400-256,

X3 4

which reveal clearly the distance that the object has fallen, one can then factor to yield

xy = 400 - 16(0)2, x; = 400 - 16(1)%, x, = 400 - 16(2)%,
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Figure 2.1

TABLE I
A B ¢ D i
feasured Velocity Acceleration | Velacity by Acceleration
Time height by calculus by calculus arithmetic | by arithmetic
u0=o Axo=hoo v0=0 a0=-32 v0=0 ao=—32
= xl=381+ v,=-32 e.l=-32 vl=—32 al=~32
$,=2 x2=336 v2=-6h a2=—32 v2=-6h a.2=-32
= =256 = = S =-... 2
‘t3 3 X3 25 v, =-96 ag 32 Vs 96 8 3
s xh=lhh vh=—128 ah=—32 vh=—128
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Xy = 400 - 16(3)2 )2

which can be written concisely as

, x, = 400 - 16(4
X, = 400 - 16(tk)2; K =0,1,2,3,4. (2.1)

In the traditional manner, one would now interpolate and extrapolate from (2.1) to obtain the continu-
ous formula

x = 400 - 16t2, (2.2)

from which, by differentation, one would find
v(t) = x'(t) = -32t, (2.3)
a(t) = v'(t) = -32. (2.4)

The particle's velocities Vo= v(0), vy = v(1), v, = v(2), Vg = v(3), Vg = v(4), at the times of the cor-
responding heights Xp2X13XpsX3sX,s are now determined directly from (2.3), and are recorded in col-
umn C of Table 1.

Note that formulas (2.3) and (2.4), and the interesting conclusion that the acceleration due to gravity

is constant, with the value - 32, have all been deduced from the given distance measurements
xo’x'l 9X2,X3’X4-

3. ARITHMETIC MODELING OF GRAVITY

In seeking to develop an arithmetic approach to all of physics, it is reasonable to try to develop,
first, an arithmetic model of gravity. Moreover, since gravity is such a simple force, we should try
to obtain exactly the same results for velocity and acceleration as those which were obtained in Sec-
tion 2. After extensive trial and error, this was achieved as follows.

Let us define each particle's velocity Vg T v(tk), k=0,1,2,3,4 as an average (rather than instan-
taneous) rate of change of height with respect to time by the arithmetic formula

Vit Vi _ XX
2 At

K: k =0,1,2,3. (3.1)

Since averaging procedures are both common and useful in the analysis of experimental data, the left-
hand side of (3.1) is perfectly reasonable.

Next, for computational convenience, let us rewrite (3.1) in the recursive form
Vil = —vk+2(xk+]—xk)/(At); k =0,1,2,3. (3.2)
Assuming that Vg = 0 when a particle is dropped from a position of rest, one finds from (3.2) that

vy = -v0+2(x1-x0)/(At) = 0+2(384-400)/1 = -32

v, = —v1+2(x2-x])/(At) = 3242(336-384)/1 = -64
Vg = -V,t2(xg-x,)/(At) = 64+2(266-336)/1 = -96
Vg = —v3+2(x4-x3)/(At) = 96+2(144-256)/1 = -128

which are identical with the results of column B in Table 1, and are recorded in column D.
Next, since Xq and Vos but not ag. are known initially, let us define a, as the average (rather
than instantaneous) rate of change of velocity with respect to time by the arithmetic formula

v -V
Ve Ve, L
8 = =5 k = 0,1,2,3. (3.3)

From the values Vi Jjust generated, one finds from (3.3) that 3y = Ay = a, = a5 = -32, which are

identical with entries in column C of Table 1, and are recorded in column E. Formula (3.3) does not al-
Tow a determination of 3y because this would require knowing Vg Neverthless, the entries do indicate

quite clearly that the acceleration due to gravity is constant, with the vajue -32.
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Formulas (3.2) and (3.3) are both recursion formulas. Such formulas are solved numerically with excep-
tional speed on modern digital computers. Thus, even if the original distance measurements had been ex-
ceptionally voluminous, they could still have been recorded and analysed quite easily.

4, ARITHMETIC PHYSICS .

Now, just because the arithmetic formulas (3.2) and (3.3) have given the same results as (2.3) and (2.4)
does not mean that we have, as yet, a formulation which is of physical significance. 1Indeed, the physi-
cal significance of Newtonian mechanics is characterized by the laws of conservation of energy, linear
momentum, and angular momentum, and by symmetry [1]. Surprisingly enough, our approach to gravity will
also yield total conservation and symmetry. We will, however, for simplicity only, confine attention
here only to the conservation of energy.

