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RANDOM VARIATE GENERATION: A SURVEY]
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ABSTRACT: The state of the art of generating random variates on a digital
computer is surveyed. General concepts are presented, followed by criteria

for comparing algorithms. The Titerature is surveyed for continuous univariate,
discrete univariate, continuous multivariate, and discrete multivariate distribu~
tions, as well as for point processes, time series, order statistics and
geometrically inspired problems. An extensive 1ist of references is provided.

1. INTRODUCTION

Assuming the existence of a source of independent U(0, 1) observations u;, u,, ..., we survey the state
of the art of transforming the uniform random numbers to obtain random variates X;, x,, ... satisfying
specified properties of distribution and/or dependency structure, for use as inpuls t6 stochastic
simulation experiments on digital computers.

We assume the U(0, 1) random variables are ideal; that is, they are exactly uniformiy distributed over
the interval (0, 1) and they are independent. The consequences of this assumption not being entirely
true are discussed in Burford and Willis (1978), Chay, Fardo and Mazumdar (1975), Golder and Settle
(1976), Monahan (1978) and Meave (1973). Kennedy and Gentle (1980) provide an excellent and up-to-date
discussion of U(0, 1) generation.

Note that it is possible, although very uncommon, to use distributions other than U(0,1) as the basic
source of randomness. Liinow (1974), for example, discusses using truely random Poisson observations.

We discuss general underlying concepts in Section 2 and criteria for comparing variate generation
algorithms in Section 3. Section 4, which surveys the state of the art of specific problems, considers
both continuous and discrete random variables and random vectors, as well as processes correlated and
changing over time, order statistics, and geometrically inspired problems such as generation of points
uniformly distributed on the surface of a sphere and random permutations.

For completeness there are a few references listed at the end of the paper which are not discussed.
2. FUNDAMENTAL CONCEPTS

It is important to distinguish between the fundamental approaches for random variate generation and the
resulting algorithms. While occasionally an efficient algorithm results from the direct application of
a single concept, more often an algorithm is a combination of more than one concept. As in other fields,
such as mathematical programming, the same concepts applied in much the same way can still lead to dif-
ferent algorithms due to changes in data structure and tailoring to specific computer efficiencies.

We discuss four fundamental concepts: (1) inverse transformation, (2) composition, (3) acceptance/
rejection, and (4) special properties. Unlike the algorithms discussed in Section 4, these concepts
have changed only 1little since variate generation was first studied. Butler (1956), for example,
discusses these concepts. Kennedy and Gentle (1980) discuss both basic concepts and algorithms and
provide an extensive recent bibliography. Other general references include Ahrens -and Dieter (1974b),
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Chambers (1970), Dedk and Bene (1979), Fishman (1973, 1978b), Galliher (1959), Handbook of Mathematical
Functions (1964), Hammersley and Handscomb (1964), Halton (1970), Jansson (1966), Kahn (1964), Knuth
(1969), Knuth and Yao (1976), P.A.W. Lewis (1972, 1979), P.A.W. Lewis and Learmonth (1973), T.G. Lewis
(1975), McGrath and Irving (1973), Newman and Odell (1971), Sowey (1972, 1978), Spanier and Gebhard
(1969), Teichrow (1953, 1965), and Tocher (1963).

2.1 The Inverse Transformation

The use of the inverse of the cumulative distribution function (cdf) Teads to the most fundamental
method for generating random variates. It is applicable to any univariate distribution, whether
discrete, continuous, or mixed. The method.is to convert the U(0,1) random number u to the value x
1ying at the u th fractile; that is, x = F'l(u), which is analogous to a percentile test score of u
(or 100u) with a corresponding raw score of X.

First consider an arbitrary discrete distribution with cdf F(x). The probability of observing x. is
F(x1+]) - F(xi) and any method of assigning this probability to X; is a valid method. Haowever, 'the

most straightforward procedure is to return X3 if and only if F(xi) <u 5_F(xi+]). ‘Some care must be

taken on the end points to be sure all valyes are defined and to avoid round-off error, but otherwise
implementation is direct: (1) Generate u ~ U(0,1) and set i=0, (2) set i=i+1, (3) if u> Fi» go to 2,

(4) otherwise return X=Vs. Here two vectors are needed: Fi to store ‘the value of F(xi) and vy to store
the value of Xis i=1, 2, ..., n. For many discrete distributions, the explicit use of Fi can be avoided
since a recursive relationship can be used to calculate Fi from Fi-]’ (For example, see the discussion

of the Poisson, binomial, and negative binomial distributions below, as well as the geometric distribu-
tion which has a closed form inverse transformation.) Likewise, the vector v can be made implicit when
simple relationships exist between v; and i, such as vi=i or vi=1-1. Chen and Asau (1974) suggest the

use of index tables to speed the search for the proper interval.

A similar concept applies to continuous distributions, where now we want P(a < x < b) = F(b) - F(a) for
all values of a and b. This property is satisfied when x= F'1(q) is used, since the distribution of
the random variable Y=F(X) is U{0, 1)} for any continuous random variable X. The continuous version can
also be obtained by considering the Timiting case of the discrete concept as the intervals Xie1 = %3
become shorter.

For some distributions the inverse transformation leads to closed form algorithms which may be implemen-
ted directly. Examples are x = a + (b-a)u for X ~ U(a, b) and x = ~{In(1-u)/a)**(1/y) for the Weibull
distribution with shape parameter vy and scale parameter o«. Note that y=1 yields the exponential
distribution with mean 1/a.

Numerical methods may be used when the inverse transformation is not closed form. Butler (1970)
discusses a general, although approximate, method for generating random variates from any continuous
distribution via numerical integration of the density function. (See corrections by Proll (1972).)
Numerical methods for the normal, gamma, and beta distributions are referenced in Section 4. When

the distribution is in the form of a histogram (a mixture of uniform distributions), Barnard and Cawdery
(1974) suggest using an approximate but fast algorithm based on approximating the distribution with
equally Tikely uniform distributions and linear interpolation.

In both the discrete and continuous cases, there are several reasons for using the inverse transformation
even if slow numerical techniques are involved: (1) Order statistics can be $asi1y generateéd, as dis-
cussed in Section 4, (2) truncated distributions may be generated using x=F~!{u') where u'=a+(b-a)u,
resulting in F-1(a) < x < F=1(b), (3) the use of variance reduction techniques is aided, as discussed in
Section 3.

2.2 Composition

Composition, or probability mixing, is often used without realizing the generality of the method. For
example, the double exponential (LaPlace) distribution is commonly generated by obtaining a negative
exponential random variate and assigning a random sign. Another example is mixed distributions, such as
rainfall in a particular week, where zero rainfall may occur with probability p_ and the amount of
rainfall, conditional on there being some, may follow a gamma distribution. Thé algorithm is to set x=0
if u < p, and to generate a gamma variate X otherwise. However, composition is useful in many situations
where th& concept is not so intuitively applied.

Composition, like the inverse transformation, has both a discrete and continuous form. However, the type
of composition is independent of the type of random variable; discrete random variables can be mixed
continuously and vice versa. We.first consider discrete mixing.

Let f(x) denote the density function if X is a continuous random variable or the probability of observing
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x if X is discrete. Then discrete composition is applicable when f(x) is written as

n
(x) =1_§1 p; f3(x)

where T P = 1 and n may be infinite. The generation of random variates from f(x) simply requires
generating a variate x from fi(x) with probability Py The selection of i is usually via the discrete
inverse transformation and the generation from fi(x) may use any algorithm. In the double exponential
example, f1(x) = A exp(~Ax) I(X)(o,w) and fz(x) = X exp(Ax) I(X)(_m,o)’ where I(X)(a,b)=1 ifa<x<b
and zero otherwise, and Py =P, = .5. In the rainfall exampie, P = Pys Py = 1- P f](x) = I(x)[ogo]
and fz(x) is the gamma density function.

n
Note that the Tinear combination of random variables X = T a; Xi is a convolution and the proper

generation procedure is to generate each of the n random1V;riates Xx; and to combine them as indicated
in the linear combination. Do not confuse convolution and compositqon.

Discrete compositionhas an tntuitive geometric interpretation in terms of the density function f(x),
in that the area under the density may be partitioned in any way to form the n subdensities f,(x).
In the case of the double exponential, the partition between the two subdensities is vertical.' A
horizontal partition may be used to partition a trapezoidal shaped density function into a uniform
(rectangular) subdensity and a triangular subdensity. The area of each subdensity fi(x) is Py

Many of the fastest algorithms for univariate continuous distributions use discrete composition. See
Marsaglia (1961c) who discusses the concept and applies it to ‘the normal distribution. Other
applications are discussed in Section 4.

One of the most important advances in the.generation of discrete random variables is due to Walker
(1974a, 1974b, and 1977), who describesthe concept of "aliasing"” for distributions having a finite
number of possible values. Walker noted that any discrete distribution having a finite number of

outcomes can be expressed as a mixture of n distributions each having exactly two outcomes and each
having coefficient Py = 1/n. This yields the very fast discrete composition algorithm (1) Generate

u~n U0, 1), set u=un, set i = INT(u) + 1, set u=14 - u, (2) ifu < Fys return x = i, (3) otherwise

return x = A,, where it is assumed that x = 1, 2, ..., n are the possible values of x. Here i has a

discrete uniform distribution over the range 1, 2, ..., N; Fi is the probability that x=1 and 1-F1 is

the probability that the alias value x=A. is returned. Kronmal and Peterson (1979) discuss the calcu-
Tation of F. and A, for i=1, 2, ..., n and also prove that the method is applicable for all distributions
with range 'x = 1,2, ..., n. Of course the use of an additional vector analagous to v in the discrete
inverse transformation allows generation from any discrete distribution with a finite number of outcomes.

Tabling discrete values, which results in very fast algorithms at the expense of rounding the probab-
ilities and/or using large tables, is a composition method. Marsaglia (1963) discusses an ingenious
modification to reduce the table size. See also Norman and Cannon (1972).

The continuous composition algorithm can be used when f(x) is expressed as f(x) = [: fxly(x) dFY(y),

where Y is a continuous random variable mixing conditional density functions or -discrete mass functions
fx y(x). Variate generation proceeds in two steps: (1) Generate a continuous random variate y having

cdf FY(y) and {2) generate a random variate x from fy y(x). Distributions which can be handled in this

way are called compound distributions. Examples include the beta-binomial, where the probability of
success p in the binomial distribution is a random variable with a beta distribution. Less intuitive is
that a Pearson type IV distribution can be generated as a gamma(o, 1/B) with B being a gamma($, y) random
variate, where gamma{a, b) denotes, the gamma distribution with shape parameter a, scale parameter b, and
mean ab. Another example is the negative binomial discussed below. For other examples of compound
distributions, see Johnson and Kotz (1969).

Note that since a XZ random variable is the square of a standagdized normal random variable, it is not
unreasonable to consider generating a norma% variate using a y¢ variate. The problem arises when it is
noted that either of the two roots of the y* variate corresponds to normal variates. Due to symmetry, it
seems reasonable to use each root with probability .5, which is correct. Michael, Schucany and Haas
(1976) derive the correct multinomial probabilities for selecting one of multipie roots, leading to a
simple composition algorithm for the inverse Gaussian distribution, as an example.
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2.3 Acceptance/Rejection

The acceptance/rejection concept is to generate variates from one distribution and discard (reject)
some of them in such a way that the remaining variates have the desired distribution. Although until
the last few years the acceptance/rejection concept has been used almost exclusively with univariate
continuous distributions, it is valid for either discrete or continuous and univariate or multivariate
distributions.

Let f{x) denote the density function of X if X Is a continuous random variable or the mass function if

X is a discrete random variable. Here X may be either univariate or multivariate. Let t(x) be any
majorizing function of f(x); that is, we require that t(x) > f(x) for all values of x. Let g(x) = t(x)/c
denote the density function proportional to t(x) if X is continuous (in which case ¢ = /_ t(x) dx) or

the mass function proportional to t(x) if X is discrete (in which case ¢ = Zy t(x}). The algorithm is

(1) generate x v g(x), (2) generate u ~ U(0, 1), (3) if u > f(x}/t(x), then go to step }, (4) otherwise
return X.

The algorithm's execution time depends on three factors: (1) The time to generate x in step 1, (2) the
time to perform the comparison in step 3, and (3) the expected number of interations, ¢, to return x.

The selection of the majorizing function t(x) plays a major role in all three factors, making it crucial
to the development of efficient algorithms. In elementary textbook discussion$ of the acceptance/
rejection algorithm, t(x) = max, f(x) is usually used, as originally discussed by von Neumann (1951),
Step 1 is then to generate a unform variate over the range of X.which is fast, but the expected number
of iterations, c, is often unacceptably large, such as for the beta distribution over the interval (0, 1)
as the shape parameters p and/or q become large, as discussed in detail in Section 4. Many recent
algorithms use acceptance/rejection.