For completeness, recall now the fundaniental Newtonian dynamical equation:
F = ma, (4.1)
the classical formula for kinetic energy K:

2

K==mv", (4.2)

| —

and, for a falling body with a = -32, the formula for potential energy V:
V = 32mx. (4.3)

Recall, also, that the experimental data in column A of Table 1 were obtained from photographs at the
distinct times tk = kat. For this reason, we must concentrate only on these times and hence must re-

write (4.1)-(4.3) as follows:

Fk = ma, 3 k =0,1,2,... (4.4)
K, = +m(v,)%k = 0,1,2 (4.5)
k 2 k E) FRE XoF TR .
Vk = 32mxk; k =0,1,2,... (4.6)

Let us now define a sum wn, n=1,2,3,..., which is the discrete analogue of the concept of work, by

n-1

wn = 12 (Xi+1'xi)Fi' (4.7)

Then, by (3.1), (3.3), (4.4), (4.5) and (4.7),

n-1 V., o=V,
;= VR i R X
Hy=m 1.ZO("M X)) (=g

n-1 x
;

1

-+-
(1
=0 A

174 ,
=zt Vi Vy)

=3 1 (Vi) (Vipqovy)

2 2.2 2 2 2
+v3-v2+v4~v3+...+vn-vn_])

so that

Moo= K-Kgs n = 12,3, (4.8)

Note in the.above derivation that the telescopic sum

2 2.2 2.2 2.2 2 2 2y _ 2.2
(v]-v0+v2-v1+v3vv2+v4-v3+...+vn-vn_]) = v =Yy
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is the arithmetic analogue of integration in that it yields a function evaluated at the upper Timit,
tn’ minus a function evaluated at the Tower Timit, to.

Similarly, since a = -32, one has from (4.6) and (4.7) that

n-1

W, = -32m 120(x1+]~x1) = —32mxn+32mx0.

Thus
Wy = Vg, n = 1,2,3,... (4.9)

Elimination of Nn between {4.8) and (4.9) yields

Kn+vn = KO+VO, n=1,2,3,..., (4.10)

which is the classical law of conservation of energy.

It is of primary importance to note that (4.10) is valid independently of At, so that our choice of
cameras hasin fact, no significance at all.

5. LONG AND SHORT RANGE FORCES

Before proceeding to show how to extend the techniques of the previous section to more complex
forces, let us examine the nature of those forces whicn act on all solids, 1iquids and gases. These
fall into two categories, the long range and the short range, both of which act simultaneously and will
be included in our new approach to modeling.

The Tong range forces are those which act on all particles,at all times, over all distances. These
forces include gravity, gravitation and coulombic forces.

The short range forces are those which occur only between a molecule and its immediate neighbors. This
type of interaction is of the following general nature [1]. If two molecules are pushed together they
repel each other, if pulled apart they attract each other. and mutual repulsion is of a greater order
of magnitude than is mutual attraction. Mathematically, this behavior is often formulated as follows.
The magnitude F of the force ¥ between two molecules which are Tocally r units apart is of the
form

G, H
Foo—r+—, (5.1)
Y‘p Y‘q

where, typically,
G>0,H>0, g>p=>7. (5.2)

The major problem in any simulation of a physical body is that there are too many component molecules
to incorporate into the model. The classical mathematical approach is to replace the large, but finite,
number of molecules by an infinite set of points. In so doing, the rich physics of molecular inter-
action is lost. A viable computer alternative is to replace the large number of molecules by a much
smaller number of particles and then readjust the parameters in (5.1) to compensate [2T-15]. It is
this latter approach which we will follow.

6. EXTENSIONS

Guided by the discussion of Section 5, we will now show how to develop an entirely numerical and con-
servative approach to forces more complex than gravity. Detailedproofs of conservation and symmetry
are given in Greenspan [31.

Consider first the planar motion of a single particie under the influence of gravitation. For this
purpose, if At > 0 and tk = kAt, k = 0,1,2,..., let particle P of mass m be Tocated at

> _ PR S PO .

Py = (xk,yk), have velocity v, (Vk,x’vk,y)’ and have acceleration a, (ak,x’ak,y) at time t.
In analogy with (3.1) and (3.3), let

VotV PP
k+t1'k _ Tk+17k _
> = N k =0,1,2,... (6.1)
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Vi q-V.
> _ k1T ko, L
a = A k=0,1,2,... . (6.2)

To relate force and acceleration at each time tk, we assume a discrete Newtonian dynamical equation
- >
?k = mid, (6.3)

where

F o= (F ). (6.4)

k= FioxeFi,y
Suppose now that a massive object, Tike the sun, whose mass is M, is positioned at the origin of the
XY coordinate system and is assumed to have no motion. Then, in analogy with the continuous, conser-
vative gravitational force on P, whichhas components

F =_§M‘ﬂ.’i F = GMm
X Ll —;2_

where & 1is a constant, the arithmetic and conservative gravitational force on P is taken to have
components [3]:

E - _GMm - eyt )12 BMm (x4 1% ) | (6.5)
kyX 1 k] (rk+]+rk)72 krk+1(rk+rk+1) ’ :
GMM (YY)
Fy y-o T rr k?l +& J (6.6)
’ kK k1Y kT k+1
where

2 .22 -

e = Xt k=0,1,2,... . (6.7)

Now, gravitation is a T/rz Taw. Suppose, as in classical molecular mechanics, one would desire an

arithmetic and conservative formulation of a 1/r p > 2, Tlaw of attraction. Then, in this case,
(6.5) and (6.6) need be modified only as fo1lows [6]

-2
GMm [: )y rirﬁ+g i](xk+1+xk)

Feox © 1p] ,G>0 (6.8)

R et (e )

while Fk ¥ is the same as Fk X except that x and y are exchanged. In the particular case where
£ s
p=2, (6.8) reduces to (6.5).

In classical molecular mechanics, however, particles attract 1ike 'l/rp only when they are relatively

far apart. When the are close, they repel Tike 1/rq, q > p. To simulate both these effects, simul-
taneously, it follows directly from (6.8) that the conservative formulas are

-2 Jj.q- 2
GMm[ ¥ (r "](r‘EJr‘% ZI(Xk+1'+X HMm [: 3y (r k+% :l(xk+1+xk)

F 0, H>0
k,x P p-T q- 1 rd i ’ ?
e Tir a1 | e e (M)
(6.9)
while Fk y is the same as Fk X except that x and y are exchanged.

Finally, with regard to the motion of a single particle, it is of interest to note that all the arith-
metic conservative formulas developed thus far are special cases of the following general formula [7]
For any Newtonian potential ¢(r), let

> >
_ o tng)-o(nd P thy
k "kl Tk

F

(6.10)

Arithmetic formula (6.70) conserves exactly the same energy, Tlinear momentum and angular momentum as
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does its continuous, Timiting counterpart

? ( ) r - (6.1])
Moreover, the singu1ar1’ty which results if Y’k = Y‘kl-l is removable.

Since we have now exp]ored rather completely the motion of a single particle, the next extension is to
a system of particles ], 2, ’Pn' To do this, let particle Pi of mass mi be at

+ . - _
ik (x1 Vi, k) have velocity v1 K= (Vi,k,x’vi,k,y) and have acceleration 3 = (a
at time tk Pos1t1on, velocity and acce]eration are assumed to be related by

i,k,x’ai,k,y)

v +v ¥ -r
ViLkt1 ik o kel T Lk
2

rCaa— (6.12)
> >
+ = V'i,k'l‘]-v'izk (6.13)
i,k At : :
If ?i,k = (Fi,k,x’Fi,k,y) is the force acting on Pi at time tk’ then force and acceleration are
assumed to be related by
- ->
?i’k = mds (6.14)

If, in particular, we assume that all particles interact with all other particles with attraction Tike
1/rp and repulsion 1like 1/rq, then the arithmetic, conservative force on each Pi’ i=1,2,0..,0,
is given, in analogy with (6.9), by

p-£-2 9-g-2
n [ [ G Ao [ i, k“u,kﬂ)]
. K = meo Lo Ams -
Ts 1 j=] J p (Y‘ +r. ., ) q ( .. )
4 Pi5,k" 1J,k+1 ij.k o ij,k+1 Tii,k" 13,k+1 T43,K 93, k4
> >
* F kT ke a0 (6.15)

where G>0,H>0,9g>p>2, and r;

. is the distance between P, and P, at t
1j.k 1 J

K
It should be noted, in particular, that only for simple forces, like gravity, do the continuous and
discrete approaches yield exactly the same dynamical behavior. In general, the two approaches yield

results which differ by terms of order (At)3, even though they both conserve exactly the same physical
invariants.

7. DISCRETE MODELS

The arithmetic approach developed thus far lends itself naturally and consistently to discrete, or par-
ticle-type, models of complex physical phenomena [2], [3]. These have been developed in both the con-
servative, implicit fashion and the less expensive, nonconservative, explicit fashion. Viable discrete
models have been developed for vibrating strings; heat conduction and convection; free surface, laminar
and turbulent fluid flows; shock wave generation; interface problems; and elastic vibration. The mech-
anisms in these models are always consistent with classical molecular mechanics and the modeling applies
with equal ease to both Tinear and non-linear phenomena.

For illustrative purposes, we will summarize next a variety of computer simulations using discrete
models. Whenever possible, the derived physical insights and advantages will be described.

Figures 7.1(a) and (b) show a bar and its particle simulation. Particles P5, P6 and P7 were

heated, or, in kinetic terms, their velocities were increased, and Figures 7.1(c)-{g) show the sub-
sequent conductive heat transfer through the bar. The model is both conservative and nonlinear. It is
also satisfying, physically, that the bar need not be infinite, as is usually required in continuous
modeling.