The basic concept can be made more efficient by adding some logic between steps 2 and 3. Since step 3
often requires slow exponential type operations, preliminary comparisons using simple one-sided
approximations to T(x)/t(x) can speed up an algorithm by accepting or rejecting x before f(x)/t(x) is
calculated. This modification has been termed the "squeeze" method by Marsaglia (1978). Marsaglia
(1970) discusses one-sided approximations.

It is also common to apply two "tricks" to step 3. First, f(x) is rescaled to avoid having to calculate
normalizing constants which tend to involve hard to compute constants such as gamma and beta functions.
Since the shape .of the density function does not depend on these normalizing constants, other constants
can be substituted. Setting the normalizing constant to 1 sometimes causes numerical problems, however.
Ahrens and Dieter (1974) rescale the gamma distribution sothatmax_ f(x) = 1, thereby avoiding the gamma
function as well as numerical problems. The second "trick" is to Lompare In(u) to In(f{x)/t[x)) in

step 3, since this also helps to avoid numerical problems, often eliminates some exponential calcéuldtions,
and special methods exist to generate Tn{u) directly (as the negative of an exponential random variate).

Schmeiser and Lal (1980), Schmeiser and Babu (1980) and Tadikamalla (1978), for example, use acceptance/
rejection to generate variates from subdensities in composition algorithms. Kronmal and Peterson (1979b,
1979¢) and Kronmal, Peterson and Lundberg (1978) combine the concepts of acceptance/rejection, aliasing,
and discrete composition., Jeswani and Sikdar (1978) appear to have recently rediscovered the acceptance/
rejection concept.

2.4 Special Properties

Sometimes the distribution from which random variates are to be generated has one or more special
properties which can be used, Teading to methods of generation which are specific to that distribution.
Three topics are discussed in this section: transformations from nonuniform distributions, generation of
trigonometric functions with random arguments, and von Neumann's comparison method.

Transformations from nonuniform distributions
Many of the classical nethods for generating random variates from common distributions are based on
generating some intermediate nonuniform random variates Yis Yoo =ee5 ¥y and then calculating the

desired variate as x = f(y1, Yos wees yn). For n = 1, examples are nonstandard normal via x = u + oz,

where z is a standard normal variate; U(a, b) via x = a + (b-a)u; and lognormal variates via x = exp(y),
where y is the appropriate normal variate.y There are many examples for n > 1. These include Erlang as
the sum of k exponential variates (x=- Tn(l u.)), beta as a ratio .of gammas, Student's t via standardized.
normal and chi-square, F via chi-squares, chi-squares via normals, binemial as a sum of Bernoulli trials,
negative binomial as a sum of geometric random variates, and on and on. Many of these are excellent
approaches. One very common example that is not good, because it is a rather crude approximation, is

the approximation of the normal distribution by the sum of twelve uniform variates, X = u,+u +..m+u]2-6\
The kurtosis is 2.9 rather than 3.and the tails are truncated at + 6. If a very simple genefation
algorithm is needed; such as when using a hand calculator, an easier and more accurate approximation is
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x = (u135 = (1-u)*135)/.1975, as discussed in Schmeiser (1980).

An important special case of transformations from intermediate random variates is the ratio-of-uniforms
method of Kinderman and Monahan (1976, 1977). They suggest defining a regidn R so that conditional on

v = (vy, v,) being uniformly distributed over R, then x = v./v, is a random variate from the distribution
of interest. While any method may be used to generate v, cammgn1y two dimensional acceptance/rejection
is used, where f(v) = 1//p dx.I(y)(R) and t(y) = 1//p dy‘I(y)(s), where S is the smallest rectangle

enclosing R. A well-known particular example is the generation of Cauchy variates where R is the unit
circle. ‘

Trigonometric functions with uniformly distributed arguments

Some standard "tricks" are available for generating random values of trigonometric functions having
uniformly distributed arguments. They are suggested for two dimensions by von Neumann (1951) and
extended to n dimensions by Cook (1957).

The problem is to generate values of sin(Y), cos(Y) and tan(Y) when Y ~ U(0, 2r). There is no conceptual
problem with generating the intermediate random variate y = 2mu and calculating the trigonometric
function directly, but the following method is faster and eliminates the need for the subprogram call.

Let (v, v2) be a point uniformly distributed over the unit circle; that is, f(v1, v2) =1/n if
v]2+v2 <1 and f(v], v2) = 0 otherwise. Such points may be generated using the two dimensional accep-
tance rejection concept discusses immediately above. Let o denote the angle between th% posi¥}¥e Vi axis
and the vector defined by the origin and (v1, v2). Clearly, o ~ U(0, 21). lLet r = (vf +v22) s

the distance of (V], v2) from the origin. Then cos(a) = vT/r, sin{a) = vz/r, and tan{a) = v2/v1

can be used to generate the trigonometric functions. Improvements can still be made in the sin and cos
which involve the square root calculation of r. Note that (1) sin(a) and cos(q) have the same distribu-
tion, (2) cos(a) and cos(2a) have the same distribution, and (3) cos(2a) = cos2{a) - sinZ(a), which

yields (vzz-v12)/(v12+v22) as random values for either sin(a) or cos(a).

This idea is used to generate Cauchy random variates as x=v,/v; and by Knop (1973) for the dipole
distribution. The polar method for generating normal randoa vlriates, as given in Marsaglia and Bray
(1964) is also based on these concepts.

von Neumann's comparison method

von Neumann (1951) gave a method for generating exponential random variates which involves only comparing
uniform random numbers and no exponential level calculations. Forsythe (1972) extended the ideas, based
on a comment at the end of von Neumann's paper, to the normal distribution and any others satisfying the
differential equation f'(x) + b(x)f(x) = 0 for 0 < x < =, The concept has been used by Ahrens and
Dieter (1973), Dieter and Ahrens (1973), and Brent (1974) and extended further by Monahan {1979).