Figure 7.2 shows the conservative, elastic vibration of a flexible bar from a position of tension. What
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emerges clearly is that the bar does not swing smoothly, but flutters up, due to waves which travel
through the bar as part of its gross upward motion. Engineers have been aware, for some time, of such
waves in vibrating materials.

Figure 7.3 shows how particles of a 1liquid emerge from a nozzle at relatively Tow speeds. The flow is
what is usually called iaminar. As the particle velocities are increased moderately, the rows of par-
ticles maintain their relative positions, as shown in Figure 7.4, but the flow is becoming relatively
chaotic. The disturbance arises from the increase in velocities, since faster moving particles can
come closer to each other than can more slowly moving ones, and greater repulsive forces thereby result.
Finally, in Figure 7.5, the velocities have been increased to the point where the rows no longer main-
tain their relative positions, and the motion is called turbulent, since it simulates the rapid appear-
ance and disappearance of many vortices [3]. In continuum mechanics, there is as yet no viable model
of turbulence, although it is known that most fluid flow is of this nature.

If one does not have sufficient resources for the implicit, conservative modeling described thus far, or
if one wishes to simulate nonconservative phenomena, then one can still formulate and study discrete
models by using nonconservative explicit formulas [3]. Some of the models which have been developed in
this fashion will be described next.
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Figures 7.6(a)-(d) show how shock waves can be generated,  In (a% is shown a gas_in a long tube, The
gas particles are distributed relatively uniformly. 1In (b), a plunger has been inserted into the tube.

When the plunger is moved $lowly down the tube, as shown in.(c), the gas simply reorganizes ¥tself into
a new, but relatively uniform, distribution. However, when the plunger is moved down the tube ata very
high speed, then gas particles do not have the time to reorganize, and they pack up on the face of the
plunger, as shown in (d). The gas now separates into two portions, one that has, approximately, the
initial density, and orie that is highly dense and is impacted on the face of the plunger. The boundary
between these two portions is called a shock wave and the computer generation of 'realistic' shock wave
formation is shown in Figure 7.7. We have used the term 'realistic' because this model also includes
the heating of the walls of the tube, a phenomenon of fundamental importance which is usually too dif-
ficult to incorporate into continuous models.

Figure 7.8 shows a computer generated heavy gass Figure 7.9 shows the path of a relatively Tight par-
ticle which is ejected after insertion into the gas, thus establishing the property of buoyancy. Figure
7.10 shows expansion, convective motion, and vortex development in the gas due to heating at the Tower
right hand corner of the container.

Figures 7.11-7.14 show the entry and dispersion of a heavy 1iquid drop into a Tiquid well. The wave
generation is shown readily by reexamining the same figures, but following the motion of various 1iquid
columns, as shown in Figures 7.15-7.18.

Figures 7.19-7.23 show a circularization process of the biological species called volvox. This circu-
larization is needed to simulate an inversion process inherent in the maturation of volvox.

8. REMARKS

In this final section, let us discuss some of the nuances and implications of the approach we have
pursued.

First, note that a completely arithmetic approach has been developed elsewhere [9] for Special Rela-
tivity. Thus, the two major disciplines of deterministic physics have been givenarithmetic formulations.
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Second, note that a generalized form of Newton's iteration method [10], which does not use matrix in-
version, applies easily to all nonlinear systems associated with the conservative approach of Section 6.
In this connection, it is worth emphasizing that all models in this paper have been nonlinear. Note
also that the explicit models are natural candidates for the application of parallel computers.

Next, let us try to delineate clearly the fundamental differences between discrete and continuous model-
ing. For simplicity, consider, for example, water in a glass. There are, approximately, 1028 molecules
of water, which are far too many to deal with directly. In continuous modeling, the 1028 molecules are
replaced by an infinity of points. In the discrete modeling the 1028 molecules are replaced by say,

103 particles, with a simultaneous compensating adjustment of molecular parameters. Both approaches
are only approximations. The discrete approach was not realizable before the availability of modern

computers., In this connection, it is worth observing also that many modelers believe firmly that 1028
is so large that it can be approximated well by infinity. This can be dispelled, but only by the pre-

cise mathematical statement that 10°° points form a set of measure zero in any infinite set of points.

Loosely stated this means that when one creates an infinite set of points,fhén10?8bointsarecom91ete1x
Tost within these.

From the educational point of view, the current availability of inexpensive computers means that ex-
citing mathematics and physics, considered previously to be 'advanced', can be presented now at a most
elementary level. Indeed, there is not one model described in Section 7 which cannot be presented after
a first course in trigonometry.

Finally, from the scientific point of view, the availability of discrete models provides researchers
with additional tools in their study of natural phenomena, and the importance of these new tools cannot
be underestimated at a time when both sub-atomic and cosmic physics are revealing that Nature is far
from the simplistic entity it was once thought to be.
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