3. CRITERIA FOR ALGORITHM COMPARISON

Before we discuss algorithms for specific distributions, we Tist here some criteria which are useful both
when developing algorithms and when selecting an algorithm for a particular situation.
1. Accuracy
1.2 Theoretical
1.b Error induced by U(0, 1) numbers not being random
1.¢ Error induced by computer arithmetic -- Monahan (1977)
2. Execution speed
2.a Set-up time -- Apostolopoulos and Schuff (1979)
2.b Marginal execution time -- Greenwood (1976)
3. Ease of implementation
3.a Number of Tines of code
3.b Support routines required
3.c Bit manipulation required
4. Portability -- Greenwood ?1977)
5. Memory requirements
6. Interaction with variance reduction techniques -- Franta (1975)

This 1ist is in no particular order of importance. In fact, an important point is that the criteria to

be used differ from application to application, making it impossible to order criteria in order of
importance. This makes it impossible to select a "best" algorithm except in thé very uncommon case where
an algorithm is better than all others in terms of every criterion. On the other hand, many published
algorithms are dominated by other algorithms in that there is no situation where the algorithm is the best
choice. However. even then, a poor algorithmmay be the best selection because it is already implemented.
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4, STATE OF THE ART

Having discussed the fundamental concepts for generating random variates in Section 2 and criteria for
evaluating algorithms in Section 3, we now discuss the state of the art in each of several specific
areas: continuous univariate distributions, discrete univariate distributions, continuous multivariate
distributions, discrete multivariate distributions, point processes, time series, order statistics, and
geometric problems.

4,1 Continuous Univariate Distributions

Without a doubt, continuous univariate distributions have received more attention in the literature than
any of the other topics considered hére. About half of the references of this paper fall in this
category. Within the family of univariate continuous models, the normal, gamma, and beta distributions
are the most common topics, in that order.

The normal distribution )
The first exact method for generating normal variates exactly, given by Box and Miiller (1958), yields
pairs ‘of independent standard normal variates using r = (—Z]n(u]))1'2, o = 2my, X = r sin(a), and

x2 = r cos{a). The validity of the algorithm can be shown directly via change of variables. A more
intuitive explanation is to note that ?r, a) are the polar coordinates of (x- ., x2). If X; and X, are
independent standardized normal random variables, the bivariate density funclion is symmelric abgut the
oEig1n, implying that o is a U{0, 2m) variate, and implying that the squared distance from the origin

ré = x +x22 has a chi-square distribution with two degreesof freedom. N6ting that this chi-square
distrilution is the exponential distribution with mean 2 yields the algorithm from the point of view of
necessary conditions for X and Xy to be independent standardized normal variates.

Marsaglia and Bray (1964) mention an improvement to the Box-MiilTer algorithm which was developed in
MaEsag1ia (1962) and based on the tgigonometric results descussed in Section 2.4, Noting also that
vqe+v,2 U0, 1) conditional on v{%4v,Z < 1 yialds the algorithm (1) generate (vq,,_vo) uniformly
d]str?buted over the circle with uAit gadius centered on the origin, (2) set s = v12+v2 » (3) set

c = (=2 In(s)/s)%, (4) set X] = ¢ vq and (5) set xp = ¢ V.

While these two early algorithms are based on special propérties of the normal distribution, later
algorithms have been primarily composition and acceptance/rejection based. At the assembler language
level, where bit manipulation is easy, the composition based algorithm of Marsaglia, MaclLaren and Bray
{1964) is very fast. Mot as fast, but requiring no bit manipulation, is the composition atgorithm of
Kinderman and Ramage (1976). The are many algorithms which are easy to implement, but not as fast.

Marsaglia (1961c, 1964), Kinderman and Monahan (1976) and Schmeiser (1980) present algorithms for random
variates from the tails of the distribution. Tail varjates may also be obtained using the inverse trans-
formation, which isi considered in Abramowitz and Stegun (1964), Beasley and Springer ?1977), Burr (1967),
Hi11 and Davis (1973), Miiller (1958), Odeh and Evans (1974), Page (1977), Ramberg and Schmeiser (1972),
Schmeiser (1980), and Wetherill (1965).

Other references on normal variate generation include Ahrens and Dieter (1972, 1973), Bell (1968), Best
(1979), Brent (1974), Burford and WiTlis (1978), Butcher (1961), Chay, Fardo and Mazumdar (1975}, Chen
(1971), Dieter and Ahrens (1973), Forsythe (1972), Gates (1978), Gebhardt (1964), George (1976), Kinderman
and Monahan (1977), Kinderman, Monahan and Ramage (1975), Kronmal (1964), Marsaglia (1961c), Marsaglia,
Ananthanarayanan and Paul (1976), Miklich and Austin (1976), Moritsas (1973), Miiller (1959b), Payne
(1977), Pike (1965), Pullin (1980), Sakasegawa (1978), Shafer (1962), Shepherd and Hynes (1976), Sibuya
(1962), Swick (1974), Tadikamalla (1978c), Tadikamalla and Johnson (1977), and C.S. Wallace (1976).

The state of the art of normal variate generation is very good. No matter what ciriteria are applicable,
there are algorithms which are satisfactory. This is not surprising since the normal distribution has
only one shape, thereby allowing variates to be generated with no overhead for setting-up constants.

The simple transformation of multiplying by the standard deviation and adding the mean yields all possible
normal distributions., Gamma and beta variate generation are more difficult because the shape of the
distribution changes a§ a function of the parameters.

The gamma distribution ) a-1 _~x .
The gamma distribution with shape parameter o>0 has density function f{x)=x*""e ™ */T(a) I(x)(0 )"
)

Multiplying by the scale parameter >0 yields a mean of of and variance usz. Several other distribu-

tions are special cases: The exponential with mean B when o=1, the Erlang when o is integer, the chi-
square with n degrees of freedom when a=n/2 and B=2, and the normal in the 1imit as o + ». We discuss
the exponential, Erlang and chi-square distributions before we consider the general gamma distribution.

The classic method of generating exponential variates is the inverse transformation x = - 8 In{1-u).
Other methods include the réctangle, wedge, tail algorithm of MacLaren, Marsaglia and Bray (1964), the
comparison method of von Neumann (1951) discussed in Section 2.4, modifications to the comparison method
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by Ahrens and Dieter (1972), Marsaglia (1961a) with a modification by Sibuya (1962), and polynomial sam-
pling in Ahrens and Dieter (1972). The Monte Carlo results in Ahrens and Dieter (1972) show thedr algo-
rithm SA to be the fastest available in assembler language and the inverse transformation to be the
fastest in FORTRAN., This author, in unpublished Monte Carlo results, found a slightly faster FORTRAN
level algorithm on a CDC CYBER 72 in 1978 to be (1) set y = - 1n(u]u2), (2) set x, = ugy and (3) set

Xy = ¥ = Xq. Here u, partitions the Eriang (with mean 2) variate y 9nto two 1nde5endent exponential
variates. In terms gf computational comparison to the inverse transformation, it trades a U(0, 1)
generation for a logarithm computation. With the additional overhead of the painters necessary to keep
track of the two exponential variates, this new aldgorithm is about 10% faster than the inverse transfor-
mation. A more general algorithm studied was to partition an Erlang (with mean k) variate y by k-1

U(0, 1) order statistics to obtain k independent exponential variates with mean 1, but k=2 proved to

be the fastest and easiest to implement.

Erlang variates with mean k have classically been generated using the special property that the sum of

k exponential varjates have the desired distribution. Using the inverse transformation and some algebra
yields x = - Tn(I¥ u,). This is an excellent algorithm for small values of k, but execution time grows
Tinearly with k, makqng the use of the more general gamma algorithms discussed below faster for large k.
The classical method of generating chi-square random variates with n degrees of freedom has been x = y+z2
where y is an Erlang variate with k the largest integer less than or equal to n/2 and z is standard
normal if n is odd and is zero if n is even. The special case of n=2 is the exponential distribution
with mean 2. For large values of n, the general algorithms for the gamma distribution are faster.

The earliest exact method for generating a gamma variate for any o > 01i5- due to J6hnk (1964), which is
written in German. Fishman (1973) discusses the algorithm, which is x = y + wz, where y is an Erlang k
variate, w is an exponential varjate with mean 1, and z is a beta variate with parameters vy and 1-v,
where k is the integer portion of a,and vy is the fractional portion. Again the dependence on Erlang
variates makes this algorithm inefficient for large values of o, making the general algorithms discussed
below faster.

As late as the mid 1970's, approximate algorithms where being published, since exact methods were
unacceptably slow for large values of a. These include Phillips (1971), Phillips and Beightler (1972),
Ramberg and Schmeiser (1974), Ramberg and Tadikamalla (1974), and Wheeler (1974, 1975). See also Bowman
and Beauchamp (1975}, A1l are approximations to the inverse cdf and should not be considered in Tight
of the current state of the art. Approximations yielding machine accuracy inverse transformations may
be found in Best and Roberts (1975) and Bhattacharjee (1970). Since the evaluation of the inverse
transformation is usually performed by iteratively evaluating the cdf, Gautschi (1979) is of interest.
See also Narula and Li (1977).

Exact algorithms which execute in time relatively insensitive to o are now plentiful. Schmeiser and Lal
(1980) give algorithm G4PE which has the smallest execution.time per variate for large values of a,

but its set-up time makes it not fastest when only one variate is needed. Best (1978b) gives a simple
algorithm with almost no set-up time. There are many algorithms which provide a continuum in tradeoff
between set-up time and marginal execution time between these two algorithms. When a very fast normal
generator is available, Marsaglia's (1977) algorithm RGAMA is very fast. Most, but not all, recent algo-
rithms are valid for o > 1, since Johnk's (1964) algorithm is quite acceptable for o < 1.

Other references include Ahrens and Dieter (1974), Atkinson (1977), Atkinson and Pearce (1976}, Cheng
(1977), Cheng and Feast (1979), Dagpunar (1978), Dieter and Ahrens (1974), Fishman (1976), Franklin and
Sen (1975), Greenwood (1974), Kinderman and Monahaii (1978), McGrath 'and Irving (1973), Popescu (1974),
Tadikamalla (1978a, 1978b), C.S. Wallace (1976), N.D. Wallace (1974), Whittaker (1974), Berman (1971),
and Locks (1976). Takahashi (1959), in Japanese, may also be of interest.

The beta distribution

The beta distribution with shape parameters p > 0 and q > 0 has density function

£(x) = X" 1(1-x)9/ 8(p, q) Hx)(, 1)

where B(p, q) is the beta function. The mean is p/(p+q) and the variance is pq/((p+q)2(p+q+1)).

Special cases include the uniform distribution when p = q = 1, the arcsin distribution when p = q = 3,

the gamma distribution in the 1imit as p ~ », q » «, and p/q remains constant; and the normal distribution
in the Timit as p + <, q+ «, and p = q. When p and q are both less than 1, the density function is U
shaped, with the density function infinite at x = 0 and x = 1. When exactly one of p and q are less than
1, ithe distribution is J shaped, and when both p and q are greater than 1, the distribution is unimodal.
This diversity of shapes makes the beta distribution an important model of real world phenomena (often
after rescaling to the interval (a, b)), but this same diversity makes development of beta variate genera-
tion algortihms difficult. Most algorithms consider only one shape of the beta distribution, reguiring
the use of a combination of algorithms to obtainvariates efficiently for all parameter values.

As with gamma generatijon, early algorithms dealt with special cases. Fox (1963) suggested the use of
U(0, 1) order statistics when p and q are integer. A classical general technique is x = w/(wty) where
w o gamma (a=p) and y ~ gamma (o=q), which results in a reasondble algorithm when good gamma generators
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are used. Jhnk (1964) gave an algorithm valid for any parameter values, but which has execution times
which grow rapidly with p and/or q.

Interest in beta variate generation was spurred by Ahrens and Dieter (1974a)who used a normal majorizing
function with mean p/(p+q§ truncated at zero and one to obtain algorithm BN. 'Execution time is least
when p and g are close to the Timiting normal case of Targe and equal values. Execution time in the
Timiting case as the beta approaches the gamma {p and q large and unequal) is asymptotically infinite
since the heavier tails of the gamma distribution force a poor fit by the normal majorizing function.

The first algorithm which executes in finite time for all parameter values p > 1 and q > 1 is BB, which
is developed in Cheng (1978). Algorithm B4PE developed in Schmeiser (1980) has marginal times about half
of those of BB, but the set-up time is longer.and B4PE requires more 1ines of code.

Atkinson and Whittaker (1976, 1979) consider J shaped beta distributions having one parameter less than
and one parameter greater than 1.

Other references are Arhason (1972), Atkinson (1979¢), Bankovi (1964), Békédssey (1964), Best (1978a),
Dieter and Ahrens {1974), Locks (1976}, and Schmeiser and Shalaby (1980). Majumder and Bhattacharjee
(1973) consider the inverse transformation.

Other continuous distributions
Other continuous univariate distributions have received considerably less attention. Often only a single
paper has been written for a particular distribution. We simply Tist the relevant references here.

Inverse Gaussian (Wald) distribution: Michael, Schucany and Haas (1976).

von Mises distribution: Best and Fisher (1979).

Ansari-Bradley W statistic: Dinneen and Blakesley (1976).

Weibull distribution: Léger (1973).

Exponential power distribution: Johnson (1979) and Tadikamalla (1980).

Stable distribution: Bartels (1978) and Chambers, Mallows and Stuck (1976).

Lognormal distribution: Chamayou (1976).

Student's t distribution: Kinderman and Monahan (1978), Kinderman; Monahan and Ramage (1975, 1977} and
Pearson family: Cooper, Davis and Dono (1965) and McGrath and Irving (1973). Best {1978a).
Dipole distribution (a generalization of the Cauchy): Knop (1973).

Cauchy distribution: Arnason {1974), Monahan (1979), and Robinson and Lewis (1975}.

KoTmogorov-Smirnov statistic: Devroye (1980c).

Burr and Paretoé distributions: Popescu (1977).

Extreme value distribution: Goldstein (1963).

Generalized (four parameter) gamma distribution: Tadikamalla (1979a).

Weibull, riormal, gamma and beta tails: Schmeiser (1980)

Devroye (1980a) considers variate generation when only the characteristic function is known.

Ramberg (1975), Ramberg and Schmeiser (1972, 1974), Burr (1942, 1973), N.L. Johnson (1947), Ramberg,
Tadikamalla, Dudewicz and Mykytka (1979), Johnson, Tietjen and Beckman (1980), Schmeiser (1977), and
Schmeiser and Deutsch (1977) discuss various general families of distributions for which variate

generation is straightforward.

4.2 Univariate Discrete Distributions

The Poisson and binomial distributions have received the most attention of all the univariate discrete
distributions. Johnson (1974) developes a unifying theory for discrete variate gerieration.

The Poisson distribution X
The Poisson distribution has mass function f(x) = e™ 1%/x! for x =0, 1, 2, ... , where u is the mean
and the variance of X.

There are three approaches appropriate when 1 is small. The inverse transformation, implemented using
the recursion f(x) = F(x-1) u/x almost always dominates the equally easy to implement aigorithm based
on simulating a homogeneous Poisson process with rate 1 for p time units, which is discussed in Kahn
(1956) and Schaffer (1970). Both methods require a set-up involving exp(-u). When the mean changes
often, a "thinning" algorithm which vequires no set-up is faster. To generate variates for changing mean
in the range (0, y), generate a Poisson variate with mean y and reject each event with probability
1-(u/y), which is equivalent to using the product of a Poisson variate y with mean vy and a binomial
variate with parameters n=y and p=y/u. Thinning algorithms are further discussed in the section on point
processes.

Generating Poisson variates when u is large has posed a more substantial problem over the years. Ahrens
and Dieter (1974a) give a composition algorithm with execution time increasing with vii and a method based
on gamma variates with time increasing in In(u). Fishman (1976b) sufveys the Poisson variate literature
and gives algorithm PIF which sets-up quickly and has Tow marginal execution times for moderate values of
u, although execution time increases with vu.
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Akinson (1979a) gives the first algorithm which is exact and has execution time which does not go to
infinity as u + ., Algorithm PA is based on acceptance/rejection, used a logistic majorizing function,
and evaluates In(x!) by tabling values for x through 200, Using Stirling's approximation for in(x!)
with enough terms to provide machine accuracy, rather than the tabled values,allows PA to be used for
any large value of y.

Devroye {1980e) gives algorithm IP which is based on composition. The inverse transformation is used
for the left tail. The body of the distribution is handled via acceptance/rejection and a normal
majorizing function. The right tail is handled with an exponential majotizing function. Evaluation of
x! is performed explicitly via x{x-1}{x-2}---(2), but is seldom necessary due to the use of preliminary
acceptance and rejection comparisons. Execution times are very stable as.y » =,

Schmeiser and Kachivichyanukul {1980) give algorithm P2PE using composition. Each of thrae subdensities
are handled via acceptance/rejection. The tails have exponential majorizing functions and the body of
the distribution has a uniform majorizing function. Using the Kinderman and Ramage (1976) normal
generator with IP, P2PE requires about half the marginal execution time and PA is about half again slower.
For one variate, IP and P2PE require about the same time, due to P2PE taking Tonger to set-up. For-more
than one variate, P2PE is preferred. However, if a very fast assembler language normal generator is used,
IP will perform better than with the FORTRAN level normal generator.

Other Poisson references include Atkinson (1979b), Bolshev (1965), Hufnagel and Kerr (1969), Molenaar
(1970), Pak (1975), Snow (1968), and Tadikamalla (1979b).

The binomial distribution neox n-x
The binomial distribution has mass function f(x) = () p" (1-p) for x =0, 1, ..., n. The mean is np
and the variance is np(1-p).

When np is small, the inverse transformation with recursion f(x) = f(x-1) {n-x+1) (p/(1-p)) / x is good.
When n is small, summing n Bernoulli trials each having probability of success p works well.

For moderate values of n, the use of Chen and Asau's (1974) index table for searching the inverse cdf

is fast, but as n goes to infinity, either the size of the table or the execution time becomes infinite,
as does the set-up time. Similarly for Walker's (1977) alias method. Norman and Cannon's {1972) tabling
procedure works well if rounding the probabilities is acceptable.

Relles (1972) and Ahrens and Dieter (1974a) give algorithms whose execution times increase only slowly
with the mean, based on the binomial distpibution's relationship with the béta distribution.

There are two exact algorithms which have finite execution time as n and np go to infinity. Fishman
(1979) suggests using an acceptance/rejection algorithm with a Poisson majorizing function. Using any
of the three Poisson algorithms requiring finite time' yields a finite time binomial generator. The other
algorithm is Devroye and Naderisamani (1980).

The negative binomial distribution -1 «

The negative binomial distribution has mass function f(x) = (" ¥ ') p" (1-p)*-for x = 0, 1, ... . The
mean *is n(1-p)/p and the variance is n(l-p)/pz. It is also called the Pascal distribution when n is -
integer, in which case it can be viéwed as the sum of n geometric random variables with probability of
success p.and x is the number of failures before n successes, The geometric distribution is the specidl
case of n=1.

Geometric random variables may be generated directly using the inverse transformation x = |[{In(1-u)/
Tn{1-p)|, where |y] denotes the Targest integer less than or equal to y. Of course summing n geometri¢
* variates results in execution times which increase linearly with n.

As suggested by Devroye and Naderisamani (1980), a negative binomial variate for any n ahd p can be
generated in a reasonable amount of time by generating a gamma (o=n, g=(1-p)/p) variate y and then
generating a Poisson variate x with mean y, which is an example of continuous composition for a discrete
random variable. Lé&ger (1973) also discusses the negative binomial distribution.

4,3 MULTIVARIATE DISTRIBUTIONS

The generation of random vectors (X, X,, ..., X ) having specified properties is substantially harder
than the generation of univariate r ndo% variate]. The marginal distributions of the X;'s need to be
correct while at the same time some form of dependence between the variables must be established.
Schmeiser and Lal (1980a) survey multivariate input models for simulation, including continuous and
discrete random vectors, point processes, time series, and order statistics.

Continuous multivariate distributions
A common problem is to need to have the marginal distributions and dependence structure specified by the
Jjoint density function f(x1, X2, «<e» Xp). Composition, acceptance/rejection, and conditional distribu-




8 Bruce W. SCHMEISER

T

tions are applicable, the first two being straightforward extensions of the univariate concepts. The
usé of conditional distributions reduces the multivariate problem to n univariate problems by using

the algorithm (1) generate xy from_ f1(x), (2) generate xp from fa(xp|x1), (3) generate x3 from
f3(X3|x151x2), and so on. While it 1s very general, the use of con 1tlona1 distributions~is often
intractable

Often in simulation input modeling, However, the data can be used to estimate the conditional distribu-
tions directly, making generation via conditional distributions straightforward. See Kottas and Lau
(1978), Eilon and Fowkes (1973), and Johnson (1976).

The multivariate normal distribution has been the subject of more papers than any other multivariate
topic considered here: Barr and Slezak (1972), Bedall and Zimmerman (1976), Dedk {1978, 1979a, 1979¢),
Hurst and Knop (1972), Jansson (1964), Page (1974), Scheuer and Stoller (1962) and Schmeiser and Ali
(1978). Franklin (1965) discusses the related topic of Gaussian processes.

Several authors have considered various multivaridte gamma distributions. Mitchell, Paulson and
Beswick (1977) generaté bivariate exponential random vectors with any positive corre]at1on and some
negative correlations. (The paper says that any correlation between -2.5 and 1 can be obtained, but
this is obviously a misprint.) Ronning (1977) and Prékopa and Szé&ntai (1978) present mu1tivariate gamma
distributions and generation methods for nonnegative correlations. Schmeiser and Lal (1979) give a
family of algorithms for bivariate vectors having any gamma marginal distributions and any correlation
consistent with the marginal distributions, including negative correlations.

Macomber and Myers (1978) consider multivariate beta distributions. Arnason (1972) considers the
Dirichlet distribution, which has all beta marginal distributions.

Chalmers (1975) and Dempster, Schatzoff and Wermuth (1977) generate random correlation matrices.
Chambers (1970) and Smith and Hocking (1972) consider generation of Wishart matrices and Gleser (1976)
generates noncentral Wishart distributions. Odell and Feiveson (1966) generate sample covariance
‘matrices.

Coleman and Saipe (1978), Gargano and Tenenbein (1977), Johnson and Ramberg (1977b), and Johnson and
Tenenbein (1979) discuss bivariate distributions havin U(? marg1na1 d1str1but1 ns. Multivariate
uniform distributions are important primarily bécause % (u Y, Fool(u,d, .. (u)) has exactly
the specified marginal distributions and by modifying the corre1at on s ructure of the"unifbrm random
vector, varjous correlation structures can be obtained in the multivariate distribution of interest.
The major problem with this approach is that the correlation between x, and x, must be determined via
numerical integration. 1 J

Although not in the context of random variate generation, Kimeldorf and Sampson (1975a, 1975b) provide
the basis for a wide range of multivariate un1f0rm distributions. Theyadvocate the study of multivariate
distributions via the distribution of (F,(X,), Fy (X ), cees Fo (X )). Since each F.(X.) has a U{0, 1)
distribution, analysis of the corre1atwo$ slructure is eas1er Nafler this transform3t18n This suggests
an algorithm of the following type: (1) generate (z s Z z )} from any n- d1mens1ona1 multivariate
distribution (the multivariate normal being the obv1ous Eho1ce), and (2) calculate X5 = F4” (@(z 3]

for i =1, 2, ..., n, where ¢(-) denotes the cdf of the normal distribution. Still the problem remains
that the correlation between X; and'xj must be determined via numerical integration.

Hull (]977) uses this method (although there is no indication that he was influenced by Kimeldorf and
Sampson's work) to approximate the correlation by matching points on the regression curve E(X1|

Johnson (1976) discusses direct transformation from one multivariate distribution to another.

Mardia (1970) offers a good discussion of bivariate distributions. Moran (1967) and Whitt (1976) con-
tain good discussions of the correlations which are theoretically possible for-:given marginal distribu-
tions. Other references include Arnold {1967), Friday (1976), Johnson (1949), Johnson and Ramberg
{1977a), McArdle (1976) and Pearson {1925),

Discrete multivariate distributions

LittTe work has appeared on discrete multivariate distributions. Fishman (1978a) and Ho, Gentle and
Kennedy (1979) discuss the multinomial distribution. Kemp (1976) and Kemp and Loukas (1978a, 1978b)
consider the generationof bivariate dicrete distributions in general. Boyett {(1979) gives an algorithm
for generating R x C contingency tahles. See also Wakimoto %1976).

Point Processes

Generation of point processes is most commonly encountered when providing arrivals of customers to a
system. The simplist case is that of independent Poisson arrivals with constant rate u, which ¥s most
commonly handled by generating exponentidl interarrival times with mean 1/u and adding the time to the
time of the last arrival. Complications arise when the interevent times are not exponential or the rate
varies as a function of time or the state of the system.

A Poisson point process with rate u(t) which varies with time is called a nonhomogeneous Poisson point
process (NHPP)}. A NHPP can be generated using the inverse transformation, composition, acceptance/rejec-
tion, and spec¢ial properties.
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Ginlar (1975) gives the inverse transférmation, which he terms the time scale transformation. Let

t,
_ 1
Mts_1s ty) = Tty u(t) dt,

which is the expected number of Poisson arrivals between times ti and t;. The cdf of the time of the
next arrival Ti‘ conditional on the time of the last arrival ti_],"is

FTi|t1—1 (ti) =7 - exp(-A(ti_1, ti))‘

Since T, is a continuous random variable, FTi'ti-1 ~ U{0,1). Setting FTilti_1(tilti-1) = u and

solving for t. yields the inverse transformation algorithm, which for many simple NHPP's is closed
form. For example, if u(t) = 2ct, the inverse transformation algorithm is ty = (ti_T-ln(1-u)/c)%.
Kaminsky and Rumpf (1977) also discuss the inverse transformation.

The special property is that Poisson processes, 1ike Poisson random variables, can be added. Consider
n NHPP's having rate functions u,(t), for i =1, 2, ..., n. Then merging the events from the n indepen-
dent processes yields a NHPP with rate function u(t) = Z ui(t).

The acceptance/rejection concept in the context of NHPP's is commonly termed "thinning." Heré :events
from one NHPP are accepted or rejected to obtain events from another NHPP. Let u'(t) > u(t), where
u'(t) is chosen so that the inequality is close and events from the NHPP having rate function u'(t) are
easy and fast to generate. The thinning concept is to generate events with rate u'(t) and to accept
each event with probability n(t)/u'(t), where t is the time of the event. See Lewis and Shedler (1979b).

Lewis and Shedler (1976) discuss generating events when u(t) = exp (uo + “1t) and Lewis and Shedler
(1979a) consider u(t) = exp (uo gt + uztz) for NHPP's,

Jacobs and Lewis (1977) and Laurance and Lewis (1977) discuss point processes having correlated expon-
ential interevent times. Fishman and Kao (1977) discuss parameter estimation and generation of inter-
event times using a harmonic function to model the expected interevent time conditional on t, , to
obtain nonhomogeneity. They also consider nonexponential interevent times. Kimbler, Davis éﬁ& Schmidt
{1980) consider estimating and generating point processes when the data is in the form of counts and are
nonPoisson.

Time series

Time series having normal marginal distributions were studied by Franklin (1965). Coleman and Saipe
(1977) note a correct method for generating time series having lognormal marginal distributions. Gaver,
Lavenberg and Price (1973), Lawrance and Lewis (1977, 1978), Jacobs .and Lewis (1977) and Schmeiser and
Lal (1979) consider time series having gamma marginal distributions. Price (1976) and Hoffman (1979)
generate binary time series. Fraker and Rippy (1974}, Kaplan and Orr (1976), Nawathe and Rao (1979),
Polge, Holliday and Bhagavan (1973) and Yagil (1963) consider various related problems, as do Li and
Hammond (1975) who provide some additional references.

Order statistics .
He briefly review some results for generating order statistics. Schmeiser (1978a) gives a complete
survey.

Let X(
tions.

1) denote the i th Targest observation from a sample of n (not necessarily independent) observa-
Then x(i) is the i th order statistic. The minimum observation is x(l), the maximum is x(n) and

the median is x (n+] )when n is odd. The need for random order statistics arises in many contexts;

reliability is S Eom%éﬁ example. Clearly the direct method of generating X1 Xgs eees Xp and sorting

is always valid. However, when n is large or not all order statistics are needed, considerable savings
are possible using the methods discussed here,
First consider the case of independent U(0, 1) random variables U1, Ups «uus UnL Schucany (1972) showed

that the following algorithm is valid for generating the order statistics directly without sorting:
(1) Generate Vis Vos eees Vp independent U(0, 1).

(2) Set U(n) V-]]/n ( )
- 1/{n-1i .
(3) set Urnei) = Yneis1) Vil for i=1,2, ..., n-1.
The algorithm can be terminated after k iterations to obtain only the top k order statistics. Execution

time is Tinear in k, whereas sorting algorithm times increase faster than linearly. The intuitive
thought behind Schucany's algorithm is that conditional on knowing u(n-i+1)’ the distribution of the

remaining n-i order statistics is that of n-i independent U(O, u( .+1)) random variables, thus permitting
the recursion. Lurie and Hartley (1972) published a similar n-1 algorithm, the difference being
that they generate the order statistics in the reverse order:

(1) Generate Vis Vos eees Yy independent U(0, 1).
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(2) Setu n=1- v1]/n )
(3) Set ugi; =1-(1- u(i_])) vill(n*1+1) fori=2,3, ..., n.

Lurie and Mason (1973), Mason and Lurie (1973) and Rabinowitz and Berenson (1974) consider these ideas

further. Ramberg and Tadikamalla (1978) suggest using gy v beta (i, n-i+1) to allow the recursion in
either algorithm to begin anywhere, rather than only the E3p or pottom. (Note the relationship to Fox

(1963) who used the same relationship to generate beta varidtes.)

These algorithms for U(0, 1) order statistics are more general than they first appear, since
x(i) = Fi (u(i)) is a valid method for obtaining random variates for the i th order statistic for any

random variable X. The validity follows from Fi1 being a monotonic function.

Devroye (1989d) considers the case of u( ) when n is so large that numerical problems make the use
of Uen)= vll " impossible. Schmeiser (1978) considers the generation of X(1) O Xpn) when the

observations are not indentically distributed, but Fil is available.
i

In othér cases, some kind of sorting is required. The use of a histogram provides an approximate sort
in time proportional to the number of observations. Good sorting algorithms require éxecution time
proportional to n In(n), although for small samples nZ sorts are reasonable. When only some of the
order statistics are required, the partial sorts of Chambers (1971, 1977) and Floyd and Rivest (1975)
are useful.

A final point is that when order statistics are being generated, the use of exact algorithms for
generating x, is important. An insignificant error in the tail of the distribution under regular sam-
pling can be 'magnified into a serious problem with order statistics, since extreme observations become
more Tikely.

Geometric problems
Many random generation problems have geometric interpretations, the most common being points uniformly
distributed on a sphere and random permutations (card shuffling).

Miller first considered the generation of a point uniformly distributed on an n-dimensional sphegﬁ.

Let Zys Zys e z, be independent standardized normal random variates. Then if X; = z1.2/(z.i z,

for i=1,2, ..., N} (XT’ X0s eres xn) is a point uniformly distributed on the n-dimensional sphere
with radius one centered on %he origin. Execution time grows linearly with n.

Acceptance/rejection from an n-dimensional unit cube looks appealling at first, but the ratio of the
¥01um§ of the sphere to the cube goes to zero quickly as n + ». See, for example, Schmeiser and Ali
1978).

Other references inciude Cook (1959), Dedk (1979b), Hicks and Wheeling (1959), Marsaglia (1972), Sibuya
{1964), and Yoshihiro (1977).

Algorithms for generating random permutations may be found in Boyett (1979), Eisen (1964), Page (1967),
and Rao (1961).

Crain (1978) considers generation of random polygons and Hsuan (1979) generates uniform polygonal random
pairs. Knop (1970) and Schrack (1972) discuss generation-of random vectors distributed over a solid
angle. Heiberger (1978) considers random orthogonal matrices,

5. SUMMARY

The state of the art of random variate generation has changed greatly in the last ten years. Fast, exact
and easy to implement algorithms are available for most common univariate distributions. Order statistics
and nonhomogeneous Poisson, point processes are much more tractdble than they were a few years ago. Multi-
variate gdmma 'vectors with any corrélation structure can now be generated, although as with many multi-
variate generation problems numerical integration is involved. Several families of distributions which
are much more general than the commonly used distributions have been developed.













































